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We propose a new model for the splicing of long introns, which we call intrasplicing.
The basic idea of this model is that the splicing of long introns may be facilitated
by the splicing of inner parts of the intron prior to the splicing of the long intron
itself. Since long introns have up to about 100,000 bases, this model seems to
be a likely explanation of their splicing. To investigate the possibility of this
model, we develop a new computational method for the analysis of DNA sequences
with respect to splicing. We analyze the genomic sequence of four species with
our method and derive several results indicating that intrasplicing may be an
appropriate model for the splicing of at least part of the long intron sequences.

1 Introduction

Nuclear splicing is known to play an essential role in the expression of genetic
information of eukaryotes. The molecular components responsible for carry-
ing out the splicing process, which removes the introns from the pre-mRNA
sequence, are becoming more and more elucidated and a large amount of
research is spent on alternative splicing, aberrant splicing and on splicing in-
hibitors as well as splicing enhancers2,3,4. However, while the splicing reaction
can be easily imagined to happen on short introns of a few hundred bases,
it is poorly understood how long introns can be correctly recognized by the
splicing machinery. Such introns can contain up to about 100,000 bases (and
even more for some species10) while the known splice signals are limited to
an area of about 50 bases around the beginning and the end of the intron.
Therefore, it seems rather unlikely that such introns are removed from the
pre-mRNA in a single reaction, because this would require the beginning and
the end of such introns to get spatially very close.

Recursive splicing has been proposed as one explanation for the splicing
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Figure 1. Three models of long intron splicing: A) splicing in one step, B) recursive splicing,
C) intrasplicing.

of long introns6. In this model, splice sites of consecutive splicing reactions
are generated by preceding splicing reactions. Recursive splicing has been
shown to occur in one of the long introns of Drosophila6, but it might be only
one of several ways of splicing a long intron. Therefore, we propose a more
general model for the splicing of long introns, which we call intrasplicing. In
this model the long intron is shortened by several splicing reactions occurring
within the long intron without the use of the long intron splice sites itself.
As soon as the remainder of the long intron becomes sufficiently short, it is
cut out of the pre-mRNA by a single splicing reaction. This model is less
restrictive, because splicing reactions do not have to yield new splice sites and
the process as a whole can take place in many different ways. We use the
term intraintron to denote (putative) introns within introns.

The aim of this work is to investigate the possibility that intrasplicing is
an accurate model for the splicing of long introns in a computational way (see
Methods). We make use of an intron prediction program as well as the genomic
sequence of human (H. sapiens), mouse (M. musculus), fly (D. melanogaster),
and zebrafish (D. rerio).

We derive several results indicating that intrasplicing may be an expla-
nation or a partial explanation for the splicing of long introns.

2 Methods

2.1 Outline of our Approach

In order to evaluate the possibility of intrasplicing, we have developed a com-
puter program, which can be outlined as follows. First, our program learns
an intron predictor for short introns (at most 400 bases) using two thirds of



the currently available mRNA data of the particular species. Then it uses the
remaining third of the data to evaluate the probability that a prediction is
true with respect to its score. Using the intron predictor for short introns and
the probability function, our program recursively searches the highest scoring
intraintron candidate within a long intron and cuts it out, until the remainder
of the long intron becomes sufficiently short.

Step 1: Learn a short intron predictor from mRNA data.
Step 2: Evaluate the intron predictor.
Step 3: Use the intron predictor to compute a likely way for intrasplic-

ing for all long introns.

By doing so for all long introns longer than 10,000 bases, the program
computes several statistics concerning the intraintron candidates used. This
cutting procedure is then conducted for several different sequences such as
sequences derived from Markov Chains, and statistics are computed for these
sequences in the same way. If intrasplicing is an appropriate model for long
intron splicing, we expect to find many high scoring intraintron candidates in
long intron sequences. It is also expected that intrasplicing statistics between
intronic sequences and sequences which are close to exons, will show significant
differences. We explain the three main steps in more detail.

2.2 Intron Predictor

We have implemented an intron prediction program, which is similar to the
one used in Lim and Burge8. This predictor includes inhomogeneous first-
order Markov Models for the splice sites, a weight matrix model for the branch
point, a length score, and an intron composition score. All introns longer than
a certain threshold are removed from the data during training of this predictor.
We only describe differences to Lim and Burge’s method here.
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Figure 2. Length score graph [length=300].

The intron predictor of Lim and
Burge is designed for predicting very
short introns of length at most 134.
For our purpose, we also need to pre-
dict introns longer than this, because
introns of length 200 or 300 can eas-
ily be thought to be spliced in a sin-
gle reaction. In order to get higher
prediction accuracies for introns of
length up to 400, we changed the



length score as shown in Figure 2.
The intron composition score used in Lim and Burge8 is defined as the

sum of the pentamer scores contained in the intron candidate. Scoring in
this way yields a length dependent score, since longer candidate regions get a
higher score if they are composed of high-scoring pentamers. To remove this
length-dependency, we used the average of the pentamer scores instead and
evaluated the optimal weight for this score.

Furthermore, in order to improve the prediction accuracy, we conduct a
clustering of splice sites in the training procedure of our intron predictor and
learn one inhomogeneous first-order Markov Model for each cluster. We use
this set of Markov Models by applying all models and choosing the highest
score. We use five clusters for the 5’ site and two clusters for the 3’ site,
because this configuration performed best in preliminary computations. The
branch point score was not calculated for species other than human, because
it has been reported to contribute very weakly to intron prediction accuracy8.

Figure 3 shows short intron prediction accuracies with respect to the
maximal length of predicted intronsa.
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Figure 3. Short intron prediction accuracy. The accuracy is measured as sensitivity plus
specificity divided by two. Therefore, 0.5 can be achieved in a trivial way and corresponds
to a powerless predictor.b

aWe used human mRNA sequences listed in RefSeq9 for this computation.
bWith TP denoting the number of true positives and FP , TN , FN correspondingly, the
sensitivity is defined as TP

TP+FN
, and the specificity is defined as TP

TP+FP
. Therefore, a

predictor selecting all candidates as positives has score 0.5.



2.3 Evaluating the Intron Predictor
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Figure 4. The probability function
for short intron predictions.

After training the intron predictor on two
thirds of the mRNA data set, we use the re-
mainder of the data set to evaluate the pre-
dictor. We compute the specificity of pre-
dictions with respect to the score as shown
in Figure 4. That means for each score s,
we compute the ratio of the number of real
introns scoring above s and the total num-
ber of predictions scoring above s. This ra-
tio can be viewed as the probability that a
predicted intron candidate of score s is in
fact an intron. For very high scores, the
function shows a minor instability, because
such scores are very rare.

2.4 Simulated Intrasplicing

The intrasplicing procedure recursively searches for the highest scoring in-
traintron candidate within the sequence of a long intron and cuts out the
region of this candidate until the remainder of the long intron becomes short
enough. The reason for selecting only the highest scoring candidate at a time
is that non-overlapping candidates are not affected by the cutting and can
still be selected in a later step. Since overlapping candidates cannot be se-
lected later, it would be an interesting approach to try different possibilities,
but a computation of all possibilities is not feasible. Therefore, choosing the
candidate with the highest likelihood is a straightforward way around this
problem.

The main parameters of this procedure are the degree to which the long
intron is shortened, and the maximum length of short intron predictions.
While predicting longer introns promises an easier intrasplicing, increasing
the maximum length would limit the quality of intrasplicing predictions, since
the accuracy of short intron predictions would decrease, as seen in Figure 3.

We also generated several different sequences to do a comparison of the
results. For each long intron, we generated sequences of the same length to
exclude the influence of sequence lengths. The sequences were generated from
Markov Chain models of exon sequences, intron sequences, gene sequences,
and intergenic sequences. Markov Chains are widely used to model DNA
sequences5. In most computations, we used fifth-order Markov Chains, but we
also evaluated the influence of the order of the Markov Chains (see Results).



Furthermore, we concatenated the sequences of all exons of a species and
chose random substrings of this sequence of length equal to the particular
long intron. Finally, we made use of a 0th-order Markov model of the whole
available genomic data, i.e. using the base content of the genome as the only
information for sequence generation.

In order to analyze the interior sequence of long introns only, influence of
the 5’ and 3’ splice sites of the long intron had to be excluded. Therefore, the
first 8 characters and the last 20 characters of each sequence were not used
by our intrasplicing procedure. These values correspond to the length of the
intron part of the splice sites as used in Lim and Burge8.

We used data of the Ensembl database7 for all of the computationsb.
The Markov Chain models of intergenic DNA were calculated only for human
using GenBank1 data (December 2001). Most of the computations were also
performed using mRNA sequences from GenBank, which are listed in the
RefSeq9 database, but the results did not show significant differences to the
results derived from Ensembl data. Only the Ensembl results are presented
here.

The minimum length for long introns was set to 10,000 bases for all com-
putations concerning a single intron. We excluded long introns with more than
0.5% of non-acgt-characters or more than 20 non-acgt-characters within a
part of 100 characters from the analysis. Furthermore, to avoid the influence
of characters other than a,c,g,t in the sequence data, we replaced each such
character in a random way by one of the nucleotide characters it represents.

The number of long introns meeting the above criteria was 6468 for hu-
man, 330 for mouse, 71 for fly and 31 for zebrafish. For fly and zebrafish, no
long intron was excluded by our criteria, but for mouse the number of ruled
out long introns was very high. Therefore, 3% of non-acgt-characters were al-
lowed and the 100-bases-criteria was skipped for mouse in some computations
(see Results) yielding a set of 1052 long introns.

The computation was conducted using a PC cluster with 64 Pentium4
CPUs with 2 GHz for about two weeks.

3 Results

3.1 Analysis of Human Sequences

We applied the intrasplicing procedure to all known human long introns meet-
ing the criteria described in Methods. Figure 5 shows the distribution of prob-

bH. sapiens release 4.28, M. musculus release 4.1, D. melanogaster release 4.3, D. rerio
release 4.06.
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Figure 5. Comparison of probability distributions of various sequences, at least 60% of long
introns are removed by simulated intrasplicing.

abilities of putative intraintrons for human. Each line represents one type of
sequence. “MC” abbreviates Markov Chain. The sequences clearly fall in
two distinct groups. One group consists of long intron sequences, the Markov
Chain models for introns, genes, and intergenic sequences. The other group
contains sequences from both real and Markov modeled exons, and the 0th-
order Markov Chain of the genome. Therefore, long introns as well as the
Markov Models for introns and genes show a clearly different behavior than
the sequences in the second group. Since the major part of genes is consti-
tuted by introns, it is not surprising, that the Markov Models for introns and
genes fall in the same group. Interestingly, the Markov Model for intergenic
sequences also falls in the same group, though it shows differences to the other
three members of the first group (orange line). The reason may be, that the
splicing signal is weak enough to allow many sufficiently strong splice sites to
occur in non-coding regions. This would imply that the splicing process can
be stable against the insertion of intergenic sequences into introns.

Since the 0th-order Markov Model contains the nucleotide frequencies as
the only information, it can be considered as a baseline for comparison with
the other sequences. Surprisingly, exons as well as their Markov Model achieve
only a very slight distinction from this baseline.

Figure 6 shows the average probability of intraintrons as a function of the
parameter for stopping the intrasplicing procedure. This parameter specifies
the percentage of the length of the original intron which is to be left. Therefore
0.7 indicates, that 30% of the intron have to be removed, while in the strictest
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Figure 6. Average probability of intraintrons, (a) with intron composition score, (b) without
intron composition score, the maximum length of intraintrons is set to 250.

case 90% are to be removed. The left graph shows the same clustering as we
observed in Figure 5. Since the intron prediction program we used includes
an intron composition score, we asked whether this might be the explanation
for our observation. But as shown in the right graph, the general trends do
not change, even if the intron composition score is not used.

Interestingly, while the Markov Model for exons achieves significantly
higher intraintron probabilities than the sequences consisting of real exons, the
Markov Model for introns does not separate from the intron sequences. This
indicates that a fifth-order Markov Chain is a very good model for introns.

We also observe that the Markov Model for intergenic DNA shows a small
difference to the intron sequences, if compared to the gap between the two
groups. This could be explained, if introns have evolved from intergenic DNA
and have further developed since then.
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The influence of the order of the
Markov Chain is shown in Figure 7,
the value for long introns is shown for
comparison. The maximum length
of intraintrons is set to 250, and
the long introns are removed to at
least 60%. The 0th-order models
all have low intraintron probabilities,
but the 0th-order model for exonic
sequences separates from intergenic
and intronic sequences. The values
for higher order Markov Chains of in-

trons and intergenic DNA are converging towards the value for long introns,



but the values for Markov Chains of exonic sequences stay on the same level.
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Figure 8. Length distributions of intraintrons, data points and smooth functions, (a) hu-
man, (b) mouse. At least 75% of long introns are removed by simulated intrasplicing.

In Figure 8, we show the distribution of lengths of intraintrons. We
observe that except for long introns all sequences show a length distribution
of the same shape as the length score we used for intraintron predictions (see
Figure 2). But the long intron sequences show a different trend favoring longer
intraintrons. That means that the long introns show a distinction to all other
sequences used. This is an indication of a structure of intraintrons in long
introns. It would be very interesting to see whether this trend continues for
a longer range of the x-axis, but in lack of a powerful predictor of introns
longer than 300 or 400 bases, our sight is limited to this range. Therefore,
we suggest that this statistic shows a meaningful trend, which could be seen
more clearly if such a predictor would be at hand.

For mouse, this observation cannot be made as clearly, but the amount
of complete long intron sequences for mouse is still limited: using the criteria
described in Methods, only 330 long introns were selected.

3.2 Comparison between Species
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Figure 9. Species comparison of average
intraintron probabilities, at least 75% of
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We also applied the intrasplicing pro-
cedure to the long intron data sets
of mouse, fly and zebrafish described
in Methods. Figure 9 shows the av-
erage intraintron probability of four
species as a function of the up-
per bound for intraintron prediction.
The curve for zebrafish shows a dif-
ferent degree of variation, probably
due to the low amount of long intron



sequence data for zebrafish.c The overall tendency observed for human and
mouse is an increase in intraintron probability, when the upper bound is in-
creased from 125 to 150 bases, but further increase of the maximum length
does not yield higher intraintron probabilities, which can be explained by the
rapid drop of prediction accuracy for longer introns as shown in Figure 3.

It is interesting that fly shows higher intraintron probabilities than other
species, because recursive splicing has been reported for fly6.

3.3 Intrasplicing Simulation on Human Genes
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Figure 10. Comparison of percentage left after intrasplicing simulation.

To evaluate the plausibility of the intrasplicing model as a model for
splicing in general, we applied it to whole genes, i.e., instead of trying to
remove large parts of long introns, we used complete genes as an input to
our intrasplicing procedure and examined to which degree exons and introns
are removed for different threshold values. Figure 10 (a) shows the results
when applying our intrasplicing procedure to each gene sequence until all
putative intraintrons (maximum length 175) scoring above a threshold are
removed from the sequence. Figure 10 (b) shows the percentage of intron/exon
sequences remaining, as a function of the percentage of the remaining intron
sequence.

Our results show that exons are highly stable under intrasplicing. Thus,
our model may suggest that simply everything (including introns and inter-
genic regions) except exons can be removed through intrasplicing.

cFor this computation the dataset of 1052 mouse long introns was used. A computation
on the set of 330 long introns with less non-acgt-characters did not yield a significantly
different result.



4 Discussion

We have introduced a new model for the splicing of long introns and developed
a new computational method in order to analyze whether this model might
be appropriate or not. The results show a large difference in the average
probability of putative intraintrons between two groups of sequences. Also
the shape of the probability distributions is distinctive between both groups.
This raises the possibility that splicing of intraintrons precedes and facilitates
the splicing of the long intron itself, and that long introns contain a structure
of (possibly nested) intraintrons.

Though intergenic DNA and long introns fall into the same group, their
average intraintron probabilities and the length distribution of intraintrons
show differences. This could be explained, if long introns have evolved from
intergenic sequences. The observed intraintron length distribution for intrain-
trons shows a preference for longer intraintrons. A possible explanation is that
longer intraintrons may facilitate a faster intrasplicing process.

The strength of our analysis method is limited by some different factors.
First, the current intron prediction programs are powerful only for very short
introns, and also these predictors are far from perfect. But in fact, if the
intrasplicing model is the true splicing model for at least some introns, the
model itself would explain the weakness of intron predictors: if intraintrons
are (correctly) predicted as introns by an intron predictor, these predictions
would be nevertheless classified as wrong predictions, because there is no data
about intraintrons. This mistake would happen increasingly often for longer
introns, since they are more likely to harbour intraintrons, which could explain
the steep falling of the prediction accuracy (Figure 3).

Predictors making use of the context of introns within genes cannot be
used for the analysis of intrasplicing. Therefore, this work shows that stronger
intron prediction programs, which do not make use of the context information,
would be very useful. This may become reality in the future, as the knowledge
of splicing enhancers and splicing inhibitors grows.

We also note that if there are different ways for the splicing of long introns,
the significance of our results may be limited by the usage of the whole set of
long introns. Also the availability of long intron sequences is still limited for
species other than human.

Another approach to improve the results of this work might be to try
different ways of selecting intraintrons out of the long intron. For example,
it can be thought that some intraintrons are already spliced before the long
intron is completely transcribed. In this case, a procedure starting at the 5’
region and progressing to the 3’ region might yield stronger evidence.



In this work, we presented a computational approach to the known prob-
lem of long intron splicing. The intrasplicing model we proposed seems to
be a likely explanation for long intron splicing and is worth to be examined.
Since in vitro experiments on intermediate splicing products of long introns
are presently difficult to conduct, there is the possibility that long introns
contain a structure of intraintrons, though there are no experimental results
supporting this hypothesis so far. The attractive model we proposed should
therefore be pursued more extensively.
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