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We introduce a methodology for inducing predictive rule models for functional

classi�cation of gene expressions from microarray hybridisation experiments. The

basic learning method is the rough set framework for rule induction. The method-

ology is di�erent from the commonly used unsupervised clustering approaches in

that it exploits background knowledge of gene function in a supervised manner.

Genes are annotated using Ashburner's Gene Ontology and the functional classes

used for learning are mined from these annotations. From the original expression

data, we extract a set of biologically meaningful features that are used for learning.

A rule model is induced from the data described in terms of these features. Its

predictive quality is �ne-tuned via cross-validation on subsets of the known genes

prior to classi�cation of unknown genes. The predictive and descriptive quality

of such a rule model is demonstrated on the �broblast serum response data pre-

viously analysed by Iyer et. al. Our analysis shows that the rules are capable of

representing the complex relationship between gene expressions and function, and

that it is possible to put forward high quality hypotheses about the function of

unknown genes.

1 Introduction

Functional genomics studies gene function on a large scale by conducting par-
allel analysis of gene expression for a large number of genes 1. This research
is a natural successor to the ongoing genome sequencing e�orts such as, for
example, the Human Genome Project, and is made possible by the microarray
technology 2 that gives a view into the organisation of molecular cellular life
through quantitative measurements of gene expression levels. The complexity
of molecular biology is reected by the huge data sets generated from microar-
ray experiments. This complexity enforces an extensive use of computers to
store and analyse expression data.

Automated gene expression analysis is based on the assumption that genes
with similar functions have similar expression pro�les in cells 3. This is utilised
by inductive learning methods that predict the function of genes that have
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an unknown function (unknown genes), from their expression-similarity with
genes with a known function (known genes). Both unsupervised and supervised
inductive learning may be used for this purpose. As of today, it seems that the
former dominates the state of the art (e.g. Eisen et. al.3 and Iyer et. al.4), even
though applications of the latter do exist (e.g. Brown et. al. 5). Unsupervised
methods are exempli�ed by clustering algorithms, with hierarchical clustering6

and self-organising maps7 being the most popular ones in functional genomics.
These methods use a similarity measure to cluster genes with similar expres-
sion pro�les. Existing biological knowledge, in terms of known gene{function
relations, is then used to validate these clusters and, if justi�ed, to put forward
hypotheses about the function of unknown genes.

Clustering analysis is purely syntactical in the sense that it does not take
advantage of the existing knowledge in the learning process. Instead, this
knowledge is introduced after the induction step (i.e. in the validation step) and
then often in a highly manual fashion. There are few or no objective criteria
that may be used to evaluate the predictive strength of clusters. Consequently,
there are limited possibilities to compare the results of di�erent clustering
approaches or to estimate the quality of the classi�cation of unknown genes.
Supervised learning is an alternative to unsupervised learning that takes a
fundamentally di�erent approach to the use of existing knowledge. Given
a set of known genes and their functions, a supervised learning algorithm
automatically learns a de�nition of the functions exempli�ed by the known
genes. This class de�nition is called a predictive model, since it may be used to
predict the function of genes and, most importantly, the function of unknown
genes. Its predictive quality can be tested on a small subset of the known
genes, while its descriptive value can be inspected by biological experts.

In this paper we present a methodology for inducing predictive models for
functional genomics. Our approach is fully implemented in the ROSETTA sys-
tem 8;9, a publicly available toolkit for data mining and knowledge discovery 10

using rough sets 11, and is tested on the �broblast serum response data 12 pre-
viously analysed by Iyer et. al. 4. Our method basically consists of four steps.
Genes are �rst annotated using Ashburner's Gene Ontology 13 and the func-
tional classes which we want to learn are mined from these annotations. From
the original expression data, we then extract a set of biologically meaningful
features that are used for learning. A rule model is induced from the expres-
sion data described in terms of these features using the rough set framework
for rule induction. The rule model is evaluated and �nally applied to classify
the unknown genes.
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2 Method

The basic vehicles for data representation in rough set theory11 are information

systems and decision systems. An information system is a pair A = (U;A)
where U is a non-empty �nite set of objects called the universe and A is a non-
empty �nite set of attributes such that a : U ! VA for every a 2 A. In our
context, an information system constitutes a table where each row represents
a gene and each column a measurement of this gene's expression. A decision

system is any information system of the form A = (U;A [ fdg), where d 62 A

is the decision attribute. In our context, the functions of the known genes
constitute the decision attribute.

2.1 Annotating genes and mining functional classes from ontologies

Determining the functional classes from which we want to learn is not entirely
straightforward. To understand this we should have in mind the obvious fact
that all genes in principle carry out a unique function. On the other hand, one
could also argue that all genes carry out the same function; the synthesis of
proteins. Consequently, we need to select a certain generality level in which to
view the biological system, that is, we cannot learn from classes with only one
member and there is no point in learning only one class. The problem may
be solved by viewing functions as a hierarchical structure, a gene ontology. A
gene ontology may be seen as a tree, where parent nodes give a more general
description of a gene than their children. The leaf nodes give an accurate
description of each gene. The information associated with a gene as a result
of its location in the ontology is what we will refer to as a gene annotation.

Each known gene in a microarray experiment can be annotated by �nding
one or more nodes in the ontology that best represent the existing knowledge
about its function(s). From the annotations of all the known genes we then
�nd a set of functional classes such that each class is as speci�c as possible
without including too few training examples (genes). The functional classes
possessing this property may easily be retrieved from the gene ontology by
traversing the tree bottom-up: starting from the leaf nodes and stopping when
reaching nodes that within their subtrees contain at least � genes. These genes
are now labelled with the annotation corresponding to the root nodes of the
subtrees and constitute functional classes.

Given an information system M = (U;A) containing microarray experi-
ment measurements, the annotations retrieved from the ontology extend this
information system into a decision systemM = (U�; A[fdg). The cardinality
of the image d(U) = fk j d(x) = k and x 2 Ug is called the rank of d and is de-
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noted r(d). The decision attribute d determines a partition fX1
A
; X2

A
; :::; X

r(d)
A

g

of the universe, where Xk
A
= fx 2 U� j d(x) = vkdg for 1 � k � r(d) are the

functional classes that we want to learn. Note that U� is an extension of U such
that each gene x 2 U is represented in U� by one object for each annotation
of x.

2.2 Extracting useful features for learning

Essential to the quality of the predictive model is, of course, not only the qual-
ity of the measured expressions and the collected annotations, but also the
representation of the training examples. Even if the measurements and anno-
tations had been perfect, one would still have to expect a poor classi�cation
result should the training examples be represented with the wrong features.

We propose a preprocessing strategy for time series that consider only sig-
ni�cant changes in expression levels over time sub-intervals. This shift of focus
from a quantitative representation to a qualitative one has several attractive
features. Semantically, the qualitative representation holds the important fea-
tures that could indicate whether two genes are related or not, i.e. signi�cant
changes in expression levels over sub-intervals. At the same time it is suÆ-
ciently general so as not to be signi�cantly a�ected by noise. Furthermore,
we represent each gene in the decision system M relative to its annotation
by emphasising properties which are common to other genes with the same
annotation. Consequently, we escape the problem of having identical objects
belonging to di�erent classes; this is otherwise a serious problem when learning
gene functions since most genes are involved in more than one function. Genes
showing no similarity to other genes with the same annotation are discarded
under the assumption that they have misleading or irrelevant annotations.

Given a decision system of expression data and annotationsM = (U�; A[
fdg), we de�ne signi�cant change in expression levels by means of a set of
templates T . A template t 2 T is a prototypical pattern of expression level
and can be matched with a gene x 2 U� over all possible sub-intervals I =
f(ai; aj) j 1 � i < j � jAj and ai; aj 2 Ag. A cluster Ci

t includes all genes
matching template t in sub-interval i such that Ci

t = fx 2 U� j i 2 I and t 2

T and match(x; t; i)g. On the basis of these de�nitions we de�ne a new decision
system of learning examples L = (Uy; I [ fdg), where U y = fx 2 U� j 9i 2 I

and i(x) 6= ;g and i(x) = ft 2 T j x 2 Ci
t and jC

i
t jd(x) > " � jU�jd(x)g. Here, "

is a value in the interval [0; 1], and jCi
t jd(x) and jU

�
jd(x) are the number of genes

with the same annotation as x in cluster Ci
t and in universe U�, respectively.

The strategy described above deals with the problems of multiple anno-
tations per gene and annotations that are correct according to the literature,
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but which may not be relevant in a speci�c biological setting. Together with
the strict requirements of supervised learning for a structural representation
of background (validation) knowledge, these two existing problems may be the
main reasons why almost every approach to computational functional genomics
is unsupervised rather than supervised. That is, unsupervised methods escape
these problems since they do not require a strict formalisation of background
knowledge, and since knowledge is applied manually after the induction step.

2.3 Inducing and testing a predictive model

Pawlak's rough set theory11 constitutes a mathematically sound framework for
inducing minimal decision rules from data. We use this framework to induce
a predictive rule model from the decision system L.

The rough set framework for rule induction Central to the notion of rough
sets is the concept of indiscernibility. Given a decision system L = (U y; I [

fdg), we de�ne a relation INDL(I; x; d) = fy 2 U y j (d(x) = d(y)) or (8i 2
I (i(x) = i(y) or i(x) = ;))g called the indiscernibility relation. It holds all
objects (genes in our case) which either have the same annotation as x or for
all sub-intervals are members of the same clusters as x. Generalised decision

ÆI(x) = fi j 9y 2 Uy y 2 INDL(I; x; d) and d(y) = ig de�nes all annotations
associated with genes being indiscernible from x.

From the de�nition of indiscernibility we derive for each gene x 2 U y the
set of reducts REDL(x; d) to be the minimal sets of attributes B � I such that
INDL(B; x; d) = INDL(I; x; d). Finding the set of minimal reducts is NP-
hard 14, however, there are heuristics that compute suÆciently many reducts
in an acceptable time. Since real-world data almost always is polluted with
noise and since it only takes one noisy object to alter the indiscernibility rela-
tion, methods �nding approximate reducts that reveal the underlying, general
pattern in the data have been developed. Two such approaches are dynamic

reducts 15 and �-reducts 16.

Reducts serve the purpose of synthesising minimal decision rules of the
form � ! �. The most fundamental building block for assembling rules is
called a descriptor. A descriptor is an expression i = i(x), where i 2 I .
Descriptors may be combined in a recursive manner in order to form more
complex formulae such as FI (x) = ^

i2I
(i = i(x)) and GI(x) = _

j2ÆI (x)
(d = j).

Minimum decision rules from the decision system L constitute the set RULL =
[

x2Uy
fFB(x) ! GB(x) j B 2 REDL(x; d)g. For a detailed introduction to

rough sets see Komorowski et. al. 17.
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Testing strategy A classi�er is evaluated by dividing the set of available training
examples into a training set and a test set. A systematic approach to testing
is k-fold cross validation where the set of training examples is divided into
k subsets in which each of these subsets is used once for testing and k � 1
times for training. Since the training examples in the decision system L are
represented relative to its decision class (functional class), we need to transform
each subsystem of L acting as a test set such that all its genes are represented
by all matching templates in all possible sub-intervals. This ensures unbiased
test sets and hence the classi�cation quality measured on these test sets can be
directly used as an estimate of the quality of the classi�cation of the unknown
genes.

Model evaluation The induced rules constitute a classi�er or a predictive model
denoted �. When applied to a gene x 2 U y in a test set, this classi�er assigns
a classi�cation d̂�(x) to x. d(x) is assumed to be the true actual classi�cation

of x. We will only consider binary classi�ers in which d̂�(x) takes the form

d̂ : U
�
! [0; 1]

��
! f0; 1g. In most cases, when we are faced with more than

two functional classes, we choose one �xed class at a time and classify unseen
objects as either belonging to this class or to one of the other classes. Hence,
�(x) is the certainty of a rule model that x belongs to the �xed class, while
�� (x) is a simple threshold function that evaluates to 0 if �� (x) < � , and 1
otherwise. �(x) is realised by a voting procedure that lets each matching rule
cast a number of votes in favour of the decision class the rule indicates.

A frequently used graphical representation of classi�er performance is the
receiver operating characteristic (ROC) curve 18. This curve results from plot-
ting the true positive rate (sensitivity) against the false positive rate (1 - speci-
�city) while letting � vary across the full spectrum of possible values in [0; 1].
The ROC curve is commonly collapsed into one value by computing the area
under the ROC curve denoted AUC. This value is attractive since it, unlike for
example accuracy, is independent of both error costs and prevalence of classes.

2.4 Predicting the function of unknown genes

When classifying unknown genes one needs to select a �xed threshold � for each
�xed functional class. This value may be selected by minimising the function
v � (1� speci�city(�)) + (1� sensitivity(�)) over the test set. Hence, if v > 1
the cost of false positives is weighted higher than the cost of false negatives.
This makes sense, since we want as few wrong hypothesis about gene function
as possible when classifying unknown genes.

The unknown genes are predicted using the rules RULL induced from the
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whole set of training examples in L. Let �i(x) be the certainty of a rule model
that the unknown gene x belongs to functional class i. The set of predicted
functions is now PREDRULL(x) = fi j �i(x) > �ig. �i is the threshold selected
for the functional class i as described above.

3 Results

Iyer et al. 4 studied the human �broblast's response to serum. These cells have
a pivotal structural role in connective tissue and in important processes such
as wound healing. The temporal changes in mRNA level of 8613 human genes
were measured at 12 time points in the time period between 0 minutes and 24
hours after serum stimulation. A subset of 517 genes whose expression changed
substantially in response to serum was selected for further analysis.

Ashburner's Gene Ontology 13 is under development by experts on the
biology of fruit y (Drosophila melanogaster), yeast (Saccharomyces cerevisiae)
and mouse (Mus musculus). Since these organisms have a large number of
genes which are similar, homologous, to humans, this ontology can in large
parts be used to annotate human genes. The ontology divides gene function
into three top-level categories: cell compartment, function and process. In our
analysis of the �broblast serum response data 12 we concentrated on process,
since this is the only aspect of gene function where one may expect a signi�cant
correlation between annotations and temporal gene expression pro�les 5.

From the 517 genes in the �broblast serum response data 12, 300 could
be annotated to one or more processes in Ashburner's Gene Ontology 13 by
the use of knowledge extracted manually from literature and databases such
as SWISS-PROT 19. The total number of annotations was 647, hence each
gene seems to be involved in over 2 processes on average. Requiring 10 genes
in each functional class (� = 10) resulted in a training set containing 16 pro-
cesses including 209 genes and 335 annotations. Requiring 20 genes (� = 20)
resulted in a training set containing 10 processes including 215 genes and 332
annotations.

We used two templates in our analysis, one that de�ned an increase and
one that de�ned a decrease in an expression level. In order to match one of
these templates, a gene needed to increase/decrease at least 0.8 over at least
three time points. Temporary changes in the opposite direction were allowed,
but not by more than 0.2 from one time point to the next. The values of 0.8 and
0.2 were informally derived from the selection criteria Iyer et. al.4 used to single
out the 517 genes. Additionally, the data passed through two transformations
before we applied the templates. First, the initially logarithmic data was
made linear by the simple inverse logarithmic transformation 2t. Then moving
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average transformation ti =
ti�ti�1

2
was used to smooth out spikes.

The above two templates were used to construct a �nal training set as
described in Sec. 2.2. � = 10 and " = 1

3
resulted in 166 genes and 246

annotations. � = 20 and " = 1
3
resulted in 156 genes and 223 annotations.

Consequently, we were left with approximately half of the known genes for
training.

The set of training examples was divided into a training set (2=3) and a
test set (1=3). The training set was then further divided in a 10-fold cross
validation setting in order to select the best algorithm and to �ne-tune its
parameters. Finally, the test set was included in a 5 � 3-fold cross valida-
tion. A genetic algorithm computing �-reducts (� = 90) was used (for de-
tails see Vinterbo and �hrn 20). The results for � = 10 (Sec. 2.1), " = 1=3
(Sec. 2.2) and v = 2 (Sec. 2.4) are shown in Tab. 1. The corresponding

0MIN 15MIN30MIN 1HR 2HR 4HR 6HR 8HR 12HR 16HR 20HR 24HR
−2

−1.5

−1

−0.5

0

0.5

1

1.5
2 = SEPP1      
25 = ABCA5     
87 = IGFBP3    
95 = NR2F2     
178 = NO SYMBOL
187 = KIAA0786 
188 = CLCN3    
286 = GJB1     
317 = KIAA1382 
402 = SLC25A5  
404 = FKBP1A   

Figure 1: Expression graphs for the 11 genes associ-

ated with process transport (1.1.2).

average AUC-values for � =
20 are 0.81 both in the 10-fold
and in the 5 � 3-fold cross val-
idation setting.

Applying the rule model
to the unknown genes using
the threshold values in Tab. 1
resulted in process predictions
for 191 of the 217 unknown
genes. A total number of 545
predictions were made, corre-
sponding on average to almost
3 hypotheses about the func-
tion of each unknown gene.
The most frequently predicted
processes were transcription

regulation from Pol II pro-

moter and apoptosis, while
chemotaxis and blood coagulation constituted very few predictions.

We have shown how the predictive model is capable of putting forward
hypotheses about the function of unknown genes, and how the quality of these
hypotheses can be estimated in a cross-validation testing on the known genes.
Furthermore, our predictive model can be visually inspected in order to eval-
uate its descriptive quality. Fig. 1 shows the expression graphs of the 11 genes
in the training examples associated with process transport (1.1.2). Three rules
were induced for this process:

1. 2H - 6H(Decreasing) AND 12H - 20H(Increasing) ! Process(1.1.2)
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2. 2H - 6H(Decreasing) ! Process(1.1.2)

3. 12H - 20H(Increasing) ! Process(1.1.2)

As one can see, the rules perfectly match our visual impression of the impor-
tant changes in the expression levels in this process. The total number of rules
induced was 85 for � = 10 and 50 for � = 20.

A full overview of the results including rules, predictions and biological
interpretations will be published in a journal article.

4 Discussion

A predictive model may be evaluated along two axes: predictive quality and
descriptive quality. Tab. 1 shows that the predictive quality is signi�cantly
better than a random classi�er (AUC = 0.50). Moreover, it shows that by
weighting the cost of false positives higher than false negatives, we can obtain
high quality hypotheses about the function of unknown genes. The descriptive
value of our simple language of templates over sub-intervals is illustrated in
Sec. 3 with process transport. Furthermore, biological experts have studied
several of the processes and found that the induced rules very much describe
the complex molecular biological events during the �broblast response.

Iyer et. al. 4 applied an agglomerative implementation of the hierarchical
clustering algorithm to cluster 452 of the 517 genes into 10 groups on the
basis of their similarity in expression level over the entire period of 24 hours.
However, as visually shown by Iyer et. al. 4, the similarities in expression levels
for genes involved in the same process are often only revealed in shorter time
frames than 24 hours. This is, among other factors, due to the fact that several
genes are active in more than one process. This point is illustrated in Fig. 1.
The numbers given on the side of the gene names in the �gure are taken from
the dendrogram built by the hierarchical clustering algorithm used by Iyer et.
al. 4, and reect the similarity as de�ned by this algorithm. Clearly, process
transport is not well described by this approach. We believe that our language
of templates over sub-intervals is more suitable for describing the complex
relationships between gene expressions and processes.

5 Conclusions

We have described a supervised learning methodology for discovering gene
functions from expression data. We have shown how gene ontologies can be
used to determine the functional classes that we want to learn and we have
also shown how to deal with inconsistency and irrelevance in the annotations.
The methodology is demonstrated on the �broblast serum response data 12
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and greatly reduces the number of functions for unknown genes that have to
be further investigated in the wet lab.

We believe that the inclusion of domain knowledge is important in order to
predict gene function from expression data; we do not believe that a syntactical
analysis such as clustering utilises this resource well enough. As more genes
become known and more of reliable annotations are well formalised in terms of
ontologies, the strength of supervised methods will become even more evident.
With a large part of the knowledge of gene function formalised, it will be
possible to fully automate the task of annotation and hence greatly reduce the
overall time needed to learn predictive models from gene expressions.
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