
SUPPORT VECTOR MACHINE PREDICTION OF SIGNAL
PEPTIDE CLEAVAGE SITE USING A NEW CLASS OF

KERNELS FOR STRINGS

J.-P. VERT

Bioinformatics Center, Institute for Chemical Research, Kyoto University
Uji, Kyoto 611-0011, JAPAN
Jean-Philippe.Vert@mines.org

A new class of kernels for strings is introduced. These kernels can be used by
any kernel-based data analysis method, including support vector machines (SVM).
They are derived from probabilistic models to integrate biologically relevant infor-
mation. We show how to compute the kernels corresponding to several classical
probabilistic models, and illustrate their use by building a SVM for the problem
of predicting the cleavage site of signal peptides from the amino-acid sequence of
a protein. At a given rate of false positive this method retrieves up to 47% more
true positives than the classical weight matrix method.

1 Introduction

Probabilistic models for strings play a central role in computational biology
nowadays1: they include weight matrix for short signal sequences, Markov or
hidden Markov models for DNA and protein sequences, stochastic context-free
grammars for RNA or Bayesian graphical models for gene expression data2.
Their strength comes from their ability to catch subtle regularities in the
sequences and to quantify various biological features in a sound theoretical
framework. They can integrate valuable biological knowledge (such as the
possibility of mutations, insertions or deletions in hidden Markov models) dif-
ficult to handle otherwise.

A classical use of probabilistic models is to combine them with Bayes rule
to classify sequences into one out of several competing categories. However
experimental evidences in other areas as well as in computational biology3

suggest that the resulting classifier can perform poorly compared to other
discriminative methods, such as support vector machines (SVM).

There is therefore an incentive currently to adapt efficient discriminative
methods to handle objects such as strings or graphs. For SVM this can be done
by defining a kernel function K(x, y) between any two objects x and y, which
can be thought of as a dot product between objects. An question of interest
is therefore: how to derive a kernel K(x, y) from a probability density p(x), in
order to integrate in the kernel biological features caught by the probabilistic
model?

Pacific Symposium on Biocomputing 7:649-660 (2002)

Several methods have been proposed recently4,5,6 with interesting exper-
imental results3 . This paper introduces a new way to derive a kernel from a
probability distribution, motivated by the intuition that the “closeness” of two
strings should increase when they share common substrings which appear with
small probability under the probabilistic model.

For several widely-used probabilistic models on strings the kernel can be
factorized and therefore efficiently computed. In this paper we explicitly show
how to compute the kernel derived from either (i) independent probabilities or
from (ii) Markov models. The resulting kernel can then be used by any kernel-
based method, including SVM or non-linear principal component analysis7.

As an application we derive an SVM algorithm to predict the cleavage site
of signal peptide from the amino acid sequence of proteins. This algorithm
is shown to significantly outperform the classical method based on a weight
matrix.

2 SVM and kernels

SVM8,9,10 are a family of algorithms remarkably efficient in many real-world
applications. A growing interest for SVM in bioinformatics has emerged re-
cently and resulted in powerful methods for various tasks11,3,12.

A SVM basically learns how to classify objects x ∈ X into two classes
{−1, +1} from a set of labelled training examples {x1, . . . , xm}. The resulting
classifier is based on the decision function:

f(x) =
m∑

i=1

λiK(xi, x), (1)

where x is any new object to be classified, K(., .) is a so-called kernel func-
tion and the coefficients {λ1, . . . , λm} are learned during training by solving
a constrained optimization problem.

The kernel K can be considered as a dot product between objects, or
more precisely between the images of the objects after a mapping to a high-
dimensional Hilbert space. As a result it defines the metric properties of the
space of objects, namely the “size” of each object and the “angle” between any
two objects.

3 Kernels and probability distributions

Typical objects in computational biology are strings, for which many clever
probabilistic models have been developed over the years to integrate biologi-

Pacific Symposium on Biocomputing 7:649-660 (2002)

cally relevant information. In order to combine these clever models with ef-
ficient kernel-based methods it is important to develop general principles to
derive kernels K(x, y) from probability densities p(x).

Obviously there is not a single way to do that4,5,6. In this paper we investi-
gate particular kinds of kernels, which are probability densities on the product
space X ×X , i.e., which satisfy:{

∀(x, y) ∈ X ×X , 0 ≤ K(x, y) ≤ 1,∑
(x,y)∈X×X K(x, y) = 1.

(2)

Such kernels are called P-kernels5. An example of a P-kernel is the product
kernel

Kprod(x, y) = p(x)p(y). (3)

The decision function corresponding to the product kernel is simply f(x) =
a.p(x) + b with a =

∑m
i=1 λip(xi), which shows that the resulting classifier

simply classifies a new object x depending on whether p(x) is above or below
the threshold −b/a. The corresponding feature space is the 1-dimensional line,
and each point is mapped to the number p(x); two objects are “close” when
their probabilities are close.

A second P-kernel example is the diagonal kernel :

Kdiag(x, y) = p(x)δ(x, y), (4)

where δ(x, y) is 1 if x = y, 0 otherwise. The corresponding decision function
tests whether the object has been seen in the training set, in which case it
assigns it to the most probable class. In the corresponding feature space the
set of objects X forms an orthogonal basis.

These two kernels are extreme and show how the choice of the kernel
influences the metric properties of the space of objects. To derive an interesting
kernel from a probability model, the product kernel is a good starting point
because the resulting SVM classifier maps any object to a class based on the
probability of that object, just like the classical Bayes classifier. In order to
enhance the ability of the SVM to discriminate between two objects, it is
natural to allow the “angle” between two objects to vary in order to reflect
some notion of “closeness”, which can not be handled by the diagonal nor the
product kernel.

4 A P-kernel based on rare common subsets

Let us now introduce the main contribution of this paper, namely the definition
of a new general kernel for discrete objects. We propose to consider two strings

Pacific Symposium on Biocomputing 7:649-660 (2002)

as “close” when they share rare common substrings. Here “rare” refers to the
probability of the substring under the model p. As an example, if a particular
sequence of amino acids is very rare in a training database, then it is natural
to think that two proteins which share it could be particularly related to each
other.

Let us introduce some notations to formalize this intuition. Let S be a
finite set (usually {0, 1, . . . , N} for sequences), A a finite set called alphabet,
and X = (Xs)s∈S a family of random variables defined on a probability space
(Ω,F , P) and indexed by the elements of S with values in AS . For any subset
T ⊂ S we note XT = (Xs)s∈T . For any subset T ⊂ S and realization xT ∈ AT

we note pT (xT) = P (XT = xT). If there is no ambiguity we simply write
p(xT) for pT (xT). We define similarly p(xT , yU) = P (XT = xt, XU = yU) and
p(xT | yU) = P (XT = xT |XU = yU) for any two subsets T ⊂ S and U ⊂ S
and realizations xT ∈ AT and yU ∈ AU . Finally let P(S) be the power set of
S (i.e., the set of subsets of S) and V ⊂ P(S) be a particular set of subsets.

Using these notations we can define a kernel as follows:
Definition 1 For any probability density p on X and any set of subsets V ⊂
P(S) we define the (p,V)-common subset kernel Kp,V by the formula:

Kp,V(x, y) =
p(x)p(y)

|V|
∑
T∈V

δ(xT , yT)
p(xT)

, (5)

for any two realizations (x, y) ∈ A2S , where δ(xT , yT) is 1 if xT = yT , 0
otherwise.

The main properties of this function are summarized here:
Proposition 1 1. For any probability density p on X and set of subsets

V ⊂ P(S) the function Kp,V is a valid P-kernel on X × X .

2. When V only contains the empty set ∅, we have Kp,{∅} = Kprod.

3. When V only contains the full set S, we have Kp,{S} = Kdiag.

4. For a general set of subsets V ⊂ P(S) we have for any (x, y) ∈ A2S :

Kp,V (x, y) =
1
|V|

∑
T∈V

∑
zT ∈AT

p(zT)p(x|zT)p(y|zT). (6)

This proposition, whose proof can be found in the Appendix, shows that
the kernel Kp,V interpolates between the diagonal kernel and the product
kernel. Equation (5) shows that correlations are introduced between strings
through their common substrings indexed by V. The contribution of a common

Pacific Symposium on Biocomputing 7:649-660 (2002)

substring is inversely proportional to its probability, so the rarer a common
substring the more it increases the similarity between the strings.

For a general density p and a general set V there is usually no way of
computing K(p.V) without computing the |V| terms in the sum defining the
kernel. This might be prohibitive as soon as the set V becomes large, which
happens when one considers for instance the set V = P(S) with size 2|S|. In the
next two sections we provide two examples where the kernel can be factorized
and computed in linear time with respect to |S|. All proofs can be found in
the Appendix.

5 Independent variables

In this section we compute the kernel derived from a product probability den-
sity, corresponding to modeling the variables as independent. Examples of such
models include many probabilistic profiles for signal sequences or transcription
factors binding sites in DNA. The corresponding kernels can be computed as
follows:
Proposition 2 Let {pi, i ∈ S} be a family of probability densities on A, and
let p be the product distribution on AS, i.e.,

∀x ∈ AS , p(x) =
∏
i∈S

pi(xi). (7)

Then the kernel Kp,V derived from p when V = P(S) is the set of all subsets
of S can be computed in linear time with respect to |S| by:

Kp,V (x, y) =
1

2|S|
∏
i∈S

φi(xi, si), (8)

with:

φi(xi, yi) =

{
pi(xi) + pi(xi)2 if xi = yi,

pi(xi)pi(yi) if xi �= yi.
(9)

6 Markov chain and common blocks

In this section we suppose that S = {0, . . . , N} and that the density p is
first-order Markovian, i.e.:

∀x ∈ AS , p(x) = p0(x0)
N∏

i=1

pi(xi |xi−1), (10)

Pacific Symposium on Biocomputing 7:649-660 (2002)

for a density p0 on A and a set of conditional densities pi(xi |xi−1) for i =
1, . . . , N . The kernel resulting from such a Markov distribution is not easily
computed for a general set of subsets V because the computation of p(xT) can
be tricky for a general subset T ⊂ S. However it is possible to get a factorized
expression of the kernel if we restrain the set V to be the set of integer intervals:

V = {[k, l] : 0 ≤ k ≤ l ≤ N} ∪ {∅}. (11)

Observe that two realizations x and y have the same value on an interval
T = [k, l] (i.e., xT = yT) if and only if they share the common block xk . . . xl =
yk . . . yl.

The corresponding kernel can be computed as follows:
Proposition 3 For a Markov probability density as defined by Eq. (10) and
for the set of integer intervals V = {[k, l] : 0 ≤ k ≤ l ≤ N} ∪ {∅}, the kernel
between two strings (x, y) ∈ A2S can be computed in linear time with respect
to N as:

Kp,V (x, y) = φ0(N) + φ1(N) + φ2(N), (12)

where φ0, φ1 and φ2 are defined recursively by:


φ0(0) = p0(x0)p0(y0),
φ1(0) = p0(x0)δ(x0, y0),
φ2(0) = 0

(13)

and for i = 1, . . . , N :


φ0(i) = pi(xi |xi−1)pi(yi | yi−1) × φ0(i − 1),

φ1(i) = pi(xi |xi−1)δ(xi, yi) ×
[
φ1(i − 1) + pi(yi |yi−1)

pi(xi)
φ0(i − 1)

]
,

φ2(i) = pi(xi |xi−1)pi(yi | yi−1) × [φ1(i − 1) + φ2(i − 1)] .

(14)

Remark 1 The term pi(xi) which appears in the recursive definition of φ1(i)
can itself be computed using the classical recursive algorithm:

pi(xi) =
∑

xi−1∈A

pi−1(xi−1)pi(xi |xi−1). (15)

7 Experiment : cleavage site prediction of signal peptides

As an application to test the performance of the kernels introduced in this
paper we consider the problem of predicting the cleavage site of protein sig-
nal sequences. These sequences, also called signal peptides, play a central

Pacific Symposium on Biocomputing 7:649-660 (2002)

role in the process of directing each newly created polypeptide to a particu-
lar destination in the organism13. They comprise the amino terminus of the
amino-acid chain and are cleaved off while the protein is translocated through
the membrane.

The identification of signal peptides and their cleavage site is of interest to
the development of new effective drugs. The rapid increase in the number of
available protein sequences in databases requires the use of effective prediction
tools to reduce the time and cost of experimental verifications.

A simple weight matrix method14 is known to be quite efficient to recognize
cleavage sites. Indeed many cleavage sites are strongly characterized by a set
of simple rules which are quantified by the weight matrix methods, e.g., the
residues at positions -3 and -1 relative to the cleavage site are usually small
and neutral. Computing scores from a weight matrix method is equivalent to
computing the probability of a sequence under an independent model1, so it is
possible to use the kernel presented in Sec. 5 instead of the classical scoring
function in order to recognize cleavage site.

In order to evaluate the performance of the kernels defined in this paper we
focus on the following problem: given a window of amino acids, predict whether
cleavage will occur at a given position of the window. In our experiments we
chose to predict a cleavage site from the observation of 8 amino acids before
the site (i.e., which should belong to the signal part) and 2 amino acids after
the site (i.e., which should belong to the mature part of the protein). Hence a
basic window is a sequence x = x−8x−7 . . .x−1x1x2 of length 10.

We experimented on the database of proteins used by Nielsen et al.15a. We
used a total number of 1418 non-redundant sequences (1011 from eukaryotes,
266 from Gram-negative prokaryotes and 141 from Gram-positive prokaryotes)
made of the signal peptide and the first 30 amino acids of the mature protein.
We extracted all possible amino acid windows of size 10, resulting in 66,634
windows, divided into 1418 “positive” windows (i.e., with a cleavage site be-
tween the amino acids x−1 and x+1) and 65,216 “negative” windows.

We randomly split this database into a training set (80 % of the windows)
and a test set (20%). From the training set we built:

• a weight matrix as wi(xi) = log p+
i (xi) − log ptotal

i (xi), where p+
i (xi) is

the probability that amino acid xi occurs at position i estimated from the
positive training set (using pseudocounts1), and ptotal

i is the probability
that amino acid xi occurs at position i estimated from the total training
set (usually referred to as the background model);

• a SVM classifier based on the product probability p+ =
∏

i p+
i and

aAvailable at ftp://virus.cbs.dtu.dk/pub/signalp

Pacific Symposium on Biocomputing 7:649-660 (2002)

trained on the training set. We used the public domain implementation
of mySVM16b where we implemented a user-defined kernel as presented in
Sec. 5. All parameters and files necessary to reproduce this experiment
can be downloaded from the author’s web page c.

This results in two competing classification functions for amino acid win-
dows. The first one is the score function:

s(x) =
2∑

i=−8

wi(xi), (16)

and the second one is the classification function used by the SVM:

f(x) =
∑

x(j) in the training set

λ(j)Kp+,V (x(j), x). (17)

At a given threshold δ, each of these functions classifies a new example as
positive or negative depending on whether the function is above or below the
threshold. By varying the threshold and classifying the examples in the test
set, we can build a curve of true positive versus false positive for each function,
and compare them.

The curves (averaged over a number of random training/test set splits) are
shown on Fig. 1 and Fig. 2. The curve of the weight matrix method shows that
about 44% of the sequences can be very “easily” recognized by that method,
because they exhibit strong characteristics of typical cleavages sites; for the
remaining sequences, the curve increases smoothly. The curve of the SVM
method, on the other hand, is above the first curve, and increases smoothly
from “easy” examples to “hard” examples. The difference between the two
curves is particularly important for small false positive ratios, which is the
most important part of the curve for concrete application. As an example, if
one is ready to have 3% of false positive, then the weight matrix method would
retrieve on average 46% of true positives, while the SVM method would retrieve
68% of true positive. This corresponds to an increase of 47% in terms of true
positive retrieval, and illustrates the discriminative power of SVM compared
to simple score functions

8 Conclusion and future work

We introduced a new class of kernels for strings which we think can be of
interest for many applications in computational biology, and showed on the

bAvailable from http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/
chttp://web.kuicr.kyoto-u.ac.jp/� vert/

Pacific Symposium on Biocomputing 7:649-660 (2002)

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

×

×××

×

×

×

×
×
××
××
××
××
×××

×××
××××

××××××××
××××××

×××××××
×××××××××

××××××××××××××××
×××××××××××××××××××××××××××

⊕

⊕

⊕

⊕

⊕
⊕
⊕
⊕⊕

⊕⊕
⊕⊕

⊕⊕⊕
⊕⊕⊕

⊕⊕⊕⊕
⊕⊕⊕⊕⊕

⊕⊕⊕⊕⊕⊕
⊕⊕⊕⊕⊕⊕

⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕
⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕

⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕
⊕⊕⊕⊕⊕⊕

Weight matrix
×

SVM
⊕

Classification performance

Percentage of false positives

Percentage of true positive

Figure 1: Classification performance of the weight matrix method and the SVM method

0 4 8 12 16 20 24
40

50

60

70

80

90

100

0 4 8 12 16 20 24
40

50

60

70

80

90

100

× ×
×

×

×

×

×

×
×

×
×

×
×

×
× ×

× × × × × × × ×

⊕

⊕

⊕

⊕

⊕

⊕
⊕

⊕
⊕

⊕
⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

Weight matrix
×

SVM
⊕

Classification performance

Percentage of false positives

Percentage of true positive

Figure 2: Classification performance for small false positive rates

Pacific Symposium on Biocomputing 7:649-660 (2002)

example of signal sequence cleavage site prediction how a SVM using this
kernel significantly outperforms a classical weight matrix method, providing
a new evidence that SVM will play a more and more important role in the
coming years in computational biology.

Much research remains to be done to fully exploit the capacities of kernel-
based methods in bioinformatics. On the theoretical point of view, the de-
velopment of new kernels for specific objects (strings, graphs...) and specific
applications is an important research topic today. The particular class of P-
kernels should be more deeply investigated and might give birth to interesting
theoretical links between probability theory and machine learning. On the
practical point of view, kernel-based methods could be tested on new tasks;
moreover the class of kernel-based methods is not limited to SVM, but also
includes algorithms such as non-linear principal component analysis7, which
might be of great use for data mining of biological databases.

Appendix : proofs

Proof of Proposition 1

The points 2 and 3 follow directly from the definition of the kernel in Eq. (5).
To prove point 4 observe that for any subset T ⊂ S the following holds for any
x ∈ AS and zT ∈ AT :

p(x|zT) =
p(x)
p(zT)

δ(xT , zT). (18)

As a result we can use the definition of the kernel in Eq. (5) to compute, for
any (x, y) ∈ A2S and V ⊂ P(S):

Kp,V (x, y) =
p(x)p(y)

|V|
∑
T∈V

δ(xT , yT)
p(xT)

=
p(x)p(y)

|V|
∑
T∈V

∑
zT ∈AT

δ(xT , zT)δ(yT , zT)
p(zT)

=
1
|V|

∑
T∈V

∑
zT ∈AT

p(zT)p(x|zT)p(y|zT),

(19)

which concludes the proof of point 4. Summing this expression for all possible x
and y easily shows that Kp,V is a probability density, i.e.,

∑
(x,y) Kp,V (x, y) = 1.

Hence it is a conditionally independent probability density (as defined in6), and
it is therefore a valid P-kernel (from the main result of 6).

Pacific Symposium on Biocomputing 7:649-660 (2002)

Proof of Proposition 2

For a product density p(x) =
∏

i∈S pi(xi), the following holds for any subset
T ⊂ S:

∀xT ∈ AT , p(xT) =
∏
i∈T

pi(xi). (20)

Therefore, we can compute for any (x, y) ∈ A2S :

p(x)p(y)δ(xT , yT)
p(xT)

=
∏
i∈T

p(xi)δ(xi, yi) ×
∏
i �∈T

p(xi)p(yi). (21)

Using Eq. (5) and the fact that |V| = 2|S| we can therefore compute:

K(x, y) =
1

2|S|
∑
T⊂S

p(x)p(y)δ(xT , yY)
p(xT)

=
1

2|S|
∑
T⊂S




∏
i∈T

p(xi)δ(xi, yi) ×
∏
i �∈T

p(xi)p(yi)




=
1

2|S|
∏
i∈S

{
p(xi)δ(xi, yi) + p(xi)p(yi)

}
.

(22)

Proof of Proposition 3

First observe that by mapping any interval [k, l] (with 0 ≤ k ≤ l ≤ N) into the
sequence (s1, . . . , sN) defined by si = 0 if i < k, si = 1 if k ≤ i ≤ l and si = 2 if
i > l, and by mapping the empty set ∅ to the constant sequence (s1, . . . , sN) =
(0, . . . , 0), we define a bijection between V and the set of sequences S with
values in 0, 1, 2, starting value s0 ∈ {0, 1} and increments si+1 ∈ {si, si + 1}
for i = 1, . . . , N .

Now, for any interval T = [k, l] and corresponding sequence (s0 . . . sN), the
Markov property of p yields the following equality for any realization xT ∈ AT :

p(xT) = pk(xk)
l∏

i=k+1

pi(xi |xi−1). (23)

As a result it is easy to check the following relation:

∀(x, y, T) ∈ A × A × V,
p(x)p(y)δ(xT , yT)

p(xT)
= g0(s0)

N∏
i=1

gi(si−1, si), (24)

Pacific Symposium on Biocomputing 7:649-660 (2002)

where gi is defined by g0(0) = p0(x0)p0(y0), g0(1) = p0(x0)δ(x0, y0) and for
i = 0, . . . , N :


gi(0, 0) = gi(1, 2) = gi(2, 2) = pi(xi|xi−1)pi(yi|yi−1),
gi(0, 1) = pi(xi|xi−1)pi(yi|yi−1)δ(xi,yi)

pi(xi)
,

gi(1, 1) = pi(xi |xi−1)δ(xi, yi),
(25)

By definition of the kernel in Eq.(5) and using Eq. (24) we therefore get:

Kp,V (xS , yS) =
∑

(s1...sN)∈S

{
g0(s0)

N∏
i=1

gi(si−1, si)
}

. (26)

The set of equations in Proposition 3 is now the classical forward algorithm
corresponding to the dynamic programming computation of this sum.

References

1. R. Durbin et al, Biological sequence analysis : Probabilistic models of
proteins and nucleic acids (Cambridge University Press, 1998).

2. N. Friedman et al., Journal of Computational Biology, 7, 601 (2000).
3. T. Jaakkola et al., Journal of Computational Biology, 7, 95 (2000).
4. T. Jaakkola and D. Haussler in Advances in Neural Information Process-

ing Systems 11, 1998.
5. D. Haussler, Technical report UCSC-CRL-99-10 (1999).
6. C. Watkins, Technical report CSD-TR-98-11 (1999).
7. B. Schölkopf et al., in Advances in kernel methods: support vector learn-

ing, 327 (The MIT Press, 1999).
8. V. Vapnik, Statistical learning theory (Wiley, 1998)
9. N. Christianini and J. Shawe-Taylor, An introduction to Support Vector

Machines and other kernel-based learning methods (Cambridge Univer-
sity Press, 2000).

10. C. Burges,Data Mining and Knowledge Discovery, 2, 121 (1998).
11. M.P.S. Brown et al., Proc. Natl. Acad. Sci. USA, 97, 262 (2000).
12. P. Pavlidis et al, Proceedings of the Pacific Symposium on Biocomputing

2001, 151 (2001).
13. L.M. Gierarch,Biochemistry, 28, 923 (1989).
14. G. von Heijne, Nucleic Acids Res., 14, 4683 (1986).
15. H. Nielsen et al., Protein Eng. 10, 1 (1997).
16. S. Rüping, mySVM - Manual (2000).

Pacific Symposium on Biocomputing 7:649-660 (2002)

