Pacific Symposium on Biocomputing 5:203-214 (2000)

MAPPETSHOW: NON-LINEAR VISUALIZATION FOR
GENOME DATA

F. GUYON
GIS Infobiogen
7, rue Guy Mdéquet — BP 8
94801 Villejuif cedex, France

G. VAYSSEIX, E. BARILLOT
GIS Infobiogen

Généthon
1bis, rue de l’Internationale
91000 Evry, France

The genome mapping projects now produce very dense maps with up to several
thousands of markers per chromosome. Besides synteny plays a increasing role
in mapping: enrichment of poor maps from the maps of close genomes (in terms
of evolution) is a high-reward task. We propose a map viewer adapted to this
situation: MappetShow gives a clear view of very dense maps and compares effi-
ciently several maps. MappetShow is based on non-linear viewing and is written
in Javat™. A map description language isolates the software from the data sources.
This software was easily used on data coming from as different sources as an Object
Request Broker, an Object-Oriented Database, or a flat data stream. MappetShow
can be browsed at the URL http://www.infobiogen.fr/services/Mappet. More gen-
erally we discuss how to use the non-linear viewing concept in molecular biology
data visualization.

1 Introduction

Since the beginning of the human genome mapping project, a lot of softwares
have been developed to visualize the genome maps. In the first phase of the
mapping projects, the genome viewers were generally developed by the genome
centers. These early attempts were mainly written in C or C++ and used X-
window libraries !*23. More recently, the data produced by the genome centers
have been widespread among the scientific community, and very logically new
genome viewers have been developed that are based on a distributed object
technology: the most popular viewers are now written in Javat= 4, They in-
clude for example Anubis®, Genome Navigator %7, Jade®, the Cyanobase Map
viewer?, Mapview2 !, ZoomMap!! and the Oxford Molecular/Glaxo Wellcome
interface 12.

Recently, there has been an important modification in the strategy of the
mapping community. First, the Radiation Hybrid Consortium '3, the White-

Pacific Symposium on Biocomputing 5:203-214 (2000)

head-MIT Center for Genome Research* and Généthon'® released very dense
maps with several hundreds of markers per chromosome; also single nucleotide
polymorphism maps are arriving that will contain several dozens if not hun-
dreds of thousands of polymorphic sites. Secondly and as a consequence of
the availability of these dense maps, research groups now use more and more
the high level of synteny, for example between mammalians, to enrich the map
of map-poor genomes (such as porcine, bovine or ovine genomes) from the
map-rich genomes such as those of Mus Musculus or Homo Sapiens Sapiens.
This new situation poses new problems of visualization, for example: how to
visualize in an intelligible way maps of several hundreds if not thousands of
markers? How to navigate in such maps? How to compare two or more maps in
a readable way? How to cope with the comparison of maps with very different
densities of markers?

Most of the genome map viewers do not address satisfactorily all the points
listed above. In some cases, the dense map representation is unreadable be-
cause the marker names overlap each other in the region the user is visualizing.
In other cases, the comparison of two maps is unintelligible because when zoom-
ing in on a given region of one map, the corresponding region of the other map
is shifted out of the visualization window. Some map viewers display static im-
ages (.gif) in which navigation is very limited and that are disconnected from
genome databases. Starting from these observations, we decided to implement
a genome map viewer, MappetShow, that overcome all these limitations.

In part 2, we explain the visualization concept we have used in Mappet-
Show to address the problem of visualizing very dense maps. Then we present
the functionalities and implementation of MappetShow. In part 4, we detail
the architecture of the software.

2 The Concept of Visualization in MappetShow: Non-Linear Views

2.1 Principles of Non-Linear Views

The purpose of non-linear views is to provide the user with a context and thus
to avoid him/her getting lost in the mountain of data. The idea is to give
him/her a view of all the data but with a focus on his/her area of interest.
The view is thus distorted so that the area of interest is represented centered
and at large scales while the rest of the data is shrunk at lower scales to fit
in the limited space of the screen. The scale of the representation is therefore
not, constant and the mapping of the data world to its representation on the
screen is given by a mapping function or a magnification function.

Pacific Symposium on Biocomputing 5:203-214 (2000)

Mapping Functions

The mapping function is used to map an image to a distorted view. It is simply
represented by a two variables or complex function m which maps each point
(z,y) of the original image to a new location m(z,y).

It is easy to see that the magnification factor is given by the slope of the map-
ping function. Distortion characteristics directly depend on the mathematical
properties of the function m. For examples, continuity of m means that the
view is just stretched or compressed and not split or torn; positive derivatives
of m imply that there is no overlap or folding of the view; holomorphic func-
tions locally preserves angles.

Magnification Functions

The magnification function z represents the local zooming factor applied to
the original image. At position (z,y) the factor z(z,y) can be defined as the
ratio of a mapped surface to the original surface (infinitely small and centered
at (x,y)) (see Appendix).

Examples
Different types of distorted views include :

e fisheye views 6.

e perspective walls17.

e hyperbolic views 181920 Hyperbolic views are well suited for graph vi-

sualization and have already been used in Biology for that purpose!.

e rectangular mapping view.

Examples of distortion with their mathematical definition and a figure of their
effects are given in Appendix.

2.2 Implementations of Non-Linear Views and Performance Issues

Distortion techniques can requires a large amount of computer time to generate
and update images. This can render the user interface unusable. Performance
during interactions (zooming and scrolling , when screen needs to be updated)
must be taken into account, which can be achieved by discrete mapping.

Pacific Symposium on Biocomputing 5:203-214 (2000)

Discrete Mapping

The idea of discrete mapping is to avoid mapping the view pixel by pixel, and
to map only the important nodes of the view and interpolate the other points.
For example to produce the mapping of a straight line one would only compute
the mapping of its extremities and link them by another straight line. In the
general case, this would create artificial discontinuities in the distorted view
because mapping function preserves angles only locally and therefore do not
transform straight lines in straight lines.
Two solutions address these problem:

e to use mono-dimensional or rectangular mappings (see figure 3) which
preserve continuity and inclusion.

e for a general mapping function, a solution is to make the problem discrete
instead of continuous, by organizing nodes on a grid, defining the figure
to be displayed as straight lines between nodes, and mapping the grid
alone.

Density Control

By definition, context regions are represented at lower scales than the focus
zone and they should therefore present less details to maintain a good read-
ability. This leads to the idea of constant information density on a view: by
indexing the level of details represented at a given point of the view on the
current zoom value at this point, one ensures that all part of the view have
an approximately equal density of information. This is also a way of ensuring
better display performance by limiting the global complexity of the drawing.

Color can be used to give an indication of the information density where
details have been removed.

Local Mapping

It is often interesting to apply different mapping functions to different parts
of the view, for example to different objects. This allows a local distortion of
the view which may be more adapted to the visualization problem and less
demanding in terms of computer resources.

Performance issues are addressed by the use of discrete mapping, density
control and local mapping which reduce largely the computation time and
allow a real-time navigation with maps of several thousands of markers.

Pacific Symposium on Biocomputing 5:203-214 (2000)

3 Map Visualization

3.1 Problems Arising from Representing Dense Maps

Several problems of readability occur when representing dense maps:

1. the map is too dense and marker position and names are overlapping and
undiscernible (see figure 1).

2. marker names are shifted out of the visualization window when zooming
(see figure 1).

3. when comparing two maps, the problem is worse because it suffices that
one of the map have one of the two problems listed above to make the
drawing unreadable (see figure 1).

3.2 Designing Views for Genome Visualization

To address the problem of readability, MappetShow implements non-linear
viewing using a one-dimensional hyperbolic mapping function. Since maps are
essentially one dimensional objects, there are no need to use two dimensional
mapping functions. Nevertheless for displaying a lot of maps on the same view,
rectangular mapping views can be used. An example of improved view is given
figure 1. The marker names are perfectly readable in the focus area and all
the map context is visible.

To address the problem of marker name layout (case 2), we compute dy-
namically their positions after each scroll using a mapping function as for the
general view. This can be achieved of course on linear or non-linear views (see
figure 1).

To address the problem of comparing maps (case 3), we defined in Map-
petShow local mapping functions that can be applied to each compared map.
This allows the user to get a readable comparison of several maps. An example
with two maps is given on figure 1.

3.8 Density Control

Graphical objects in MappetShow are organized in a hierarchy: basic compo-
nents, which may be for example lines, circles, rectangles or text, and contain-
ers which contains components or other containers. We define two levels of
representation for a container: coarse and a fine level or representation.

Pacific Symposium on Biocomputing 5:203-214 (2000)

HSA 14 W/ M T
RH Map HSA 14 W/ M T

siEe

A\§ B4s983
\
%
_é

Drasizas

220cR

230ecR -

2a0ck

bR

v3 sex-averagec
HSA 14 W/MT human genetic
RH Map map

or o

SabeR
2500R

bLasi70

2600k o

Diasa0

o |

100em o

10em o

Tooem

1a0em

%
§, :

ik j

Figure 1: Example of unreadable (left) map representations and the corresponding readable
output of MappetShow (right). The two figures at the top correspond to the case 1 stated
subsection 3.1, the two in the middle to case 2, and the two in the bottom to case 3.

Pacific Symposium on Biocomputing 5:203-214 (2000)

The representation of each graphical object depends on its distance to the
focus point of the picture. Graphical objects whose center point is close to
the focus point are represented finely, which means that all their components
are displayed. Graphical objects which are more distant are represented in the
coarse mode. This representation rules are recursively applied to the containers
included in a graphical object.

3.4 User Control

When starting MappetShow, the user has to choose a chromosome or a marker
of interest. Then the list of maps of this chromosome or the list of maps
containing the marker is proposed; the user selects the maps to display and
the visualization applet is started with these maps. In the applet, the user has
the control on:

e the zooming factor with a scrollbar.

e the position of the focus point with a scrollbar.

Each marker in MappetShow is also linked to a WWW textual browser.

4 Architecture

MappetShow is written in Java™ and its architecture consists of four main
components as shown on figure 2:

e the broker: it can fetch the data from as disparate data sources as a
CORBA (common object request broker architecture) server, remote pro-
cedure calls that query the HuGeMap database, a stream of data. The
interface layer queries objects (map, marker ...) by name and returns
an object description string. The CORBA server implements a standard
interface for genome maps that is described elsewhere?2. The stream of
data is structured in a language of graphical object description that can
be used for maps but also for any other drawing purposes. The resource
file contains graphical parameters such as colors, fonts ...

e the drawing layer: it parses the map description string and builds graph-
ical objects (a container).

e the viewing layer: it ensures the distortion and selection of the view. It
draws a graphical object to the screen using a non linear view at the

Pacific Symposium on Biocomputing 5:203-214 (2000)

Screen

Navigation f

Viewer

!

Drawer

!

Broker -« | Resource file

\

Java RPC CORBA Flat Files

Figure 2: Architecture of MappetShow.

appropriate level of representation depending on the local magnification
factor.

e the navigation layer: it takes care of the interactions with the user who
can modify the viewing layer parameters;. The navigation layer manages
scrollbars and mouse events. It updates the viewing layer parameters :
focus position, scale parameters (mapping functions parameter).

5 Conclusion

Non-linear viewing is a solution for providing context to the user navigating
in large data sets. In genome map browsing and comparison, rectangularly
mapped views can be used to improve the readability of the drawing. Such
capabilities are necessary today to cope with very dense maps and with maps
build from rich maps of other species. MappetShow achieves such capabilities
in a flexible way and can fetch data from a CORBA server, an object-oriented
database or a flat data stream.

Pacific Symposium on Biocomputing 5:203-214 (2000)

Figure 3: Simple grid before any non-linear transformation (left). Example of rectangular
mapping view of the simple grid (middle left). Same with polar mapping view (middle right).
Same with perspective wall (right).

Thanks to its low level language of drawing description, MappetShow can
be used for other drawing purposes than maps: it has been used for example
to visualize large pedigrees.

Acknowledgments

This work was supported in part by the European Union contracts BIO4-
CT95-0037 and BIO4-CT98-0030.

Appendix

Examples of Mapping Functions

Mapping functions are constructed from normalized one-dimensional map-
ping functions, which are generally continuous, increasing and anti-symmetric
(which gives a symmetric zooming function).

An common example of one-dimensional mapping function is the hyper-
bolic mapping function u:

(2) ox
T) = ———
a ol + 1

From this one-dimensional hyperbolic mapping function, one can define
several types of two-dimensional non-linear views, whose distortions are illus-

trated figures 3 and 4:

e Rectangular mapping : each coordinates is mapped separately using the
single variable function pu.

X = p(x) Y o= p(y)

Pacific Symposium on Biocomputing 5:203-214 (2000)

HSA 22 CHLC v2 HSA 22 CHLC v2

skeletal female skeletal male

human genetic human geneti ¢
map map

2530
0335136
TcP1P2
225258
D225431
0225300
0225275
225273
90
21.0cM TAAFO3 3-8eM
& OcM
28.0cM 1200
D22S304 16. OcM
20.00M
35. 0cM
22278 24. 00M H
42. 0cM 28-0cM
225283 32.0cM
49.0cM 36-0cM
prRY
56. 0cM 133. 23 c|
63.0cM
70.0cM
HSA 22 CHLC v2 HSA 22 CHLC v3
franework sex-averaged sex-aver aged
human genetic hunan genetic
map map

72. 0cM

90. 0cM

Figure 4: Perspective wall (top) and rectangular (bottom) view of maps with density control.

Pacific Symposium on Biocomputing 5:203-214 (2000)

e Polar mapping : r is the radius (distance to the focal point).

W,y),
r T

e Perspective wall mapping : The image fades away in the y-direction as

it goes far from the focus point. In that case, the magnification factor is
constant along a y-direction.

X =) y - M)
x
References
1. Richard Durbin and Jean Thierry Mieg. A C. elegans Database. Doc-

10.

11.

umentation, code and data available from anonymous FTP servers at
lirmm.lirmm.fr, cele.mrc-lmb.cam.ac.uk and ncbi.nlm.nih.gov. 1991.
M.J. Cinkosky, J.W. Fickett, W.M. Barber, M.A. Bridgers, and C.D.
Troup. SIGMA: A system for integrated genome map assembly. Los
Alamos Science, 20:267 269, 1992.

Stuart Leonard Pook, Eric Viara, Bruno Lacroix, Guy Vaysseix, and
Emmanuel Barillot. The GenomeView project. Généthon technical
report, 1994.

. Sun Microsystems. The source for Javatm technology.

http://java.sun.com.

J. Hu, C. Mungall, D. Nicholson, and A. Archibald. Design and im-
plementation of a CORBA-based genome mapping system prototype.
BIOINFORMATICS, 14:112-120, 1998.

Andy Grigoriev. Genomes with a view. Trends Genet., 13:499, 1997.
Andy Grigoriev. Genome Navigator. Trends Microbiol., 6:184, 1998.
LD. Stein, S. Cartinhour, D. Thierry-Mieg, and J. Thierry-Mieg. JADE:

An approach for interconnecting bioinformatics databases. Gene,
209:39-43, 1998.
Kazuo DNA Research Institute. The Cyanobase map viewer.

http://www.kazusa.or.jp/cyanobase/.

Fasman K.H, Letovsky S.I., Robert W.C., and Kingsbury D.T. The GDB
human genome database anno 1997. Nucleic Acids Research, 25:72-81,
1997.

Stuart Leonard Pook, Guy Vaysseix, and Emmanuel Barillot. Zomit:
biological data visualisation and browsing. BIOINFORMATICS, 14:807—
814, 1998.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Pacific Symposium on Biocomputing 5:203-214 (2000)

Oxford Molecular/Glaxo Wellcome. Graphical interface to public
genome maps. http://www.oxmol.com/biolib/map/.

G.D. Schuler and al. A gene map of the human genome. Science,
274:540-546, 1996.

T.J. Hudson and al. An sts-based map of the human genome. Science,
270:1945-1954, 1995.

C. Dib and al. A comprehensive genetic map of the human genome based
on 5,264 microsatellites. Nature, 380:152-154, 1996.

George W. Furnas. Generalized fisheye views. In CHI ’86. Conference
proceedings on Human factors in computing systems, pages 16-23, Boston
MA, USA, April 1986. ACM Press.

Jock D. Mackinlay, George G. Robertson, and Stuart K. Card. The
perspective wall: Detail and context smoothly integrated. In CHI ’91.
Human factors in computing systems conference proceedings on Reaching
through technology, pages 173-176, New Orleans LA, USA, April 1991.
ACM Press.

John Lamping and Ramana Rao. Laying out and visualizing large trees
using a hyperbolic space. In UIST ’94. Proceedings of the ACM sym-
posium on User interface software and technology, pages 13—-14, Marina
del Rey CA, USA, November 1994. ACM Press.

John Lamping, Ramana Rao, and Peter Pirolli. A focus—+context tech-
nique based on hyperbolic geometry for visualizing large hierarchies. In
CHI ’95. Conference proceedings on Human factors in computing sys-
tems, pages 401-408, Denver CO, USA, May 1995. ACM Press.

John Lamping and Ramana Rao. The hyperbolic browser: A fo-
cus+context technique for visualizing large hierarchies. Journal of Visual
Languages and Computing, 7(1):33-35, March 1996.

Alan J. Robinson and Tomas P. Flores. Novel techniques for visualising
biological information. In ISMB 97, pages 241249, Halkidiki, Greece,
1997. AAAI Press, Menlo Park, California.

E. Barillot, U. Leser, P. Lijnzaad, C. Cussat-Blanc, K. Jungfer, F. Guyon,
G. Vaysseix, C. Helgesen, and P. Rodriguez-Tom. A proposal for a
CORBA interface for genome maps. BIOINFORMATICS, 15:157-169,
1999.

