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Identifying prokaryotic promoter sequences is notoriously difficult and for most
sequenced bacterial genomes the promoter sequences are still unknown. Since
experimental analysis trails behind sequencing, genome-wide computational pro-
moter discovery is often the only realistic way to discover these sequences in newly
sequenced bacterial genomes. However, genome-wide samples for promoter discov-
ery may be very large and corrupted complicating promoter discovery. We discuss
three aspects of genome-wide promoter discovery: sample generation, signal find-
ing algorithms, and scoring signals. We applied our new MITRA algorithm to
analyze samples of divergent and convergent genes in 20 bacterial genomes and
found strong putative dyad signals in 17 out of the 20 genomes. Moreover, in 12
out of 20 genomes the found signals are identical or similar to the known regulatory
patterns (Pribnow-Gilbert boxes and CRP binding sites). Since many of putative
signals correspond to previously known elements of bacterial transcriptional regula-
tion, the remaining discovered signals are good candidates for unknown regulatory
elements.

1 Introduction

A fundamental challenge of molecular biology is understanding the regulation
of gene expression, in particular, on the level of transcription. In prokaryotes,
genes encoding transcription factors may constitute up to 10% of the genome,
as in Pseudomonas aeruginosa'l. Thus an important component of genomic
analysis is automated identification of transcription signals such as promoters.
Since the experimental analysis trails behind the sequencing of new genomes,
we are interested in discovery of regulatory sequences from complete genomes.
This paper describes a method for discovering putative regulatory sites by fully
automated genome-wide sequence analysis.

Discovering putative regulatory sites from complete genomes is a very dif-
ficult problem 2. These difficulties are threefold and include (i) difficulties in
sample generation, (ii) algorithmic difficulties in scaling to large and corrupted



samples, and (iii) statistical difficulties in assessing the significance of patterns
that are discovered.

Regulatory signals can be modeled either as patterns or as profiles. This
paper focuses on pattern approaches but the described algorithms are applica-
ble to both patterns and profiles. Our algorithm will return a set of patterns
which hopefully correspond to actual transcription signals in the genome. We
use the term monad pattern to refer to a contiguous [-mer that occurs in the
sample with up to d mismatches. Allowing for mismatches takes into account
the fact that binding sites exactly matching the pattern are rare and often phys-
iologically undesirable. We use the term (I,d) — k pattern to denote a monad
of length [ that occurs in the sample k times (with up to d mismatches). Since
bacterial regulatory signals are often build from two monad parts that occur
with a fixed (or almost fixed) distance from each other, we model these binding
sites by dyad patterns. A dyad pattern (I, — (s1, s2) —l2,d) — k are two monad
patterns of length I; and Iy respectively, that occur k times in the sample with
a minimum separation distance of s; and a maximum separation distance of
s2. If s1 = s (a dyad with a fixed distance between the monads) we use the
notation (I — s — l2,d) — k patterns. This paper focuses on dyad signals that
are common elements of bacterial transcriptional regulation.

There are many approaches to discovering monad signals 345678 and
dyad signals ?!0:11:12 Recently there has been an emergence of powerful
sample-driven approaches to monad pattern discovery '*141° that are effi-
cient enough to handle large genomic samples. For dyad signals, the sample-
driven approaches include the algorithms presented in Marsan and Sagot 2000
16 and MITRA '>. For a given Iy, I, 51, 52, and k, these methods can find all
(I4 — (s1,82) — l2,d) — k dyad patterns in the sample and are efficient enough
to apply to samples of the total size exceeding 100, 000 nucleotides.

Our sample generation approach relies on comparative analysis of inter-
genic regions between divergently and convergently transcribed genes. We first
take advantage of the relative location of genes in order to determine the re-
gions where the binding sites most likely occur. Although regulatory elements
are located upstream of genes, most upstream regions of bacterial genes do not
contain promoters. Genes in bacterial genomes often form operons and only
the intergenic region upstream of the first gene in the operon contain regulatory
elements. Since the operon structure in bacterial genomes is rarely known, it
is not clear how to automatically generate samples of regulatory regions. Our
sample generation approach is based on the observation that intergenic regions
between consecutive genes transcribed in divergent directions are guaranteed
to be upstream regions of operons. By similar reasoning, intergenic regions
between two convergently transcribed genes usually do not contain binding



sites. We use the intergenic regions between genes that are transcribed in con-
vergent directions as our background sample. Since both divergent and con-
vergent intergenic regions are selected from the same genome, the convergently
transcribed intergenic regions allow us to estimate a background distribution
for upstream regions with regulatory elements (the intergenic region between
divergently transcribed genes).

A key ingredient for discovery of putative regulatory signals is a method
to assess the statistical significance of a potential signal. The problem is non-
trivial since our samples are large, biased, and contain low complexity regions.
There exists a number of approaches to assessing the statistical significance of
patterns. They include the shuffling approach '7, building statistical models
to estimate the probability of a pattern '® or profile *#, and using a back-
ground sample to assess the significance of a pattern depending on whether
or not it is over represented in the sample '°. Our ability to discover signals
depends on the reliability of the method for determining the statistical signif-
icance of observed patterns in such large samples. For example consider the
experimentally confirmed promoter represented by the Pribnow-Gilbert dyad
TTGACA—1T—T AT AAT in the B. subtilis genome. This dyad (with 2 allowed
mismatches) occurs 143 times in our sample. However, it appears anywhere
from 34 to 64 times at other separation distances from 3 to 23 nucleotides.
Most of them are likely to be simply random events instead of having any
biological meaning. It indicates a need for a new scoring approach that com-
bines the traditional statistical analysis of monad patterns with the analysis
of spacing and positional parameters.

Our scoring approach estimates the significance of patterns in the target
sample against the patterns in the background sample. For each pattern, we
compute the strength of the signal which measures the difference between the
number of occurrences of the pattern and the expected number of occurrences
based on the background distribution (strength score). However, even with
scoring method that takes into account a background sample, it is still diffi-
cult to determine which patterns correspond to biologically meaningful signals.
Our key idea is to incorporate two types of additional information to help make
this determination. Firstly, we contrast every dyad pattern with a fixed sepa-
ration distance against a dyad pattern with a “random” spacer (dyad score).
Secondly, since some regulatory elements are positional (i.e., tend to occur at
the same relative position) we also analyze the relative position of the signal to
the start of the gene (positional score). Although we do not have reliable infor-
mation about the transcription start position of the gene, we can still obtain
a rough estimate of the relative positions of the signal using the translation
start instead. Each type of information on its own is generally not sufficient to



make a determination on whether or not a signal is an actual binding site. In
fact, some actual binding sites are not positional signals and some actual dyad
binding sites have looser restrictions on their separation distance than other
dyad binding sites. However, the combination of the three types of information
helps us to decide whether or not a signal is a putative binding site.

We apply our new MITRA algorithm to analyze samples of divergent and
convergent genes in 20 bacterial genomes and find particularly strong putative
dyad signals in 9 out of the 20 genomes and signals that correspond to known
binding sites in 12 of the 20 genomes. Details of the MITRA algorithm are
presented in '°. Detailed information about all of the signals reported in this
paper is available at: http://www.cs.columbia.edu/compbio/mitra/.

2 Sample Generation

The main difficulty in the analysis of complete bacterial genomes is scarcity,
or even lack, of the experimental data about location of regulatory regions and
the operon structure. Thus, for any given gene, it is difficult to decide, whether
it is the first gene in an operon (and thus the transcription factor binding sites
are upstream of this gene), or it is preceded by other genes. Therefore, simply
taking upstream regions for every gene in a bacterial genome would lead to
extremely corrupted samples and failure of the motif finding algorithms.

A better approach to sample generation was first proposed by Washio et
al., 1998 2% and later explored by Sagot and colleagues in? and ?'. It is based
on the observation that the divergently transcribed genes are guaranteed to be
the most upstream genes of the respective operons. Thus, the target sample
we used to search for the regulatory signals consists of genomic fragments be-
tween divergently transcribed genes. Similarly, a region between convergently
transcribed genes cannot be an upstream region for any gene, and such regions
formed a background sample (i.e., sample without binding sites).

The sequences of 20 complete bacterial genomes (Table 1) were downloaded
from the ERGO database 2. The choice of the genomes was dictated by (i)
availability of experimental information for some of these genomes and (ii)
availability of several genomes from one taxonomic group. We used the limited
set of experimentally confirmed promoters to verify that our predictions agree
with the available data. We used genomes from the same taxonomic group
(Gram-positive bacteria from the Bacillus/Clostridium group, mycoplasmas,
chlamidiae, proteobacteria from the «, 8 and v divisions, e-proteobactera)
to check whether our promoter predictions for these genomes produce similar
putative patterns.

To create our samples, we extract the last 310 bases of the intergenic region



and the reverse complement of the first 310 bases. We remove the 10 bases
closest to the gene to delete the strongly conserved Shine-Dalgarno signal that
would dominate our results. In the cases of alternatives caused by overlapping
genes the shortest intergenic fragments were selected. In cases where the inter-
genic region is longer than 620 nucleotides, a portion of the intergenic region is
left out of the target sample. We perform the same procedure for creating the
background sample that model the regions without the regulatory elements.

3 Finding Statistically Significant Signals

We use the MITRA algorithm to detect all “statistically significant” (I; —
(s1,82) —l2,d) — k patterns. MITRA is fully described in Eskin and Pevzner,
200215 and is easily adapted to use the scoring method described below. Al-
though MITRA was used for these experiments, any algorithm (such as Marsan
and Sagot, 2000'°) that can recover all (I; —(s1, s2)—I2, d)—k patterns, properly
modified to incorporate the scoring functions described below, would produce
equivalent results.

We incorporate three types of information into assessing the significance
of a signal: signal strength score, dyad separation score and positional score.

We use the background sample obtained from intergenic sequences between
genes transcribed in convergent directions to estimate background distribution.
We first describe our scoring method for monad patterns and then extend it
to dyads patterns. For a pattern P we define pp = Z—;’ as the number of [-
mers in the background sample that are within d mismatches of the pattern,
np divided by the total number of [-mers in the background sample, ng. We
smooth our estimates for pp using Dirichlet priors??® and adjust our estimates
of pp to take into account the differences in nucleotide composition between
convergent and divergently transcribed intergenic regions.

Let np be the size of the target sample. Given that the pattern P oc-
curs (with mismatches) op times in the target sample, we define the score of

op_NrTpp

the pattern as sp = —=E—ZLEE___ For a single pattern, the score can be in-
\/nrpp(l—pp)

terpreted as the number of standard deviations from the mean if we assume
a binomial distribution. The pattern score is simple and efficient enough to
incorporate into MITRA for the exhaustive search to discover all top scoring
patterns. Instead of returning all patterns that occur k times, we instead spec-
ify a minimal score threshold ¢. For a pattern P and minimum score threshold
t, the minimum number of occurrences for the pattern kp to make into the
ranked list would be kp = nrpp + t\/nrpp(1 — pp).

We score the dyad patterns D composed of monad patterns P, and P
in a similar way. For each dyad pattern D, we estimate pp from estimates



of the probabilities of the patterns P; and P,. Since the mismatches of an
instance of the dyad can be spread to both monads, we need to estimate a
probability for each monad occurring with a certain number of mismatches.
As above, we compute the counts for each occurrence of the pattern with ¢
mismatches over the background sample and divide by the size of the sam-
ple. We use pb to denote the probability of a pattern P occurring with i
mismatches. We then estimate the probability for the dyad pattern D using
PD =35 st iZU,jZO,i+j§dp§D1p]P2' If s is the number of allowable separation

OD —SNTPD

v snrpp(l—pp) )

For a minimum score threshold ¢, we set minimum number of occurrences for
a dyad pattern D as kp = snrpp + t/snrpp(1 — pp)

Two other types of information is the distribution of separation distances
between the dyad signals and the distribution of the positions of instances of
the signal. Many dyads which correspond to a binding site, have a peak in
the histogram of separation distances at a certain separation distance such as
in Figure 1(a) for B.subtilis. Similarly, many binding sites tend to occur in a
similar position relative to the transcription start of the gene such as in Figure
1(c) B.subtilis. At the same time, for most regulatory signals the situation is
more difficult, for example, the same histograms for E.Coli 1(b,d) show less
pronounced peaks.

We incorporate this information by assessing the statistical significance of
the distribution of both the separation distance (between the two parts of the
dyad) and of the position of the signal (relative to the estimated transcription
start site). In the first case our null hypothesis is that every instance of the
dyad is independently equally likely to fall in one of the s — s1 4+ 1 possible
bins: one for each possible separation distance. For the positional histogram,
since there is often some flexibility in the position of the transcription factor
relative to the transcription start site, we group the positions using bins of 30
bp.

distances, the score for a dyad D, sp is defined to be sp =

We assess the statistical significance of the observed data using the statistic
M which equals the maximal number of instances that fall in one bin. Under
our null hypothesis M is distributed as the maximum multinomial bin which
is given by 24:

NNg—N

where IV is the total number of instances, ¢ is the number of bins, Fp4[A](i) is
the cdf of a Poisson random variable with parameter A evaluated at i, and W;
is a sum of ¢ iid Poisson random variables (A = N/t), each of which is subject
to truncation at ¢.

P(M <i)= [FposIN/H())] P(W; =N)  i=0,1,...,
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Figure 1: Histogram of Separation Distances and Positions for the Pribnow-Gilbert dyad

signal TTGACA-17-TATAAT. Separation Distances in (a) BS genome and (b) EC genome.

Positions in (c) BS genome (d) EC genome. We bin the positions of the signal instances into

buckets (30 bp by default) since positions rarely exactly match and the exact transcription
start position often unknown.

In practical terms P(W; = N) can be computed by a ¢-fold convolution of
the truncated Poisson distribution. Note that the distribution of a Poisson ()
random variable which is truncated at i is given by Pp,g[A|(j)/Fpog[Al(é) for
j=0,1,...,i, where Pp,4[A](j) = e™*M /j! is the standard Poisson probabil-
ity mass function. Also, by Stirling’s approximation, for a reasonably sized N
we can approximate NNL;_N ~ /21 N. For both of these scores we compute
the P-value of the statistic and report its negative log.

4 Finding putative regulatory elements in bacterial genomes

We performed blind experiments over 20 bacterial genomes (Table 1) and ex-
tracted the top dyad signals for each genome. We searched for dyads con-
sisting of two conserved regions of length 6 with separation distances from 3
to 23 bases. To validate our results, we checked the found signals against the
known regulatory elements in bacterial genomes. Table 2 shows the top signals



Table 1: Genome Intergenic Region Statistics. The first column is name of the genome. The ID
is an abbreviation for the genome. The next columns list the number and the lengths of intergenic
regions for divergent and convergent samples. The last column describe genome taxonomy.

Genome Genome Div. Div. Conv. Conv. Genome
Name ID Regions | Nucleotides Regions | Nucleotides Taxonomy
Bacillus subtilis BS 552 132145 244 47087 Bacillus group
Campylobacter jejuni cJ 168 25837 36 4638 e-proteobacteria
Chlamydia muridarum CMU 120 20176 55 5751 Clamidiales
Chlamydophila pneumoniae CPX 136 33274 67 8805 Chlamidiales
Chlamydia pneumoniae cQ 141 36973 68 11460 Chlamidiales
Synechocystis sp. cYy 525 138494 330 50311 Cyanobacteria
Escherichia coli EC 589 148936 374 61262 ~-proteobacteria
Haemophilus influenzae HI 228 48346 181 23944 v-proteobacteria
Helicobacter pylori HP 169 33123 109 26091 e-proteobacteria
Lactococcus lactis LLX 217 53342 139 23081 Bacillus group
Mycoplasma genitalium MG 30 5013 7 1404 Mycoplasmales
Mycoplasma pneumoniae MP 51 9535 41 10235 Mycoplasmales
Mycobacterium tuberculosis MT 530 03471 200 43742 Mycobacteria
Neisseria meningitidis ser. B NX 287 55651 266 45793 B-proteobacteria
Pseudomonas aeruginosa PA 790 194787 450 80089 ~-proteobacteria
Rickettsia prowazekii RP 104 42597 29 62895 a-proteobacteria
Streptococcus pyogenes ST 169 47300 159 33165 Bacillus group
Thermotoga maritima ™ 163 25332 29 4542 Thermotogales
Ureaplasma urealyticum UuU 55 12728 40 10623 Mycoplasmales
Pasteurella multocida VK 267 58281 238 30640 y-proteobacteria

from each of the 20 genomes with respect to strength score and provides the
strength score, the dyad score and the positional score for each signal. We
do not report a signal if (i) it is a slight variation of a higher scoring signal,
(ii) if it is a shifted variant of a higher scoring signal, or (iii) if it is a reverse
complement of a higher scoring signal.

The set of putative signals identified by our algorithm contains a number
of known signals and several promising candidates for more detailed analysis.
Among the known signals are the classical promoter signals consisting of the
standard Gilbert and Pribnow boxes. They have been found in all Gram-
positive bacteria from the Bacillus group: B. subtilis, S. pyogenes, and L.
lactis, as well as in alpha-proteobacterium R. prowazekii.

For nine genomes (BS, CY, EC, HI, LLX, NX, PA, ST, and VK) we dis-
covered the particularly strong signals with high dyad and strength scores. For
six of these genomes, these signals correspond to known biological signals or
to variants of known signals.

In B. subtilis. (BS), one of the strongest dyad signals that we recovered was
the classical Pribnow-Gilbert promoter consensus TTGACA —17—TAT AAT.
This signal is over-represented in the divergent intergenic regions relative to
the convergent intergenic regions, has a very strong distance peak at the dis-
tance 17 as well as a strong positional peak at distance in the range -90 to
-60. The distribution of separation distances is shown in Figure 1(a) and the
positional distribution is shown in 1(c). In E. coli. (EC), the found signal in
E. coli perfectly matches the binding signal of the transcription factor CRP
(TGTGAT-4-ATCACA). In H. influenzae. (HI), all three signals found in H.



influenzae are interesting. The first found dyad TGCGGT-12-CGTTTT signal
has a strongly conserved region around the dyad represented by the longer dyad
AAAAGTGCGGTNA-10-CGTTTT. The second found signal is the binding
signal of the transcription factor CRP. In addition, the third signal has an ad-
ditional interesting feature. Although it looks like an AT rich signal it tends to
occur in non-AT rich regions which suggests that it is a real binding site. In L.
lactis. (LLX), the found dyad corresponds to the canonical Pribnow-Gilbert
promoter consensus. In S. pyogenes. (ST), the found dyad corresponds to the
canonical Pribnow-Gilbert promoter consensus. In P. multocida. (VK), the
found dyad is a slightly shifted form of the binding signal of the transcription
factor CRP. In addition, there are two lower-scoring but still interesting palin-
dromes AATGTG-10-CACATT and AATTTG-12-CAAATT that may be the
binding signals for yet unknown transcription factors. We plan to do detailed
analysis of these signals in order to determine the corresponding regulons.

Many of the other signals detected also correspond to known binding sites.
In N. meningitidis (NX) and R. prowazekii (RP), we detect canonical Pribnow-
Gilbert boxes. Among other identified signals, there are modified forms of the
Pribnow-Gilbert promoter consensuses: TTGACA-19-ATAATT in C. pneumo-
niae (CPX) (the Pribnow box is shifted by 1 bp to the right; the spacer length
is longer than in other species), TTAATC-21-TATAAT in H. pylori (HP),
identified earlier in 2! (unusual Gilbert box and longer spacer), TTGACC-17-
TAGAAT in P. aeruginosa (PA) (modified boxes), and TTGCCA-17-TACAAT
in P. multocida (VK) (modified boxes). Many of the other signals that we find
are palindromic signals (Table 2).

The known promoter signal of E. coli was too weak to be discernible in
this analysis as well as previous genome-wide analyses!. The promoter signal
in Mycoplasmas is also very weak; even given a sample of mapped promoters
it is not possible to derive a good consensus ?*. The signals identified in M.
tuberculosis do not resemble the promoter consensus of a closely related bac-
terium M. paratuberculosis®®. We also did not find any signal corresponding
to the suggested consensus TTTAAGT-(15-19)-TATAAT of C. jejuni®?.

Some signals may still be artifacts. In particular, the AT-rich signals
of Mycoplasmas represent neither promoters identified in experimental study
25 nor can they be binding signals of transcription factor HrcA (the CIRCE
box TTAGCACTC-9-GAGTGCTAA) identified in 2®. Despite the method’s
inability to find these signals, the fact that we were able to identify many of
the promoters and transcription factor binding signals demonstrates the power
of the method and indicates that at least some of the identified candidates
deserve closer look.



Table 2: Top scoring dyad signals in 20 bacterial genomes. Underlined signals are particularly
strong (strength scores greater than 10 and either a dyad score or position score greater than
7). The Signal Class column labels if the signal falls into a known biological signal. Classes are
defined as (PB) Pribnow-Gilbert signal, (PB*) variant Pribnow-Gilbert signal, (CRP) CRP signal,
(CRP¥*) variant CRP signal, (PU) palindromic signal for a possibly unknown factor.

Genome Signal Number Strength | Dyad | Position | Signal
D Pattern Occurrences Score Score Score Class
BS TTGACA-17-TATAAT 143 30.10 3.86 742 PB
BS CCTCCT-16-CATTAT 62 13.15 4.07 3.53
BS TATAAT-5-TATAAT 151 11.25 5.81 7.48
CcJ TTCCCT-10-AAATTT 54 4.79 3.86 2.76
CcJ TACCAT-8-TAAAAT 58 2.71 8.19 6.32
CcJ TTTAAC-11-TAGAAT 71 4.19 8.30 6.74

CMU AATTAT-6-ATAATT 39 2.61 7.67 0.37 PU
oMU AATATA- 18-TATATT 37 1.21 7.51 2.37 PU
CMU CATTGT-12-TCTTCT 21 1.81 6.75 0.09
CMU GCAACA-21-AAATAA 22 0.86 3.49 0.62
CPX TTGACA-19-ATAATT 27 3.43 7.16 1.92 PB*
CPX GTGCAA-11-TTTTTC 25 3.81 6.95 0.30
CcPX ATTAAT-12-ATTAAT 42 2.78 2.17 0.74 PU
CcPX ATTATT-6-ATTAAT 57 3.21 3.35 4.11
cQ AAAATT-5-ATAATG 49 3.17 7.76 1.57
cQ ATTATT-6-ATTAAT 57 3.91 3.25 5.98
cQ ATTAAT-14-ATTATT 54 4.42 4.48 2.76
CcY ATTGTA-11-AATTTT 76 7.67 3.75 3.43
CcY TGTTAA-4-TGTTAC 57 12.77 7.83 3.30
EC TGTGAT-4-ATCACA 108 24.04 8.01 2.99 CRP
HI TGCGGT-12-CGTTTT 58 5.84 7.80 3.14
HI TGTGAT-4-ATCACA 62 17.64 7.11 6.44 CRP
HI AAAATT=6-AATTTT 342 13.21 9.85 8.26 PU
HP ATTATA-10-TATAAT 89 717 7.81 6.96 PU
HP ATTTTA-18-TATGCT 49 6.04 7.97 2.51
HP TTAAGC-21-TATAAT 51 6.62 7.79 6.41 PB*
HP GTATAA-7-ATTATA 56 8.78 8.09 6.49
LLX TTGACA-17-TATAAT 125 19.87 8.62 7.29 PB
LLX TTATAA-5-TTATAA 203 8.41 9.54 7.76 PU
MG AGTAAA-10-TTTACT 20 0.11 5.99 2.16 PU
MG AATCAA-11-ACTTTT 21 0.78 6.70 0.09
MP TCCAAA-14-TTTTTA 23 2.91 6.14 0.49
MP TTGTAA-15-TAATTA 20 4.33 4.18 0.92
MP TTAAAA-17-TTAGTA 23 2.88 6.46 0.49
MP TTATTA-18-CAAACA 20 3.91 6.08 3.58
MT CGGCCC-10-CGGGCC 80 6.47 8.53 1.37
MT CGATAC-12-CGCCGC 51 4.84 7.57 2.22
MT GGCCCG-8-CCAGGC 66 7.37 8.31 4.86
NX CCGCCG-12-CGGCGG 33 10.86 7.40 3.13 PU
NX TTGACA-17-TATAAT 43 12.87 7.71 6.24 PB
NX CTTCAG-3-GCATAG 50 19.61 6.68 4.45
NX TATAGT-6-ACTATA 30 7.78 7.17 0.50 PU
PA TTGACC-17-TAGAAT 31 9.99 7.18 5.91 PB*
PA TGTCAC-5-TGTCAC 34 9.51 7.23 5.18
PA TATAAT-6-CAATTT 30 11.77 7.21 5.88
PA TATAAT-3-CGGCCT 50 8.63 7.50 6.39
RP TTGACA-17-TATAAT 42 6.55 7.56 4.80 PB
RP CTTTAA-21-TTAAAG 44 6.99 7.32 1.32 PU
RP AATTAT-22-TTTCCC 20 6.56 6.56 0.92
RP TAATTA-9-AACCAT 39 5.46 7.52 1.07
ST TTGACA-17-TATAAT 92 18.56 8.24 6.99 PB
ST AATTAT-3-ATAATA 123 10.80 8.85 5.97
T™ TTGACA-17-TATAAT 33 4.34 7.43 5.98 PB
uu TATAAT-13-TACAAT 39 1.12 0.37 3.34
VK AATGTG-10-CACATT 58 12.36 7.76 3.14 PU
VK ARTTTG-12-CAAATT 79 8.97 8.57 3.04 PU
VK ATTGTA-12-AAATTT 78 6.72 7.02 6.67
VK TTGCCA-17-TACAAT 30 7.85 7.13 5.88 PB*
VK GTGATC-4-TCACAA 70 27.03 7.33 6.72 CRP*




5 Conclusion

We presented an approach for fully automatic discovery of putative regulatory
signals in bacterial genomes. The approach emphasizes the interplay of three
processes: sample generation, signal finding, and scoring.

We applied our MITRA algorithm to 20 bacterial genomes and detected
signals that correspond to known binding sites in 12 of the 20 genomes. The
majority of the strong signals detected by MITRA, do in fact correspond to
known biological binding sites. Of the 14 particularly strong signals detected
by MITRA, 4 correspond to a Pribnow-Gilbert signal or one of its variants and
3 correspond to a CRP signal. A very promising direction is to further examine
the remaining 7 strong signals to determine whether or not they correspond to
actual binding sites.
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