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Associations between disease and marker alleles on chromosomes in populations
can arise as a consequence of historical forces such as mutation, selection and
genetic drift, and is referred to as “linkage disequilibrium” (LD). LD can be used
to estimate the map position of a disease mutation relative to a set of linked
markers, as well as to estimate other parameters of interest, such as mutation age.
Parametric methods for estimating the location of a disease mutation using marker
linkage disequilibrium in a sample of normal and affected individuals require a
detailed knowledge of population demography, and in particular require users to
specify the postulated age of a mutation and past population growth rates. A
new Bayesian method is presented for jointly estimating the position of a disease
mutation and its age. The method is illustrated using haplotype data for the cystic
fibrosis ∆F508 mutation in europe and the DTD mutation in Finland. It is shown
that, for these datasets, the posterior probability distribution of disease mutation
location is insensitive to the population growth rate when the model is averaged
over possible mutation ages using a prior probability distribution for the mutation
age based on the population frequency of the disease mutation. Fewer assumptions
are therefore needed for parametric LD mapping.

1 Introduction

The term “linkage disequilibrium” (LD) describes a population distribution of
alleles (at two or more loci) among chromosomes that is not independent 1. In
other words, alleles at different loci co-occur on chromosomes at a frequency
that does not equal the product of the marginal frequencies of the alleles.
One mechanism by which LD commonly arises is mutation. A variant allele
at a locus arises by mutation on a particular chromosome (bearing specific
alleles at other linked loci). Initially, the new allele is found exclusively on
this chromosomal background, but over time the association of the new allele
with alleles present at other loci on the ancestral chromosome breaks down
due to recombination and mutation. Under certain conditions, the association
among alleles at the linked loci may disappear and alleles will occur together
on chromosomes in proportion to the product of the marginal frequency of
each allele, a situation referred to as “linkage equilibrium.”

The extent of linkage disequilibrium (LD) among alleles in a population
is determined by many factors including the map distances among loci, the
rates of mutation at the loci, natural selection, and genetic drift (population



demographic history, etc). Recently, human geneticists have begun to exploit
linkage disequilibrium to map disease mutations 2, to estimate the ages of
known mutations 3, and to reconstruct ancient demographic events 4.

1.1 Linkage disequilibrium gene mapping

One of the most important practical applications of linkage disequilibrium
studies in humans is to map the positions of mutations that cause disease
2. Linkage mapping methods for finding mutation locations using patterns
of marker-disease co-segregation on pedigrees have limited resolution, usually
less than 1 cM (roughly 1 Mb). To identify a disease mutation by positional
cloning greater resolution is needed. LD mapping methods can have much
greater resolution than linkage analysis because the methods exploit recombi-
nation events occurring in the extended genealogy relating a random sample of
individuals from a population. The population genealogy will typically involve
thousands of meioses versus a few hundred, at most, for linkage analysis using
even very large pedigrees.

1.2 Estimating mutation ages

Several recent papers have proposed methods for estimating the age of a muta-
tion with a known location using information from variation at linked genetic
markers and the population frequency of the mutation 3. These methods typ-
ically assume that the location of the mutation is known relative to a set of
linked markers. Although it has been suggested that it might be possible to
jointly estimate mutation ages and locations 5 the complexity of the analysis
is such that this has so far not been achieved, except in simplified cases which
are generally unrealistic for human populations 6.

1.3 Joint estimation of mutation age and location

In this paper, we explore the use of LD to map genes in the face of an un-
known disease allele age and uncertain past population growth rates using
Bayesian Markov chain Monte Carlo (MCMC) methods. Previous methods
for LD mapping have assumed that one or more of the mutation age, loca-
tion, or population growth rate parameters are known 7,8,9,10,11 or have made
unrealistic assumptions about population demography 12,13,6. Here, we show
that by averaging over the possible age of a disease mutation, using a prior age
distribution based on the present population frequency, estimates of mutation
location may be obtained that are quite insensitive to the population growth



rate; this is encouraging since the past growth rates are usually poorly known
and a less parameterized model is therefore desirable.

2 Theory

Following standard terminology 1 we define a genetic locus to be a specific
physical position in the nucleotide sequence of a chromosome. An allele is de-
fined to be a variant of a locus with one or more nucleotides altered by point
mutation, nucleotide insertion or deletion, etc. Define X to be a matrix of
haplotypes for a specified set of marker loci (i.e., phase-determined alleles for
the markers) for a sample of chromosomes bearing a disease mutation of un-
known location. Let Z be a matrix of the marker haplotypes from a random
(ethnically matched) sample of normal individuals. Define p to be a matrix
of the (unknown) marker allele frequencies in the population of normal chro-
mosomes. Let τ be the unobserved ancestral genealogy underlying the sample
of disease chromosomes, Y

−0 be a matrix of the ancestral haplotypes in the
genealogy, Y0 be the (unknown) ancestral haplotype on which the disease mu-
tation first arose, and t0 be the (unknown) age of the mutation. Define θ to
be the position (in Morgans) of the mutation relative to marker locus 1, Θ to
be a vector of genetic parameters, such as the map distances among marker
loci, etc, and Λ to be a vector of the demographic parameters, including the
fraction of the population of disease chromosomes sampled, f , and the popula-
tion growth rate, r (assuming exponential growth). In this paper, we consider
haplotype data but our method also can be used with genotype data under
simple models of inheritance 14

2.1 Likelihood and prior distributions of parameters

The method we present is an extension of the Bayesian LD mapping method of
Rannala and Reeve11,14. Details of the likelihood and the priors for parameters
other than t0 can be found in the earlier papers. Here, we focus on the addition
of a prior for t0 and the steps involved in integrating over this prior. The
likelihood of the sampled disease haplotypes and the (unobserved) ancestral
haplotypes is

f(X,Y
−0|θ, Θ, τ,p,Y0, t0).

The prior probability density that we use for t0 is proportional to the likelihood
of the observed sample frequency, i, of the disease allele. From Slatkin and
Rannala 15 this is

f(t0|i, r, N, q) ∝

{

1− e−rt0

1− e−rt0 + e−rt0(2Nqr/i)

}i−1
1

1− i/(2Nqr) + ert0/(2r)
,



where we have substituted f = i/(Nq), where i is the number of disease chro-
mosomes in the sample, N is the population size and q is the relative population
frequency of disease chromosomes (e.g., estimated based on disease incidence
and mode of inheritance). The above equation is sometimes multiplied by an
additional term, e−rt0 to take account of the decreased influx of mutations at
time t0 in the past due to the smaller past population size under a model of
exponential population growth16 but this addition has little effect on estimates
of disease location for the examples we present below.

2.2 Posterior distribution of parameters

The joint posterior density of the parameters is given by

f(θ,Y, τ,p, t0|X,Z, Θ, N, q, r, i) =

f(X,Y
−0|θ, Θ, τ,p,Y0, t0)f(τ |N, q, r)f(Y0 |p)f(Z|p)f(θ)f(p)f(t0|i, N, q, r)

f(X,Z|Θ, N, q, r, i)
,

where the priors for the variables other than t0 are as given in Rannala and
Reeve 11. We used a uniform prior for the position of the disease mutation,
θ, although a prior based on an annotated human genome sequence and a
mutation database could also have been used 11.

Markov chain Monte Carlo (MCMC) methods were used to generate the
joint posterior density of the parameters in the above equation based on a
Metropolis-Hastings algorithm. The basic principle of MCMC analysis is to
simulate observations from a Markov chain with a stationary distribution that
is the joint posterior probability density of the parameters. The joint and
marginal posterior densities can be estimated by running this chain on a com-
puter until it converges and then sampling parameter values from the chain at
equal intervals. The above method has been implemented in version 2.2 of the
LD mapping program DMLE+ available for downloading from dmle.org.

3 Examples

To illustrate the method, we apply it to two data sets for which haplotypes
are available and a disease mutation has been cloned. This will allow us to
directly test the accuracy of the method using relevant empirical data. The
first data set that we examine is for a common mutation causing cystic fibrosis
(CF) in europeans, the ∆F508 mutation; the second data set we examine is
for a founder mutation in Finland that causes diastrophic dysplasia (DTD).
All analyses were carried out using DMLE+ version 2.2.



3.1 Cystic fibrosis ∆F508 mutation in Europe

The ∆F508 mutation is the most common cause of CF in european popu-
lations, accounting for roughly 70 percent of CF mutations. The data set
we analyze was originally used to map the CF gene 17. In total, 63 chromo-
somes from this data set carry the ∆F508 mutation. We excluded one of these
chromosomes from our analysis as it appears to belong to a very different hap-
logroup and possibly represents a recurrent mutation. The chromosomes were
typed for 23 biallelic markers (RFLPs) that span 1.8 Mb, with the mutation
located 880 kb from marker 1. The two closest markers to the mutation are
at 869.8 and 889.8 kb, respectively. Haplotype phase was inferred via link-
age analysis of relatives of probands. Approximately 6 percent of the markers
in the disease chromosomes are missing data; we integrate over the missing
markers using data augmentation in our algorithm 14.

Figure 1: The posterior probability density of the position, θ, of the CF mutation ∆F508
relative to marker 1. A total of 23 markers were typed for 62 disease chromosomes carrying
the ∆F508 mutation. Separate analyses were carried out using two different population
growth rates r = 0.05 (dashed line) and r = 0.02 (solid line). The 95 percent credible set
of values for each posterior density is indicated by the (dashed and solid) horizontal lines
at the bottom of the figure. The true position of the mutation (assuming 1 cM = 1 Mb)
is indicated by the vertical line. The posterior density is little affected by the growth rate.
The program is simultaneously estimating the age of the mutation, t0.

The results of the analysis are shown in Figures 1 and 2. Using either a
growth rate of r = 0.02 or r = 0.05 (r = 0.05 is often assumed to be the recent
growth rate for european populations) the 95 percent credible set for θ, the



Figure 2: The posterior probability density of the age, t0, of the CF mutation ∆F508. A
total of 23 markers were typed for 62 disease chromosomes carrying the ∆F508 mutation.
Separate analyses were carried out using two different population growth rates r = 0.05
(dashed line) and r = 0.02 (solid line). The 95 percent credible set of values for each
posterior density is indicated by the (dashed and solid) horizontal lines at the bottom of
the figure. The posterior density is little affected by the growth rate. The program is
simultaneously estimating the position of the mutation, θ.

position of the mutation relative to marker 1, ranges from roughly .65 cM to
either 0.9 cM (for r = 0.02) or 0.925 cM (for r = 0.05) as shown in Figure 1.
In both cases, the true position of the mutation (0.88 cM assuming 1 cM = 1
Mb) is bracketed by the 95 percent credible set. The growth rate parameters
have a much larger effect on the posterior density of the allele age parameter,
t0 as shown in Figure 2. In that case, the 95 percent credible set is (200,310),
for r = 0.05, and is (350,700) for r = 0.02 (in units of generations). This
indicates that estimates of allele ages are highly sensitive to inferred population
growth rates but estimates of mutation location are much less sensitive to the
population growth rate if one integrates over the mutation age.

3.2 Diastrophic dysplasia mutation in Finland

DTD is an autosomal recessive disease with an unusually high frequency (roughly
2 percent are carriers) in the Finnish population, probably due to a founder
event that occurred about 2,000 years ago ( 100 generations). We used 5 mark-
ers (2 RFLPs and 3 microsatellites) from an unpublished data set provided by



J. Hästbacka that was used to clone the DTD gene 18. This data set was pre-
viously analyzed using our DMLE+ program and fixing the age of t0 to be 100
generations11. The data set is comprised of 148 disease chromosomes typed for
the 5 markers and 126 controls. There are no missing marker genotypes. The
five markers span 20 kb with the mutation located roughly 86 kb centromeric
to marker 1. Haplotype phase was inferred via linkage analysis of relatives
of probands. A growth rate of r = 0.085 was used based on records of the
demographic expansion in Finland 11.

Figure 3: The posterior probability density of the position, θ, of the DTD mutation relative
to marker 1. A total of 5 markers were typed for 148 disease chromosomes carrying the DTD
mutation. Analyses were carried out using a population growth rate of r = 0.085. The 95
percent credible set of values is indicated by the horizontal line at the bottom of the figure.
The true position of the mutation (assuming 1 cM = 1 Mb) is indicated by the vertical line.
the program is simultaneously estimating the age of the mutation, t0.

The results of the analysis are shown in Figures 3 and 4. Integrating
over the allele age has little effect on the posterior density of θ in this case.
Figure 3 shows the posterior density of θ. This density is nearly identical to
the posterior density that is obtained by assuming t0 = 100 (see e.g., Figure 4
of Rannala and Reeve 11). As in the earlier analysis, the 95 percent credible
set for the location of the DTD mutation includes the true location (assuming
1 cM = 1 Mb). Figure 4 shows the posterior density of the mutation age.
This density has a mode of roughly 80 generations with a 95 percent credible
set of ages ranging from 65 generations to 105 generations; this range includes
the postulated time of the founding of the Finnish population roughly 100



Figure 4: The posterior probability density of the age, t0, of the DTD mutation . A total of
5 markers were typed for 148 disease chromosomes carrying the DTD mutation. Analyses
were carried out using a population growth rate of r = 0.085 . The 95 percent credible set
of values for the posterior density is indicated by the horizontal line at the bottom of the
figure. The program is simultaneously estimating the position of the mutation, θ.

generations ago supporting the idea that the mutation was introduced at the
founding event. Thus, the analysis of the DTD data set supports the idea
that it is possible to jointly estimate mutation location and age as both the
estimates obtained in this case appear quite reasonable.

4 Discussion

In this paper, we have explored the feasibility of jointly estimating the age
of a disease mutation and its location using multilocus marker haplotypes for
a sample of chromosomes bearing a disease mutation and a sample of nor-
mal chromosomes. We have used MCMC methods, extending our previously
developed LD mapping program DMLE+. In the case of the two data sets an-
alyzed, one for the DTD mutation in Finland and another for the CF ∆F508
mutation, the method performs well, allowing joint estimates of the two pa-
rameters and leading to reasonable results for mutation ages and successfully
locating the disease mutation with 95 percent probability, One new finding
that is particularly encouraging is that the posterior density of the mutation
location appears insensitive to the (unknown) population growth rate when



the method integrates over possible allele ages. Thus, fewer assumptions may
be needed for parametric LD-based disease mutation mapping than was previ-
ously thought. The estimate of mutation age, on the other hand, appears quite
sensitive to the assumed growth rate and should therefore be interpreted with
greater caution in future, perhaps instead considering values for the estimated
mutation age based on a range of plausible population growth rates.
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