Mutual information relevance networks: functional genomic clustering using pairwise entropy measurementsButte AJ, Kohane IS |
|
AbstractIncreasing numbers of methodologies are available to find functional genomic clusters in RNA expression data. We describe a technique that computes comprehensive pair-wise mutual information for all genes in such a data set. An association with a high mutual information means that one gene is non-randomly associated with another; we hypothesize this means the two are related biologically. By picking a threshold mutual information and using only associations at or above the threshold, we show how this technique was used on a public data set of 79 RNA expression measurements of 2,467 genes to construct 22 clusters, or Relevance Networks. The biological significance of each Relevance Network is explained. |
|
[Full-Text PDF] [PSB Home Page] |