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We describe a new method for finding haplotype blocks based on the use of the
minimum description length principle. We give a rigorous definition of the quality
of a segmentation of a genomic region into blocks, and describe a dynamic program-
ming algorithm for finding the optimal segmentation with respect to this measure.
We also describe a method for finding the probability of a block boundary for each
pair of adjacent markers: this gives a tool for evaluating the significance of each
block boundary. We have applied the method to the published data of Daly et al. 1

The results are in relatively good agreement with the published results, but also
show clear differences in the predicted block boundaries and their strengths. We
also give results on the block structure in population isolates.

1 Introduction

Haplotype blocks 1,2,3,4 form fascinating small-scale structure in the human
genome. While several studies have confirmed that some type of block struc-
tures exist, the recent data about haplotype blocks in the human genome have
left multiple uncertainties concerning block boundaries and their variation.
The published algorithms by Daly et al.,1 Patil et al.,2 and Zhang et al.,3 have
used segmentation algorithms with fairly ad hoc criteria for block quality. Also,
the existing methods produce a segmentation without any clear indication on
how strong or weak the different block boundaries are.

We describe a new method for finding haplotype blocks based on the use
of the minimum description length principle. We give a rigorous definition of
the quality of a segmentation of a genomic region into blocks, and describe
a dynamic programming algorithm for finding the optimal segmentation with
respect to this measure. We also describe a method for finding the probability
of a block boundary for each pair of adjacent markers: this gives a tool for
evaluating the significance of each block boundary.

Intuitively, a haplotype block can be considered to be a sequence of mark-
ers such that for those markers most of the haplotypes in the population fall
into a small number of classes; each class consists of identical or almost iden-



tical haplotypes. This notion can be formalized by considering the problem of
describing the haplotypes in a succinct way. This approach is an instance of
the minimum description length principle (MDL) by Rissanen 5,6 widely used
in statistics, machine learning, and data mining (see, e.g., Li and Vitanyi 7

or Hansen and Yu 8). Similar ideas have also been applied to partitioning
homogeneous DNA domains.9

We have applied the method to the published data of Daly et al. 1 The
results are in relatively good agreement with the published results, but also
show clear differences in the predicted block boundaries and their strengths.
The method has also been applied to samples from isolated populations.

The rest of this paper is organized as follows. In Section 2 we describe
the MDL principle and the encoding of the data. Section 3 gives the dynamic
programming algorithm, and Section 4 shows how dynamic programming can
be used to compute the probabilities of block boundaries. Section 5 gives an
overview of the empirical results, and Section 6 is a short conclusion.

2 MDL principle and coding of haplotype data

Let D be an n×p matrix of n observations over p markers. We refer to the jth
allele of observation i by Dij . For simplicity, we first assume that Dij ∈ {0, 1}.

A marker interval [a, b] = {a, a+1, . . . , b} is defined by two marker indices
a, b ∈ {1, . . . , p}. A segmentation is a set of non-overlapping non-empty marker
intervals. A segmentation is full if the union of the intervals is [1, p]. The data
matrix limited to interval [a, b] is denoted by D(a, b) and the values of the ith
observation are denoted by D(i, a, b).

The minimum description length principle by Rissanen 5,6 considers the
description of the data using two parts: the model B and the description of the
data D given the model. The description length for the data and the model is

L(B,D) = L(B) + L(D | B),

where L(B) is the length of the description of the model and L(D | B) is the
length of the description of the data, when the data is described using the
model B.

The minimum description length principle states that the desired descrip-
tions of the data are ones having the minimum length L(B,D) of the total
description. For a good survey of the (sometimes intricate) connections be-
tween MDL, Bayesian statistics, and machine learning, see Li and Vitanyi.7

The MDL principle has successfully been used in various applications.10,11,12,8

The haplotype data set D can be described by telling first of all how many
blocks there are and where the blocks start and end. For each block, we have



to specify how many typical haplotypes (class center) there are and what they
are. For each observation and each block, we tell from which typical haplotype
the observation comes from.

More formally, a block model B consists of the following components.

1. A segmentation S, i.e., the start and end markers sh and eh for each
block (h = 1, . . . , `).a Implicitly, the segmentation specifies the number
of blocks `.

2. For each block h, the class centers θh = (θhc) (c = 1, . . . , kh) specifying
the coordinates θhcj for each marker j = sh, . . . , eh. Implicitly, each θh

also specifies the number of centers kh.

The coordinates θhcj are real numbers, encoding the probability of seeing 1
in marker j of an observation stemming from class center c of block h. So,
strictly speaking, a class center is not a typical haplotype, but a mean vector
of the haplotypes associated with the class.

Given such a block model B = ((sh, eh), (θhcj)), the data can be encoded as
follows. For each observation i = 1, . . . , n, and for each block h = 1, . . . , `, we
first have to tell which of the kh class centers does the observation D(i, sh, eh)
belong to; let this center be c. This takes log kh bits per observation. Then
we have to describe D(i, sh, eh) using the center coordinates θhcj , for j =
sh, . . . , eh. This is done by assuming independence of marker values given the
class center. Thus the probability is

P (D(i, sh, eh) | (θhcj)) =

eh
∏

j=sh

θ
Dij

hcj (1− θhcj)
1−Dij . (1)

Using the relation of coding lengths and probabilities we get a code of length
− logP (D(i, sh, eh)) for the data D, given the segmentation model B.

Assuming the segmentation in the block model B is full, it can be coded
using ` log p bits for encoding the block boundaries, and ` log n bits for the
number of centers in the block, and αkh(eh − sh + 1) bits for coding the
centers, where α is the number of bits needed for the coding of a real number.
Theoretical arguments 5,6,8 indicate that the appropriate accuracy is obtained
by choosing α = (log n)/2.

Thus the length of the description of the block model is

L(B) = ` log p+ ` log n+
∑̀

h=1

khα(eh − sh + 1).

aOf course, s1 = 1 and e` = p. In some of our models we allow parts of the data to be
uncoded, so sh+1 = eh + 1 does not necessarily hold.



The length of the description of the data is

L(D | B) =
∑̀

h=1

n
∑

i=1

[

log kh − logP (D(i, sh, eh))
]

.

Thus the goal of the segmentation procedure is to find a block model B
such that the overall coding length L(B,D) = L(B) + L(D | B) is minimized.

The description method is easily extended to handle missing or unknown
data values. If the values Dij are interpreted as a degree of certainty that the
correct value is 1, the expression in Eq. 1 can be used directly. For instance,
one can assign the value 0.5 for each missing allele in the data. To obtain
a proper probability model a normalizing factor should be included in Eq. 1.
However, the factor behaves as an irrelevant constant and therefore can be
ignored.

3 Dynamic programming algorithm

We use a dynamic programming algorithm to compute an optimal block struc-
ture, and then estimate the probabilities of each block boundary.

The MDL cost function is, as defined above, a function of the whole seg-
mentation. However, it is straightforward to see that it can be decomposed into
the blocks of the segmentation. Given a marker interval [a, b], let k̂ is the op-

timum number of centers, and let θ̂ij be the corresponding center coordinates
associated with jth allele of ith observation, such that the cost

f(a, b) = log p+ log n+ n log k̂ +
1

2
k̂(b− a+ 1) log n

+

n
∑

i=1

b
∑

j=a

[

−Dij log θ̂ij − (1−Dij) log(1− θ̂ij)
]

(2)

is minimized. Then for the MDL optimal block model Bmdl we have

L(Bmdl, D) = min
S

∑

[a,b]∈S

f(a, b),

where S runs through all full segmentations on [1, p]. Thus the minimum
description length of haplotype data can be defined as the sum of costs of
coding of individual blocks.

Denote by F (b) the cost of the optimal segmentation of the haplotypes from
marker 1 to marker b. We have the typical dynamic programming equation

F (b) = min
1≤a≤b

(F (a− 1) + f(a, b));



additionally F (0) is defined to be 0. Namely, the coding from marker 1 to
marker b is either produced by coding all the markers in one block (with cost
F (0)+f(1, b)), or by coding for some a from marker 1 to marker a−1 optimally
(cost F (a− 1)) and then coding from marker a to marker b in one block (cost
f(a, b)). Given the costs f(a, b), the computation can be done in O(p2) time.

The cost f(a, b) is computed by using k-means clustering on the data set
D(a, b). The number of cluster centers is varied from 1 to 10, and for each
number we produce 5 different clusterings. For each clustering, the coding
cost of D(a, b) is computed, and as the cost f(a, b) we select the smallest cost.b

The computation of f(a, b) takes time O(n(b − a + 1)) for a fixed number of
iterations in the k-means algorithm. Thus the total amount of time needed for
computing the costs f(a, b) is O(np3).

In many cases it is interesting to see how optimal segmentations behave
when some (bad) markers are allowed to be ignored in the data. We call such
ignored markers gaps between haplotype blocks. A natural extension of the
problem of finding the optimum segmentation is to find a segmentation that
gives the shortest description length and includes at most u gaps. Denoting
by F (b, u) the cost of optimal segmentation from marker 1 to marker b using
at most u gaps, we have

F (b, u) = min(F (b− 1, u− 1), min
1≤a≤b

(F (a− 1, u) + f(a, b))).

Namely, if a gap is used at the bth marker, then the prefix segmentation of
[1, b− 1] is allowed to contain at most u− 1 gaps. Otherwise, a block [a, b] is
introduced and the maximum allowed number of gaps from marker 1 to marker
a − 1 is still u. The computation of F (b, u) can be arranged to take O(np3)
time.

4 Computing the probability of a block boundary

We next consider the probability that there is a block boundary between mark-
ers j and j + 1. Denote by Sj,j+1 the set of all full segmentations having a
boundary between markers j and j + 1. Then we are interested in the proba-
bility of any segmentation from Sj,j+1, given the data D:

P (Sj,j+1 | D) =
∑

S∈Sj,j+1

P (S | D).

bThe problem of finding the best cluster centers is NP-hard; thus the approach does not
guarantee that the shortest description for the single block from a to b is found.



Denoting by S[1, p] the set of all full segmentations on [1, p], this can be written

P (Sj,j+1 | D) =

∑

S∈Sj,j+1
P (S,D)

∑

S′∈S[1,p] P (S′, D)
. (3)

The probabilities P (S,D) come naturally from our description method.
For any segmentation S and data set D we define

P (S,D) = Z−1 2
−
∑

[a,b]∈S
f(a,b)

,

where f(a, b) are the minimum description lengths for the corresponding blocks
as described in Eq. 2, and Z is a normalization constant that does not depend
on S and D. Note that the normalization constant cancels out when substi-
tuted into Eq. 3.

Define

q(a, b) = 2−f(a,b),

and for any interval [j, j′],

Q(j, j′) =
∑

S∈S[j,j′]

∏

[a,b]∈S

q(a, b),

where S[j, j′] denotes the set of all full segmentations on marker interval [j, j ′].
Then, since Sj,j+1 is equal to the Cartesian product S[1, j] × S[j + 1, p], we
have

P (Sj,j+1 | D) =
Q(1, j)Q(j + 1, p)

Q(1, p)
.

(For a similar development, see Durbin et al.,13 Eq. 3.14, and also Liu and
Lawrence.14)

Again, dynamic programming can be applied. The equations are

Q(1, b) =
∑

1≤a≤b

Q(1, a− 1)q(a, b)

and

Q(a, p) =
∑

a≤b≤p

q(a, b)Q(b+ 1, p).

(Here, of course, we define Q(1, 0) = Q(p + 1, p) = 1.) Thus the probabilities
P (Sj,j+1 | D) can be computed for all j in time O(p2).



Table 1: Haplotype classes of the block 2 found by the MDL method for the data of Daly
et al. The block consists of the markers 15–24. There are two classes of haplotypes. For
each class the size (the number of associated haplotypes), and the center coordinates and
the most commonly occuring haplotype is shown. The right-most columns show the number
of haplotypes that differ from the most commonly occuring haplotype at 0, 1, 2, or ≥ 3
markers.

Class Size Center and the most frequent haplotype Frequencies

0 1 2 ≥ 3

1 190 .16 .02 .96 .64 .06 .15 .05 .02 .94 .02

0 0 1 1 0 0 0 0 1 0 115 44 20 11

2 68 .91 .88 .18 .20 .82 .20 .82 .92 .15 .91

1 1 0 0 1 0 1 1 0 1 34 18 4 12

5 Empirical results

We have tested the above methods on synthetic (generated) and real data.
The results on synthetic data show that the method finds the block structure
that have been used to generate the data, and that the method is quite robust
against noise (data not shown).

Figure 1 shows the results when the MDL method is applied to the data of
Daly et al. 1 The segmentations reported by Daly et al. 1 and those produced
by the MDL method are overall in quite good agreement. There are, however,
some differences. For example, the 3 block boundaries around marker 40 re-
ported in 1 are clearly weaker than some of the others, as shown by the log
odds curve, and also in the plot of the optimal segmentations with a varying
number of gap markers.

An interesting difference can also been found at the block around marker
20. Since Daly et al. 1 count exact matches they report 3 distinctive common
haplotypes. Our method, however, suggests 2 haplotype classes, for it allows
variability within a class, see Table 1.

Figure 2 displays the results when random noise is added to the data of
Daly et al. The block structure as well as the probabilities for block boundaries
show quite good stability. As expected, when the marker order is randomly
permuted, the block structure disappears. Note that some information already
shown in Figure 1 is repeated, but using the physical location of the markers
yields additional insights into the nature of the blocks.

We also applied the method to SNP data on samples from three subpop-
ulations from Finland, which are representative for the settlement history of
Finland, inhabited by two periods of immigration 4000 and 2000 years ago.15

The early settlement sample (n = 32 chromosomes) consisted of descendants of
the early settlers (≈100 generations) on the coastal areas of Finland, the late
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Figure 1: Haplotype block structure in the data of Daly et al. The x-axis is the number of the
marker. (a) The optimal block structure produced by the MDL scoring function compared
against the block boundaries reported by Daly et al. The numbers associated with the MDL
blocks give the number of haplotype classes that suffice to cover at least 85 percent of the
block and, in parenthesis, the total number of the classes. The numbers associated with the
Daly et al. blocks give the number of haplotypes in the block that suffice to cover at least
90 percent of the block. (b) The log odds of the probability of block boundaries for each
pair of adjacent markers. (c) The optimal segmentation when k markers are allowed to be
left outside the blocks, for varying k.
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Figure 2: Haplotype block structure in the data of Daly et al. when noise is added. The
x-axis is the physical location of the marker. (a) The block boundaries reported by Daly
et al. and the optimal block structures produced by the MDL scoring function when 0, 5,
and 10 percent of random noise was added to the data and when the order of markers was
randomly permuted. (b) The log odds of the probability of block boundaries for each pair
of adjacent markers after adding noise and permuting the order.

settlement sample (n = 108 chr.) representing a younger (15–20 generations)
population that has gone through a population bottleneck in the 1500s and
the third regional subisolate (n = 108 chr.), founded by 40 families some 300
years ago, followed by a major expansion.

A total of 45 SNPs were genotyped over 1Mb area on chromosome 1q.
Figure 3 shows the results. Five haplotype blocks were identified in three pop-
ulations. The identified blocks varied in size from 12kb to 361kb. As expected,
the haplotype blocks do not differ in different subpopulations of Finland, most
probably reflecting the limited set of original founder chromosomes shared by
all analyzed populations.

The log odds curve for estimating the probability of boundaries shows that
generally the boundaries are stronger for larger values of n; this is also visible
in experiments done by sampling from the data of Daly et al. (results not
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Figure 3: Haplotype block structure in the data from three subpopulations in Finland.
Sample sizes: late settlement, n = 108; early settlement, n = 32; subisolate, n = 108. The
x-axis is the physical location of the marker. (a) The optimal block structure produced by
the MDL scoring function in the three subpopulations. The numbers refer to the number
of haplotype classes covering at least 85 percent of haplotypes and, in parenthesis, the full
block. (b) The log odds of the probability of block boundaries for each pair of adjacent
markers. (c) The subisolate: the optimal segmentation when k markers are allowed to be
left outside the blocks, for varying k.



shown).
The significance of block boundaries was also tested using bootstrap meth-

ods by investigating whether the optimal segmentation had a block boundary
in resampled data sets. The results are similar to the probabilities produced
by the probabilistic approach (results not shown).

6 Concluding remarks

We have described a method for defining and finding haplotype blocks based on
the use of the minimum description length principle. The clearer the haplotype
block structure is, the shorter a description can be given to the data. The
coding cost function is such that dynamic programming can be applied to the
problem, yielding an O(np3) algorithm for n observations over p markers. The
method can also be used to search for segmentations where a given number of
markers are allowed to be left as gaps. We also showed how the MDL principle
can be used to obtain probabilities for block boundaries for all pairs of adjacent
markers, giving a clear way of evaluating the significance of block boundaries.
Experiments on synthetic and real data show that the method produces useful
results.

Our method can be extended in many directions. The clustering approach
and k-means algorithm could be replaced by closely related but directly prob-
abilistic mixture models and the usual expectation maximization algorithm,
respectively. This would also help in modifying the method to handle mi-
crosatellite markers. A challenging open problem is to develop an efficient
method that is able to discover block structure using genotypic data with un-
known phase.
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