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We use coalescent methods to investigate the ability of linked neutral ‘markers” to reveal in 
simulated population samples the presence of one or more single nucleotide polymorphisms 
that is contributing to a trait having a complex genetic basis (QTN: quantitative trait 
nucleotide). Realistic mutation and recombination rates in our simulations allow us to 
generate SNP data appropriate for analyzing human variation across short chromosomal 
intervals corresponding to approximately 100 kilobases. We investigate the performance of 
both single marker and multiple-marker (haplotype) data for several ad hoc procedures. Our 
results with single SNP markers indicate that (1) the density of SNP markers need not be 
much higher than 10% in order to achieve near-maximal detection of a QTN; (2) a higher 
density of markers does not improve much on the ability to localize a QTN within an interval 
unless the recombination rate is high. Haplotype-based tests were investigated for the case in 
which more than one QTN is present in the studied interval. Larger sample sizes improve both 
the probability of detecting the haplotype with the largest number of QTNs, as well as the 
ability to infer correct haplotypes from genotypic data. Testing a series of short haplotypes 
across a longer interval can also be beneficial. The rate of false positives (i.e., when the most 
significant haplotype does not contain the greatest number of QTNs in the sample) can be 
very high when the contribution of individual QTNs to a trait is small. The elimination of 
low-frequency haplotypes does not substantially reduce the probability of detecting the 
haplotype with the largest number of QTNs but it can reduce the rate of false positives.  

1 Introduction  

Many diseases and traits are influenced by combinations of mutations acting at 
more than one site in the genome. The genes underlying these traits are generally 
referred to as Quantitative Trait Loci (QTL). The ultimate goal of association 
studies is to detect the presence of a causative mutation, deemed for simplicity a 
QTN (Quantitative Trait Nucleotide), by testing whether or not there is a difference 
in the frequency of individual mutations or haplotypes (i.e., linked markers) 
associated with differences in phenotype. Using a population-based approach, we 
have studied and compared the power to detect marker/haplotype(s)-trait 
associations using different statistical methods, data analysis approaches and 



experimental strategies. Following Long and Langley1, our study uses coalescent 
theory to simulate selectively neutral SNP in a sample of chromosomes. This 
methodology uses realistic genetic and population parameters (neutral mutation rate, 
recombination rate and evolutionary effective population size) but assumes a 
somewhat simplified population structure and demographic history compared to 
those likely for human populations. The samples it generates are reasonable 
approximations of observed human variation with respect to density and number of 
SNPs, the frequency spectrum of these SNPs, and magnitude of linkage 
disequilibrium between them. Thus, despite simplifications in generating simulated 
samples, these in silico data should be useful for studying statistical properties of 
association measures applicable to human data. In all cases, we use phenotype 
distributions compatible with the subtle genetic and environmental effects expected 
for most QTLs.  

2 General Methods 

2.1 Simulations of neutral genealogies 

The coalescent theory2,3 provides an efficient framework for generating neutral 
population samples. These simulations assume a random mating population at 
equilibrium, neutrality and an infinite-sites model. Coalescent theory always looks 
backward in time, with lineages joining up ("coalescing") as a genealogy extends 
back into the past. Mutations are “sprinkled” along the lineages according to a 
Poisson process in proportion to branch lengths of the lineages, producing a sample 
of SNPs that obey the expected equilibrium distribution and frequency spectrum for 
selectively neutral mutations.  
 

In our simulated samples we choose one SNP to be contributing to a phenotypic 
trait, and call it the QTN. That is to say, an individual carrying the derived mutation 
at this SNP site is given a phenotypic score that deviates from the mean by a certain 
amount. The magnitude of this deviation is described in the “Phenotypic 
Distribution” section below. One consequence of this scheme is that the frequency 
distribution of QTNs follows a neutral frequency spectrum, and will therefore be 
skewed towards low frequency variants.  
  

The selectively neutral SNPs in the sample, excluding the QTN, are taken to be 
“markers”. Then, by virtue of when each one occurred in the history of the 
genealogy relative to that of the QTN, which lineages they occurred on relative to 
the QTN, and how much recombination occurred between the marker and the QTN, 
each marker (and each haplotype) will have a certain informative value in predicting 
the presence of the QTN. The statistical properties of the associations between 



markers and QTN are what we investigate. Many of our analyses of QTN - SNP 
associations use haploid data. Similar results are expected to obtain for diploids 
when there is no dominance. In our analyses of QTN – haplotype associations 
where haplotypes are reconstructed (inferred) from genotypic data, we form 
genotypes by randomly pairing chromosomes produced by the simulations. 

 
Two properties of neutral samples are worth mentioning with implications for 

our study: 1) population genetics theory predicts that the expected mean frequency 
of a new mutation in a sample decreases with the number of sequences (n), and 2) 
the number of haplotypes—ordered combinations (phase) of genotypic variants 
(e.g., SNPs), which may or may not be closely linked or inherited together—
constituted by a number of SNPs (S) in a sample is an increasing function of S, the 
number of sequences (n), and the recombination rate, but the number of expected 
haplotypes is always much smaller than 2S.  

2.2 Mutation and recombination for human populations 

The ratio of polymorphisms or SNPs : recombination events has a strong influence 
on the power to detect SNP/phenotype associations. We used realistic values of 
mutation and recombination rates for human populations to assure the relevance and 
applicability of the simulation studies to complex traits in our species. The expected 
number of polymorphisms (S) per physical distance can be estimated from 
published studies of nuclear sequence variation4. These studies suggest an average 
of ≈1x10-4 mutations or differences per site when comparing two randomly chosen 
sequences (popularly referred to as the nucleotide diversity per site). Nucleotide 
diversity may not be constant across all regions of the human genome, but a large 
fraction of the genome is expected to have densities of SNP near this average value. 
The number of SNPs in a sample, in contrast, is not constant, but is an increasing, 
nonlinear function of the sample size5 (n); for instance, in a study of a 10 kb region, 
an average S≈60 and ≈36 is expected when the number of sequences is 200 and 20, 
respectively. The recombination rate in the humans varies across the genome; in 
regions of normal recombination 1cM (1% recombinants/generation) corresponds 
approximately to 1 Mb of DNA. The evolutionary relevant recombination rate 
between adjacent sites (4 Ne c) in humans might be on the order of ≈0.0001-0.001 
in regions of low and high recombination, respectively. These are the range of 
values we investigate. 

2.3 Phenotype distribution 

A core element in this kind of study is the choice of an appropriate phenotype 
distribution congruent with QTLs. We used as phenotype distribution Y a 
modification of the distribution proposed in [1],  

 Yi = z(1-π)1/2 + 1.96 Qi(π)1/2 



where Qi=1, 0 represents presence and absence of the QTN in chromosome i, 
respectively, π is the proportion of phenotype variation attributable to the QTN, and 
z is a random normal deviate (mean=0, variance =1). Unlike the somewhat more 
elaborate formula for generating phenotypic scores given in [1] ours has no 
dependency on allele frequency6,7. Thus low- and high-frequency QTNs have the 
same average individual contribution to phenotype.  

 
Most QTLs in humans might be compatible with our simulated scheme with π 

= 10-25%. Therefore, unless indicated, we have used for most of the subsequent 
analyses a conservative π = 0.1. The statistical power estimated will be conservative 
and, more importantly, the methodological approaches and experimental strategies 
shown to be adequate will be qualitatively accurate when the genetic contribution is 
stronger. At a practical level, for instance establishing the optimum density of 
markers in a study, our scheme might be easily modified based on external 
information about the phenotype distribution and the underlying genetics.  

2.4 Statistical methods 

Several authors have proposed the F-statistic ANOVA test (in particular a Model II 
ANOVA for two groups) to study association between phenotype and SNP 
variation8,9. We first compared this approach to nonparametric tests, namely the 
Mann-Whitney (MW) U-test and the Kruskall-Wallis (KW) H-test. In all cases, the 
significance of the estimated statistic is obtained by comparison to an empirically 
derived null distribution of this statistic in samples in which the phenotypic scores 
have been randomly permuted among individual sequences with the same number 
of markers. This assures that both multiple tests and the non-independence of tightly 
linked markers are taken into account. Our results reveal unambiguously that the 
two nonparametric tests (MW and KW) have greater power than the F-statistic for 
single QTNs with contribution to the phenotype (π) of 50% or lower. Therefore, we 
have used KW, which may be applied to both marker-based and haplotype-based 
association studies, in our analyses.  

3 Results 

3.1 Effect of single causative mutations (QTNs) 

3.1.1 Optimal density of markers in the light of plausible recombination rates 
for humans 

Clearly, increasing the density of marker SNPs within a candidate genomic region 
will increase the likelihood of including the QTN itself. On the other hand, 



increasing the density of SNPs studied will increase the number of tests, hence 
reducing the probability of detecting a statistically significant association of any one 
marker with a QTN. This is especially true when the QTN has a subtle phenotypic 
effect unless the sample size is very large. Also, the low levels of effective 
recombination evident in human population genetic data further suggest that studies 
that exhaustively include every SNP in a region of interest may not increase 
dramatically the power compared to those studies analyzing only a fraction of the 
total variability. 

 
To investigate these possible tradeoffs, we studied a case equivalent to 

analyzing a human genomic region of 100 kb and a sample of n=200, with average 
level of polymorphism (i.e., 600 SNPs), and for a range of recombination rates 
typical of the human genome. SNPs used in the analysis were randomly distributed 
across the region and only one of the 600 SNPs is the QTN. The results reveal that 
beyond 10%, increasing the density of studied SNPs will only slightly increase the 
overall power to detect genetic association between one SNP and the phenotype. 
That is, for realistic recombination rates observed in the human genome, 5-10 % 
density almost gives the maximum power, and greater power is achieved by 
increasing sample size than by increasing the density of markers. The optimal 
density mostly depends on the number of samples and the recombination 
environment of the candidate genomic region. Such a density is the one that might 
indicate that the genomic region under study likely includes a QTN although it does 
not necessary allow the precise specification of its location. Higher density of SNPs 
(such as complete resequencing) will increase the probability of localizing the QTN 
(although see below), especially in regions of high recombination.  

3.1.2 Power vs. location 

We investigated the average distance between the QTN and the SNP with the 
greatest (significant) association with the phenotype. Again, our simulation design 
assumes a genomic region with a total of 600 SNPs and the analysis of a varying 
percentage (density) of these SNPs (1 – 40%). In all cases under scrutiny the 
average distance between the ‘significant’ SNP and the QTN is considerable (e.g., 
always greater than 50 SNPs apart). Increasing the density of studied SNPs helps to 
locate the QTN with more accuracy, but this is mostly noticeable in regions of high 
recombination. Again, densities higher than 10-15% will not substantially increase 
the localization of the QTN, even in regions of high recombination, unless the 
sample size is very large.  

 
Studies in regions of high recombination in the human genome will give overall 

reduced power to detect association between any SNP and phenotype variability 
compared to regions with low recombination. But when a significant association 
SNP/phenotype is detected, there is a higher probability that the detected SNP might 
be the QTN or close to it than when the region has low rates of recombination. This 



result follows because tighter linkage will enhance the probability that SNPs with 
significant association may be more physically distant from the QTN. Moreover, the 
lower the recombination rate, the higher the probability of finding multiple SNPs 
with similarly high statistical significance, also due to tight linkage.  

3.2 Effect of multiple causative mutations (QTNs)  

So far, we have investigated statistical properties of markers associated with one 
and only one QTN, and with the ability to detect the QTN in a population-based 
sample. However, common disease may be influenced by combinations of causative 
mutations at a candidate locus or gene (multiple QTNs). In these cases, common 
sense dictates that association studies should focus on haplotype-based tests, as they 
can better capture the presence of these combinations of mutations. As indicated, 
the number of haplotypes depends on the number of sequences, the number of 
SNPs, the recombination rate, and population structure. We investigate the 
probability of detecting haplotypes with the largest number of QTNs in a sample 
(i.e, the most extreme haplotype). Note that because most SNPs segregate at low 
frequency, the number of QTNs in this most extreme haplotype usually will not 
represent the totality of QTNs present in the sample that might be influencing the 
phenotype, only a detectable subset. To carry out this study, we designated several 
SNPs in a region as QTNs, each contributing independently and equally to 
phenotype. 

 
In diploid organisms the ability to detect association between individual 

haplotypes and phenotype will be influenced by our ability to discern the haplotype 
structure from heterozygous individuals. Further, in individuals with heterozygous 
QTNs, the phenotype is most likely to be less conspicuous (we assume additivity). 
As a first approach, we compare the probability of detecting the most extreme 
haplotype in three cases: 1) in a haploid case, 2) in a diploid case where haplotypes 
are known with certainty, and 3) in a diploid cases where no effort is made to 
discern the actual haplotypes, and hence haplotypes are constructed randomly from 
the genetic information. The results show that increasing the sample size causes (as 
expected) an overall increase in the probability of detecting a significant association 
for the haplotype with the most QTNs. The results also reveal that the difference 
between knowing or not the actual haplotype becomes critically important as 
sample size increases. In other words, in order to have a high probability of 
detecting association, a large sample is required and diploid genotypes need to be 
resolved as haplotypes (either by inference or by experiment). 



 
 
 

 

 

 

 

Figure 1. Probability of detecting the haplotype with the largest number of QTNs (i.e, the most extreme 
haplotype) as a function of the number of SNPs under study. 3 QTNs are segregating in the sample, each 
with a contribution to phenotype (π) of 25%. Results are shown for the case of no recombination when 
n= 50 and 200. Three cases are compared: Haploid (H), Diploid with known (D-k) haplotypes, and 
Diploid with randomly constructed (D-r) haplotypes. 

3.2.1 Inference of haplotypes from diploid populations 

We investigated a widely used method proposed by A. Clark10. Clark’s method uses 
a parsimonious approach to infer the minimum number of haplotypes in a sample: it 
utilizes information from homozygous or single-site heterozygous individuals to 
sequentially resolve multiply-heterozygous genotypes into haplotypes. Figure 2 
shows two extreme cases. Clark’s method always performs well when the number 
of SNPs is small.  
 
 
 
 
 
 
 
 
 
 
 
  
Figure 2. Probability of detecting the haplotype with the largest number of QTNs as a function of the 
number of SNPs under study. 3 QTNs are segregating in the sample, each with a contribution to 
phenotype (π) of 25%. Results are shown for four cases: Haploid (H), Diploid with known (D-k) 
haplotypes, Diploid with randomly constructed (D-r) haplotypes, and Diploid after applying Clark’s 
method10 (D-C) to infer haplotypes.  
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As expected, recombination produces unresolved or wrongly inferred 
haplotypes, a problem that is enhanced by increasing the number of SNPs. The 
‘sequential’ problem (i.e., the fact that a different order in the sequential solution of 
haplotypes might cause different solutions) also increases with the number of SNPs. 
Large sample sizes increase the power to detect associations and also the probability 
of observing homozygous individuals, required in Clark’s method. But large sample 
sizes will also increase the probability of observing individuals with two or more 
SNPs present only once in the sample, causing unresolved haplotypes (but see 
below the small practical consequences of this problem). 

 
Another method, proposed by Stephens, Smith and Donnelly11 applies a 

Markov-chain Monte-Carlo (MCMC) algorithm with population genetics 
assumptions. The results (data not shown) indicate that for the conditions studied in 
Figure 2, it performs similar or a little worse than Clark’s method when 
recombination occurs and the number of SNPs is high. 

3.2.2 Number of SNPs used to define haplotypes: Partial haplotypes 

We investigated the effect of haplotype ‘size’ --the number of adjacent SNPs used 
to define a haplotype-- on the probability of detecting significant association. A 
priori, we expect that the use of more SNPs will increase the likelihood of 
haplotypes including more QTNs. Also, the use haplotypes based a small number of 
markers (henceforth called ‘small’ haplotypes) will increase substantially the 
number of tests performed with the consequent reduction of statistical power. We 
studied a scenario equivalent to a situation in humans in which all QTNs are 
restricted to 1 kb (≈ 6 SNPs) but SNP markers are dispersed across a 10 kb interval 
(59 SNPs).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Relationship between the number of adjacent SNPs used to construct the haplotypes and the 
probability of detecting the haplotype with the largest number of QTNs. 5 QTNs are segregating in the 
sample, each with a contribution to phenotype (π) of 25%. 
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The use of haplotypes constructed by a small number of SNPs increases the 

probability of detecting the haplotype with the highest number of QTNs. 
Interestingly, the number of adjacent SNPs used to construct the haplotype with the 
highest probability of detecting the most extreme haplotype is smaller than the 
actual number of QTNs, in agreement with the idea that it is highly unlikely to 
observe a haplotype with all QTNs. Note also that small haplotypes are those more 
accurately predicted by most algorithms. 

 
The use of haplotypes constructed only by a subset of adjacent SNPs (partial 

haplotypes) can be put to good advantage in surveys of longer regions by utilizing a 
‘sliding window’ analysis across these regions (or a 5’- vs central vs 3’ study). A 
sliding window approach might better localize the region encompassing QTNs since 
it would give a quantitative idea of the signal observed in the ‘background’. For 
instance, in a study of 200 sequences with five adjacent QTNs, partial haplotypes 
give 17% significant detection (false positive) when they are located 50 SNPs apart 
from the QTN positions when recombination is high, while this percentage jumps to 
23% around the QTN positions. Overall, the higher the recombination rate or the 
more distant the regions, the higher the chance of detecting differences between 
regions, and hence of localizing the region with more QTNs  

3.2.3 Probability of false positives 

We studied the probability that the haplotype showing the strongest significant 
association with phenotype variability is not the one with the highest number of 
QTNs.  

 
 
 
 
 
 
 
 
 
 

 
 
 
 
Figure 4. Probability of detecting a significant association between any haplotype and phenotype 
variability and the probability that the detected haplotype is not the one with the highest number of QTNs 
in the sample (false positives). 5 QTNs are segregating in the sample, each with a contribution to 
phenotype (π) of 25%. 
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As shown in Figure 4, the probability of false positives is very high for QTNs 

with small contribution to phenotype. Increasing the sample size improves the 
probability of detecting significant associations between haplotype and phenotype. 
But the probability of detecting the haplotype with more information about the 
causative mutations increases less rapidly. 

3.2.4 Haplotype frequency 

As discussed above, the highest probability of detecting significant association 
between SNP (or haplotype) and phenotype is attained when QTNs are at 
intermediate frequency. This is also true when we take into consideration the 
frequency of false positives, since higher QTN frequencies in the sample does 
increase the probability of detecting a significant association, but it does not alter 
the probability of false positive (data not shown). Hence, the use of a sample with 
high-frequency QTNs will also increase the reliability of the results. We have 
studied whether the elimination of haplotypes at low frequency in the sample also 
reduces the probability of false positives.  

 
Indeed, as suspected the elimination of haplotypes at low frequency 

substantially reduces the probability of false positives. Eliminating low frequency 
haplotypes has a practical advantage as well: haplotypes at low frequency are also 
more difficult to infer from diploid data.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Probability of detecting significant association between haplotype presence and phenotype 
variability and of false positives (among those cases with the strongest significant association) when the 
haplotypes used in the analysis are those at frequency higher than 2%, 5% or 10% in the sample. n = 200. 
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4 Conclusions 

Overall, the study shows that the probability of detecting a significant association 
between nucleotide and phenotype variability is low for most conditions suitable to 
most QTLs (π<50%). The low, albeit variable, rate of recombination present in the 
human genome also contributes to a very high percentage of false positives, a 
percentage that decreases with recombination. On the other hand, empirical 
investigation of linkage disequilibrium in the human genome suggests a strong 
haplotype structure, possibly caused by recombination cold- and hot-spots12. If true, 
the study of only a small percentage of all SNPs present in a genomic region gives 
almost the maximum power to detect association, and greater power is achieved by 
increasing sample size than by increasing the density of markers. The use of 
nonparametric tests, the study of extreme phenotypes, and the analysis of common 
haplotypes based on a small number of adjacent SNPs are all methodologies that 
increase the chance of detecting and locating a QTN.  

 
The recent molecular evolutionary history of humans almost certainly includes 

intense selection on many sites across the genome, and many QTNs may be selected 
mutations. Such a scenario, taken together with relatively low recombination rates, 
implies a high probability of false positives, a problem that might be exacerbated by 
population expansion. Overall, recent selection and/or population expansion makes 
the problem of discerning a QTN among all mutations or SNPs across a small 
genomic region (i.e., the same exon or gene) a more difficult task. As shown here, 
some analytical and experimental approaches can improve the chance of being 
successful. Nothing, however, is likely to overcome the need for very large 
population sample sizes in order to achieve reasonable power and acceptably low 
levels of false positives when scanning the whole genome. This will place 
additional incentive for commercial development of lower-cost, higher-throughput 
SNP assays. 
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