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We have developed a new algorithm for the alignment of multiple protein structures based on
a Monte Carlo optimization technique. The algorithm uses pair-wise structural alignments as a
starting point. Four different types of moves were designed to generate random changes in the
alignment. A distance-based score is calculated for each trial move and moves are accepted or
rejected based on the improvement in the alignment score until the alignment is converged.
Initial tests on 66 protein structural families show promising results, the score increases by
69% on average. The increase in score is accompanied by an increase (12%) in the number of
residue positions incorporated into the alignment. Two specific families, protein kinases and
aspartic proteinases were tested and compared against curated alignments from HOMSTRAD
and manual alignments. This algorithm has improved the overall number of aligned residues
while preserving key catalytic residues. Further refinement of the method and its application
to generate multiple alignments for all protein families in the PDB, is currently in progress.

1 Introduction

Many algorithms have been developed for the pair-wise alignment of protein
structures1-4. However, few efficient approaches are available for obtaining the
alignment of multiple structures5-7. Rapid advances in experimental techniques have
resulted in determination of more than 12000 protein structures to date and the rate
of growth in structural information is expected to rise further in the era of structural
genomics. A global and comprehensive study of protein structures is possible only
by comparison of multiple structures and investigation of their folding similarities
and evolutionary relationships. With the availability of vast amounts of structural
information, accurate and fully automated structural alignment algorithms are
needed for a better understanding of sequence-structure-function relationships in
proteins. Here, we present a new algorithm for the alignment of multiple protein
structures using Monte Carlo optimization method.

2 Methods

2.1 Data Preparation

Input data were taken from an all-to-all structure alignment database produced using
the Combinatorial Extension (CE) algorithm for pair-wise structural alignment3

implemented using the Property Object Model (POM) data management system8.
The all-to-all structure alignment database contains pair-wise alignment data on all
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against all comparisons between the representative (non-redundant) structures from
PDB. Initial (zero-approximation) multiple alignments were produced by
assembling pair-wise alignment data with respect to the selected master structure.
Average RMSD values were calculated for each structure against all other structures
based on αC - αC  inter residue distances and the structure with minimum average

RMSD was chosen to be the new master. Member structures were superposed with
the new master structure. The alignment data so obtained were used as a starting
point for optimization.

2. 2 Terminology

The multiple alignment is represented by two distinct types of regions, the
alignment ‘block’ (Fig. 1A) and the ‘free pool’ (Fig. 1B) of unaligned residues.
These two types of regions are defined and regulated by two parameters, minimum
block length (Lmin) and minimum number of residues in a given alignment column
(Rmin). The alignment block is a contiguous region of alignment columns (Fig. 1C)
with a length L �� Lmin and each aligned column has residues R �� Rmin. Rmin is
determined by a cutoff percentage of the number of structures being aligned.  In our
studies, Lmin = 4 and Rmin = 33% of the number of structures in a given alignment.
The region separating two adjacent aligned blocks is the free pool region. Each row
corresponds to one protein structure in the multiple alignment (Fig. 1D).

2. 3 Algorithm

The goal of a multiple alignment algorithm is to increase the number of alignment
columns and consequently reduce the number of residues in the free pool region,
within the reasonable limits of an alignment distance change.  We used the Monte
Carlo (MC) approach to achieve this. We have designed four types of moves
(Figure 2) and an appropriate scoring function.

2. 3. 1 Scoring function

A distance-based score was calculated for each column in the alignment block.
Geometric distances were calculated from the 3-D coordinates of αC  atoms for

Figure 1. Black strips denote residues in alignment blocks (aligned residues), double-line strips denote
free pool (unaligned) residues. A – block. B - free pool, C – alignment column, D – alignment row.
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each pair of residues in a column for 2/)1( −RR  combinations, where R is the

number of residues in a column. Column distances were defined as average
geometric distances calculated for each column. The alignment score S was
calculated (similar to Gernstein and Levitt, 1998)9 from the column distances in
aligned blocks, using the following scoring function:
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where, l is the total number of aligned columns, M = 20 is the maximum score of a
match, id  is the average distance for column i, 0d  is the maximum distance which
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i . The value of 0d  is chosen from the initial

distance distribution for all columns in the multiple alignment at the boundary for
the top 10% of column distances. G is linear gap penalty term with gap initiation
and gap extension penalties of 15 and 7, respectively.

2. 3. 2 Move set

Four types of moves, each to be applied in a forward and backward direction, were
designed (modified from Mirny and Shakhnovich, 1998)4 to address different
alignment situations. The types of moves are: (i) The ‘shift’ move shifts residues in
one randomly chosen structure (Fig. 2A); (ii) the ‘expand’ move expands the
alignment block by acquiring newly aligned residues from the free pool  (Fig. 2B);
(iii) the ‘shrink’ move shrinks the blocks by pushing the outer column residues into
the free pool (Fig. 2C); (iv) the “split and shrink’ move splits longer blocks in two
and shrinks one of the new blocks (Fig.  2D).

In the course of optimization the type and position of each move are selected
randomly.

2. 3. 3 Search space and search constraints

(i) Shift: Residues of an individual structure in a block can be shifted in a forward or
backward direction, when there are residues available in the free pool at the
opposite direction of the shift. The structure to be shifted is chosen randomly, the
fragment is shifted one position at a time and the length of shift is from 1 to n
where, n is the number of residues available in the free pool for a given row.

(ii) Expand: Expansion of aligned blocks is possible when there are enough residues
in the free pool in the direction of the move to fill the newly acquired column with
R ��Rmin residues. Aligned blocks are expanded one column at a time as long as
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eligible residues are available from the free pool without changing the residue order
in the alignment.

(iii) Shrink: Aligned blocks can be shrunk in either direction resulting in pushing
the residues from the outer aligned columns into the free pool.

 (iv) Split and Shrink: Longer aligned blocks with a length L ���Lmin can be split
randomly into two sub-blocks with each sub-block of length L ��Lmin. The longer of
the sub-blocks can be shrunk towards the inside of the split until its length is L’ ��.

3 Results and Discussion

We have selected 66 families from representative structural families in the CE all-
to-all database10. Only families with a certain number of structures N in the family
were considered, where 30 ��N �����7KH�VHOHFWLRQ�RI�VWUXFWXUDO�QHLJKERUV�ZDV�PDGH
according to a CE z-score value z �� ����� DQG� WKH� VODYH� VWUXFWXUHV� FRQWDLQLQJ

αC coordinates for at least 50% of the residues that are in alignment with the master

structure. The MC algorithm was run against all the 66 families at different

Figure 2. Move set. Left and right columns give alignment before and after move respectively. Black and
double-line strips denote residues in alignment blocks and free pool (respectively) before the move. Location
of alignment blocks shown in boxes. A - shift, B - expand, C - shrink, D - split and shrink.
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parameter settings. We also generated multiple alignments for two specific families,
the protein kinases and the aspartic proteinases and compared the results to
unmodified CE  pairwise alignments and alignments available from HOMSTRAD11.

3.1 Selection of the optimization protocol

The main principle of MC optimization is iterative improvement through a random
walk of the search space, with occasional excursions into non-optimal territory.
Specifically, location and move type are selected randomly and the change in the
alignment score (∆S) is evaluated. If  ∆S > 0, the move is always accepted and if
∆S ≤ 0, the non-optimal move is accepted with a probability p. In the course of
optimization the effective temperature of the system goes down which results in
lowering the probability p of accepting non-optimal moves:


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where, C = 25 is a constant and m is the trial move count from the beginning of the
optimization. If the move is accepted, the change in alignment becomes permanent
and if not, the change is discarded and the method proceeds to the next trial move.
Trial moves are attempted until convergence, that is, there is no further
improvement in the score for a consecutive mconv number of steps, or the trial move
count reaches a maximum of mmax steps. Here, values of mconv and mmax are based on
the number of structures being aligned and the length of the seed alignment.

Figure 3. Changes in alignment distance and number of 
alignment columns during Monte Carlo optimization
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Figures 3 & 4 depict a typical Monte Carlo optimization run for the protein
kinase family (1CDK:A). In the first 1000 iterations there has been a very sharp rise
both in alignment score (Fig. 4) and in the number of aligned columns (Fig. 3).
Average alignment distance (Fig. 3) shows the same pattern as the number of
alignment columns up to 5000 iterations (Fig. 4) and stabilizes at a lower level after
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that. An increase in the distance upon an increase in the number of alignment
columns is almost invariable among all families tested. This is because our seed
alignment already has fragments aligned by the CE algorithm and the major goal of
the current algorithm is to align regions not aligned by CE, regions that are
inherently structurally distant. A detailed analysis of the relationship between the
average alignment distance and the number of aligned columns is given in Figure 5.

Further analysis of the convergence by starting the optimization using a
different seed number for the random generator showed that improvement in the
alignment score, as well as changes in number of alignment columns and alignment
distance, were consistent in multiple (five) runs.

Table 1. Effect of Monte Carlo optimization for 66 selected protein families.

Parameter Before
Optimization

After
Optimization

% Change

Number of alignment columns 154.61 172.91 12 ↑

Total alignment length 426.63 333.84 22 ↓

Alignment score 509.7 859.13 69 ↑

Average alignment distance 2.63 3.09 17 ↑

3.2 Analysis of multiple protein families

The MC algorithm was run against 66 protein families selected as described above
and the results are given in Table 1. The average increase in the alignment score is
69% which is accompanied by a 12% increase in the number of aligned columns
and a 22% decrease in the total alignment length. As expected, the average
alignment distance also increased by 17% with the increase in number of aligned
columns. Increase in the average alignment distance is contrary to the goals of our

Figure 4. Pattern of the alignment score change during Monte Carlo simulation

260

270

280

290

300

310

320

0 2000 4000 6000 8000 10000 12000

Move count

Sc
or

e

Pacific Symposium on Biocomputing 6:275-286 (2001) 



algorithm; however, a reasonable tradeoff with distance seems indispensable to
accomplish the goal of this algorithm.
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Figure 5 shows the distribution of improvements in the number of columns for
each of the 66 families under study, sorted in ascending order of alignment
columns. The MC optimization provides greater improvements for the families with
more alignment columns. This is explained by larger alignments having more
variation and the algorithm exploring a wider searching space.

Figure 6 . R elationship  between num ber of alignm ent colum ns and  average 
alignm ent distance in  M onte Carlo op tim ization
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To further study the relationship between the average alignment distance and
the number of alignment columns, we ran the algorithm against the 9 families with
7 different settings of scoring function (d0 distance in equation 1). Figure 6 plots the
change in the number of columns ( ∆ c) against the change in the average alignment
distance ( ∆ d). As seen from the previous results (Fig. 3), there is a direct relation
between ∆ c and ∆ d, i.e., an increase in one always leads to an increase in the
other and vice versa. The ∆ c decreases rapidly as ∆ d approaches zero because, for
the majority of the families tested, the initial average distances are in the range of
1-3 A°. When d0 < 3, the score for many alignment columns become negative and
further optimization results in rapid loss of alignment columns from the blocks.

3.2.1 Performance of the algorithm

The algorithm was run on a single processor of SUN HPC6000 with 2 GB of main
memory. The time taken (CPU time) for converging a protein family of 15 chains
with an average residue length of 295, was 4.9 minutes. Computation time grows
quadratic with the number of structures in the alignment. It also depends on a
number of other parameters, among which the available search space (the ratio
between aligned to the non-aligned region in the alignment) and the initial
alignment distance are the key factors  (Data not shown due to space constraints).

3.3 Analysis of specific protein families

To further evaluate the contribution of this MC algorithm to improvements in
multiple structural alignments, two specific protein families have been selected for
further study: protein kinases and aspartic proteinases. MC optimized alignments
have been compared to assembled pairwise CE alignments and to curated (manually
optimized) alignments. Curated alignments for aspartic proteinases have been
obtained from HOMSTRAD11. Curated alignment for protein kinases have been
built in a separate research effort, briefly described below.

3.3.1 Analysis of an alignment of protein kinases

An assessment of the MC algorithm was performed by aligning a set of 17 divergent
protein kinase catalytic cores taken from the PDB. The representatives were chosen
such that the sequence identity upon structural alignment with CE was <50%
between any two structures.  The protein kinases are composed of a small, mostly
beta sheet N-terminal domain and a larger, mostly alpha-helical C-terminal domain
joined by a flexible hinge region.  Residues important for ATP binding and
phosphotransfer line the active site cleft between the domains12.  The MC algorithm
has improved the alignment score by 153%, which is accompanied by a 17%
increase in number of aligned columns, a 19% increase in average alignment
distance, and a 29% reduction in the total alignment length.
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A hand-curated alignment was established by careful examination and
adjustment of the automated CE structural alignments, curated alignments provided
in the HOMSTRAD database11 and two reviews12,14.  Much of the MC alignment
largely agreed with the curated alignments, particularly in the C-terminal subunit, a
less flexible portion of the kinase structure. Two alignment sections of the N-
terminal subunit are highlighted here (Fig. 7, Fig. 8).  These sections represent the
most challenging sections of the protein to align because of the positional variability
seen in this region of the molecule15.  They also illustrate the improvements the MC
optimization provides over the standard CE protocol. Consider the examples:

ID A (CE) B (CE+MC) C (Hand Aligned)

Fig. 8:  Alignment of helix C of the protein kinases by standard CE, CE + MC, and hand curated
alignment.  Alignment is shown in the JOY format.  Shaded boxes: medium gray:� �KHOL[��white:
3-10 helix.

ID A (CE) B (CE+MC) C (Hand Aligned)

Fig. 7:  Alignment of strand 1, the glycine rich loop, and strand 2 of the protein kinases, by
standard CE, CE + MC, and hand curated alignment.  Alignment is shown in the JOY format13

which annotates the sequence alignment for structural features.  Shaded boxes: light gray:� �

strand, medium gray: 3-10 helix, dark gray:� �KHOL[���Residue (letter) characteristics:  uppercase:
solvent inaccessible, lowercase: solvent accessible, italic:�SRVLWLYH� ��EUHYH�Ù�� cis-peptide,
tilde(~): hydrogen bond to other sidechain, bold: hydrogen bond to mainchain amide, underline:
hydrogen bond to mainchain carbonyl.  Blank regions signify portions of the sequence which lack
atomic coordinates in the structure.
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Example 1:  Strand 1 and Strand 2 of the glycine-rich loop (Fig. 7).  This region of
the kinase domain is flexible and often in different conformations15.  However, it
contains the well-conserved GxGxxG motif, which is important for the binding of
ATP in the active site12.  With the exception of one structure (1CJA:A) it should be
aligned without gaps to properly align this motif.  Standard CE alignment splits off
some of the sequence leading up to strand 1, and unnecessarily separates off a row
of conserved glycines in the loop between strands 1 and 2 (Fig. 7A).  The MC
alignment compresses the sequence leading up to strand 1, and closes the gap which
causes the glycine displacement in CE (Fig. 7B).  However, MC does not correct
the misaligned glycine residues seen in some structures in the original CE
alignment. (Figs. 7A-C).

Example 2:  Helix C (Fig. 8).  This helix is found at different angles in the various
protein kinase structures15 making it difficult to align.  However, it should be
aligned without gaps, and a highly-conserved Glu residue should be lined up in all
structures.  The standard CE alignment produces multiple small gaps in the
alignment at the ends of the helix, as well as one large gap based on 1HCK (Fig.
8A).  Inspection of 1HCK reveals that helix C is displaced and rotated to a
particularly large degree in this structure.  The MC alignment compresses most of
the gaps at the ends of the helix and realigns the improperly gapped section (Fig.
8B).  However, it does not correct the misaligned Glu residues seen in some
structures in the original CE alignment (Figs. 8A-C).

3.3.2 Analysis of an alignment of aspartic proteinases

We have selected aspartic proteinases, which are composed of a high proportion of
beta sheets and relatively few alpha helices, as a second family for testing the MC
algorithm. Important members of this family are renins (1BBS:_, 1SMR:A), pepsins
(5PEP:_, 1PSN:_, 1JXR:A, 1MPP:_, 1AM5:_) and proteinases (3APP:_, 4APPE:_,
2APR:_, 2ASI:_) which are associated with several pathological conditions in
humans. We have used the same 12 structures as classified by HOMSTRAD under
this family for ease of comparison and reference. These structures have an average
sequence similarity of 37%. Seed alignments were constructed from CE pair-wise
data as explained previously, using 3APP:_ as the master.

The MC algorithm has improved the alignment score by 19%, which is
accompanied by a 10% increase in number of aligned columns, a 13% increase in
average alignment distance, and a 35% reduction in the total alignment length.
Many improvements were observed in the overall alignment especially in the areas
that CE failed to align properly. Due to space limitations, examples of only two
major improvements are presented in figures 9 & 10 (For an explanation on the
structural features of residues in JOY format refer to Figure 7). Consider the
examples:
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Example 1:  Aspartic proteinases exhibit a bilobal structure with an active site cleft
in the middle of two lobes. On the opposite side of the active site cleft, there is a
“poly-proline” loop contributed by the C-terminal domain. In the case of renins, the
sequence contains ~P-P-P-T-G-P~ (although the analogous structure in some
aspartic proteinases contain fewer or even no proline residues) that influences
binding of the S2' and S3' pockets in the active site cleft16.  In the CE alignment this
region is widely spread out with no alignment of the poly-proline residues (Fig.
9A). However, this region is well aligned by the MC algorithm in all the three
chains (1BBS:_, 1SMR:A, 2JXRA) that contain this region (Fig. 9B) and these
results compare well with the HOMSTRAD alignments (Fig. 9C).
Example 2: Another improvement is seen in the loop region between an α-helix and
a β-sheet in the N-terminal lobe. As seen in figure 10, the CE alignment has spread
out the residues that are well conserved in all but the first two structures (Fig. 10A),
whereas the MC algorithm has realigned these residues (Fig, 10B) making it
comparable to that of the HOMSTRAD alignment (Fig. 10C).

Summary

Multiple structure alignment is of increasing importance as we move into the era of
structural genomics that will bring forth a large number of unannotated structures,
for which automated functional assignments will be needed. This paper presents
evidence that the MC algorithm proposed here can contribute in this regard. The
application of MC improves some aspects of CE pair-wise alignments considerably,
while other aspects are minimally affected. Most importantly, the MC optimization
does not introduce any significant new errors into the alignment.  The effects of the
optimization are nearly always positive.  The overall effect of the optimization is the
compression of many of the gapped regions generated between and at the ends of
secondary structural elements within the multiple alignments. The MC optimization
has little effect within regions of the alignments where a small misalignment error is
present well within a large block of aligned structure/sequence. These types of

ID A (CE) B (CE+MC) C (HOMSTRAD)

Figure 9. Comparison of multiple alignments generated by CE, MC and HOMSTRAD, in the
poly-proline segment of the aspartic proteinases family. Shaded boxes: light gray:� �VWUDQG�
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errors do not seem to benefit from MC optimization. Current work seeks to: (i)
further explore the behavior of MC by empirical means; (ii) compare MC to other
automated multiple alignment techniques; (iii) provide a public database of aligned
protein families.
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