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We recently developed an approach for testing the accuracy of network inference
algorithms by applying them to biologically realistic simulations with known network
topology. Here, we seek to determine the degree to which the network topology and data
sampling regime influence the ability of our Bayesian network inference algorithm,
NETWORKINFERENCE, to recover gene regulatory networks. NETWORKINFERENCE

performed well at recovering feedback loops and multiple targets of a regulator with small
amounts of data, but required more data to recover multiple regulators of a gene. When
collecting the same number of data samples at different intervals from the system, the best
recovery was produced by sampling intervals long enough such that sampling covered
propagation of regulation through the network but not so long such that intervals missed
internal dynamics. These results further elucidate the possibilities and limitations of network
inference based on biological data.

1 Introduction

Large amounts of data on the expression of genes have recently become available
due to advances in gene expression array analysis. Functional network inference
algorithms have begun to be used to draw causal information from this correlational
data, producing networks representing putative regulatory interactions of hundreds to
thousands of genes (for an early review, see [1]). However, a difficulty arises in
evaluating the success of these algorithms, because no high throughput method of
assessing genetic regulatory influences yet exists. To experimentally validate all
links in even a single putative network, using antisense blocking or other methods,
could take impractically long given current technology.

In Smith et al. [2] and Jarvis et al. [3] we developed an approach to circumvent
this problem, by creating a biologically realistic computer simulation of a system
in which we make and know all the rules. We run the simulation representing the
behaving organism and sample data from it as one would in a real biological
experiment. We then present this sampled data to network inference algorithms. We
compare putative networks produced by the algorithms to the known truth
underlying the simulation, and thus evaluate the success of the algorithms.
Additionally, because we sample data from the simulation, we can also use our
framework to evaluate the effect of differing sampling regimes on the output of the



inference algorithms. This ability has implications for designing biological
experiments for use with network inference algorithms1.

In this paper, we use our approach to evaluate the degree to which the recovery
performance of our Bayesian network inference algorithm depends on the topology
of the network being recovered. In particular, we examine various network
topologies exhibiting features commonly found in genetic regulatory pathways like
feedback loops, multiple regulators of a single gene, and multiple targets of a single
regulator. We also evaluate its success on two complex pathways of biologically
realistic topology, a gene cascade and a convergence network. In addition, we use our
approach to further examine the effect of sampling regime on network inference
results. Previously, we showed that sampling at an interval that matches underlying
system dynamics produces considerably better results than sampling with an interval
twice as long [2]. Here, we investigate the issue more closely to determine the
extent of the usable range of sampling intervals.

2 Approach and Methods

2.1 Simulator

Our simulator, BRAINSIM, is based on the vocal communication system of the
songbird brain [3]. Songbirds are vocal learners, along with only five other animal
groups, including humans, and thus provide a model system for understanding
human language [5]. Songbird vocal communication has been studied extensively at
the behavioral, electrophysiological, neuroanatomical, and molecular levels of
organization [6]. This simulator is part of an integrative project that aims to
synthesize information across multiple levels of biological organization [3]. As
vocal learning represents an integration of motor (singing) and sensory (hearing)
systems, such synthesis in the songbird is expected to have implications for a wide
variety of brain systems.

BRAINSIM is programmed in C++ and simulates behavior, electrophysiological
activity in distinct brain regions, and gene expression in these brain regions for six
subject birds (Fig. 1). A detailed account of BRAINSIM’s implementation is found
in Smith et al. [2]. Briefly, the simulation progresses in discrete time steps, each
step representing approximately one minute. Behavior of the animal takes one of
two values, 0 or 1, which correspond to off-on states of a behavior, such as silence
and singing. At each time step, activity in four brain regions ranges from 0-400 Hz
to simulate recordings from extracellular multi-unit electrodes [7], and is correlated

                                                
1After this paper was submitted, an independent generation of a similar approach by Zak et al. [4] was
brought to our attention, using a different type of simulation. Zak et al. evaluate linear, linear-log, and
linear-squashing network inference algorithms.



either positively or negatively with
behavior. Activity in the fifth region
wanders randomly in the same range. Three
factors influence gene expression level,
whose regulatory network is assumed to be
the same in all brain regions. First, a
returning function moves each gene towards
its constitutive expression level,
representing degradation of mRNA or return
to transcription after suppression. Second,
for genes in a pathway, gene regulation is
implemented by adding (for up-regulation)
or subtracting (for down-regulation) a
proportion of the regulator’s expression
level in the previous time step. This
proportion is set at 0.2 but can be varied,

and is the influence of a regulator on its target. Genes not in a pathway add or
subtract a random amount from their previous expression level to simulate influence
from other unmeasured processes. Third, a final random amount is added or
subtracted from all genes to simulate stochasticity in gene expression [8]. All genes
have a minimum possible expression level of 0 and a maximum of 50, in arbitrary
units.

For this paper, the simulation began with behavior at 0 and was run for 250
time steps to stabilize the system. Behavior then switched to 1 for 50 time steps,
and back to 0 for 100 more time steps. This represents a likely experimental
situation where an animal would perform a behavior, such as singing, for a set
amount of time in response to some stimulus, such as presentation of a potential
mate.

2.2 Network inference algorithm

Our inference algorithm, NETWORKINFERENCE, described in detail previously [2,9],
is written in C and uses simulated annealing to identify a high scoring network from
data using a discrete Bayesian network framework. A Bayesian network is a graph-
based representation of a joint probability distribution, with nodes connected by
links that represent conditional dependence. A link from one node to another
indicates that the child node is conditionally dependent on the parent node. Unlike
many other network inference frameworks, Bayesian networks are capable of
representing combinatorial, nonlinear, and stochastic relationships, such as are often
found in biological systems. Additionally, due to their probabilistic nature, Bayesian
networks can handle noisy data [10]. While static Bayesian networks are limited to
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Figure 1. Overview of BRAINSIM. Each
simulated data set consists of behavior,
activity in five brain regions, and expression
levels of 100 genes in each region, for six
subjects. A small fraction of the 100 genes
are regulated as part of a pathway; the
remainder wander randomly. Specific
pathway topologies we considered are
found in Fig. 2. Figure modified from [2].



having no cycles, regulatory cycles like those found in biological systems can be
handled using dynamic Bayesian networks (DBN). A DBN represents all elements at
time t and t+∆t, with controlling elements at time t having links to controlled
elements at time t+∆t. For example, a cyclic interaction in time between nodes
A and B can be represented acyclically in a DBN using links from A(t)→B(t+∆t) and
B(t)→A(t+∆t) [11]. NETWORKINFERENCE is designed to recover DBNs from pairs
of data points, disallowing links that flow backwards in time, i.e., from time t+∆t
to time t [2].

2.3 Genetic regulatory network topology

We wished to examine the performance of our algorithm on three types of
topologies found in genetic regulatory pathways: (1) multiple regulator genes of a
single target gene, (2) regulatory loops, and (3) multiple targets of a single
regulator. We simulated networks to test each topology, and also tested multiple
regulators and multiple targets in two large, more biologically realistic topologies.

We considered two types of multiple regulators, one where two inputs to one
gene were governed by pathways originating from a common variable and were thus
correlated, and another where the two inputs were governed by uncorrelated
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Figure 2. Genetic regulatory network topologies. Different topologies for electrical-genetic
regulation pathways. All topologies contain 100 genes, with those not in the pathway wandering
randomly. a. Genes 3 and 5 serve as correlated regulators of gene 6. b. Genes 3 and 5 serve as
uncorrelated regulators of gene 6, and genes 1, 2, and 3 from a regulatory loop. c. Genes 7-10 serve
as multiple targets of gene 6. d. A regulatory cascade, with increasing branches of influence from
gene 1. e. A convergence network, with regulatory paths of varying lengths of regulation
converging on a single target.



pathways. The correlated regulators were
produced using the topology we
developed previously [2], where gene 6’s
regulators, 3 and 5, are both downstream
of activity (Fig. 2a). Uncorrelated
regulators of gene 6 were created by
modifying the topology of this network
so that genes 1, 2, and 3 formed a self-
generating loop uncorrelated with activity
(Fig. 2b). With multiple regulators, the
manner of combining their influences on
the target needs to be considered. We
simulated coordinated influence,

which models a situation where regulation of the target gene requires a molecular
complex formed from all regulators, and independent influence, which models a
situation where regulation of the target gene requires any of the regulators singly,
and their influence is additive (Fig. 3) [12]. For independent influences, we tested
two situations: one where the two influences on gene 6 were equal to the other
influences in the network, i.e. 0.2, such that each link was as “strong” as any other,
but also such that gene 6’s maximum possible up-regulation was twice as fast as
any other gene; and another where these influences were 0.1, making gene 6’s
dynamics equal to other genes in the network but making the influences from each
of its regulators “weaker”. All other links in the network had influences of 0.2.

The self-generating loop with genes 1, 2, and 3 in the topology for uncorrelated
multiple parents served as the feedback loop for testing (Fig. 2b).

To test multiple targets of a single regulator, we simulated a topology where
gene 6 directly regulated four other genes (Fig. 2c). The multiple regulators in this
topology were implemented with the coordinated influence rule.

Finally, we tested two complex pathways that were designed to be more
biologically realistic: a cascade, which contains multiple targets of single regulators
(Fig. 2d), and a convergence network, which contains multiple regulators of single
targets (Fig. 2e). The cascade represents an expected topology, such as in a signal
transduction pathway that might be triggered by activity in a neuron [12,13]. The
convergence network represents another expected topology, where a single gene is
regulated by multiple branches with different path lengths from the original
triggering activity [12,13]. All multiple regulators in the convergence network were
implemented with the coordinated influence rule.

2.4 Sampling regime

These network topologies were sampled using the regime described in [2], sampling

Figure 3. Coordinated versus independent
influence. In the case of coordinated
influence, both regulators A and B must bind
to the promoter region (boxed area) to
activate transcription of the gene (right of
boxed area, transcription noted by arrow). In
the independent case, either A or B alone is
capable of activating transcription but
transcription is elevated with both present
(additive effect, thicker arrow).
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at an interval that intuitively matched the system, every 5 time steps, following the
reasoning that a 0.2 influence each time step leads to a full influence in 5 time
steps. Sampling began just before the animal started its behavior (value switched to
1), and covered the period of the behavior and an equal amount of time after its
cessation (value 0), for a total of 21 samples. We also investigated the effect of
varying the sampling interval, using the original regulatory topology (Fig. 2a). We
sampled at intervals of 1-4, 6-9, 15, 20, and 30 time steps, and examined these
along with previous results for intervals of 5 and 10. In order to maintain the same
number of data points across the behavior and its cessation, behavior length was
adjusted to the sampling interval. For example, when sampling at an interval of 3,
instead of behavior lasting for 50 time steps, behavior lasted 30 time steps; when
sampling at an interval of 15, behavior lasted 150 time steps. The simulation was
run long enough to collect 21 data points in each situation. This is experimentally
reasonable, as it possible to adjust the duration of stimulus presentation to an
animal or allow an animal to continue to perform its behavior.

2.5 Data generation and discretization

Each data set consisted of sampled data from a simulation containing six subjects.
This represents a biologically reasonable maximum sample size for gene expression
studies (21 time points x 6 animals per time point = 126 animals). Although not
expected to be carried out experimentatally, for statistical purposes we generated
multiple data sets to evaluate the robustness of the algorithm to random variation in
data with the same structure. Ten data sets were collected for each genetic network
topology and sampling interval, and presented to the network inference algorithm
independently.

Since NETWORKINFERENCE searches for discrete Bayesian networks, we must
present it with data that has been discretized. A smaller number of discrete states
reduces computational time and smooths out random noise; a larger number retains
more of the information present in the original data. We chose to use four
discretization levels as a balance. As in Smith et al. [2], we discretized activity and
gene expression levels into quartiles, with the lowest 25% of values being state 1,
the next 25% state 2, and so on.

2.6 Search settings and parameters

Because in this study we were interested in evaluating the ability of the
NETWORKINFERENCE algorithm to infer different types of genetic network
structures, we only presented the inference algorithm the task of determining
relationships between activity and gene expression within brain regions and not
between activity and behavior as in [2]. To infer a dynamic Bayesian network, we



presented to the algorithm pairs of sampled data points at time t and time t+∆t for
the activity and values of all 100 genes. The 21 sampled points thus corresponded to
20 sets of pairs. For the five brain regions of the six birds in each data set, this
resulted in 600=20x5x6 observations for 202 variables (activity plus 100 genes each
at two time points). NETWORKINFERENCE had no prior information about which
genes were regulated and which wandered randomly. NETWORKINFERENCE was run
approximately 160 minutes on each dataset on a 1GHz Pentium III CPU or 100
minutes on a 1.6GHz Athlon CPU, both running Linux. The algorithm searched an
average of 23.6 million structures (range 20.5-24.7 million) and found the best
scoring structure within the first 3.8 million on average (range 0.6-23.1 million).

3 Results

3.1 Influence of genetic regulatory network topology

We tested the ability of NETWORKINFERENCE to recover a network with coordinated
influence of correlated regulators in our previous report [2] and these results are
shown for comparison (Fig. 4, top left). As noted in [2], NETWORKINFERENCE
recovered nearly 100% of the topology, only missing one of two parents of gene 6.
When we simulated a network with independent influence of correlated regulators,
NETWORKINFERENCE performed well, but still did not recover the two parents and
instead linked a gene upstream of one of gene 6’s parents (gene 2) as the sole parent
for over half of the data sets, and its other parent (gene 5) as the sole parent in the
rest, for both influence amounts tested (Fig. 4, top right two graphs).

When testing coordinated influence from uncorrelated regulators, no parents
were recovered for gene 6 in most data sets (Fig. 4, bottom left). With independent
influences of genes 3 and 5 on gene 6 set at a weight of 0.2, gene 5 was found as
the parent in all 10 data sets. However, many unregulated genes were incorrectly
linked to the downstream genes in over half the data sets, a phenomenon that did not
occur in any other situation (Fig. 4, bottom center). With independent influences set
at 0.1, gene 5 was linked as a parent in 4 of 10 data sets (Fig. 4, bottom right).

The loop structure was recovered completely in 100% of the data sets tested
(Fig. 4, bottom graphs). Recovery of multiple targets was also highly successful
(Fig. 5).

NETWORKINFERENCE performed well in recovering the gene cascade, finding
most links with reasonable consistency (Fig. 6). It performed less well in recovering
the convergence network, only finding one parent of each gene with multiple
parents. This was usually the gene with the shortest path length from the original
influence at activity. When path length of multiple regulators was the same, it
found each in reasonably equal proportions of the data sets (Fig. 6).
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3.2 Influence of sampling regime

Fig. 7 shows recovery of the genetic network topology of Fig. 2a under different
sampling intervals. Recovery success deteriorates with sampling intervals greater
than 5, and gets worse as the interval increases beyond 10, the links jumping to
genes further and further downstream. Interval 1 shows little correct recovery;
however, 2, 3, and 4 perform similarly to 5. Quantitatively, we calculated (1) the
percentage of links of the true structure recovered by the algorithm, called the
“percent recovered”, and (2) the percentage of links in the recovered structure that
correspond to correct links of the true structure, called the “percent correct”. We then
compared these values from each sampling interval to the corresponding values for a
sample interval of 5, using a one-tailed student’s t-test, assuming that the interval 5
represented the best recovery possible.

Intervals 1 and 2 were not significantly different from interval 5 on percent
correct (t58=1.17, P=0.12 for both), but performed significantly worse on percent
recovered (t58≥16.77, P<0.0001). That is, the links they recovered were correct, but
they did not recover as many links. Intervals 3 and 4 were not significantly different
from 5 on either percent recovered or percent correct (t58≤1.27, P≥0.1). All intervals
6 and greater had significantly lower percent recovered and percent correct than
interval 5 (t58≥5.04, P<0.001) (Fig. 7).

With the two shortest intervals, 1 and 2, the behavior did not last long enough
for influences to propagate throughout the entire pathway. A failure to infer the
structure in this situation could be due to the lack of dynamics in the system, and
not lack of ability of the algorithm to find the structure. When tested in a situation
where the behavior persisted throughout the sampling period and influences were
able to propagate through the entire pathway, interval 2 performed similarly to 5 on
both measures (t58≤0.58, P≥0.3); however, interval 1 recovered significantly worse
than 5 on both measures (t58≥13.02, P<0.001) (Fig. 7). For interval 1, the
sampling period lasted only 21 time steps, and the latter elements in the pathway did
not receive their regulation until 30 or 40 time steps after a behavioral switch, thus
it is possible that it simply still did not observe enough of the network dynamics.
In order to determine whether an interval of 1 could recover the network given a long
enough sampling time, we created a single data set sampling 61 data points over
two behavioral switches. In this situation, all the links in the original network,
except the link from gene 3 to gene 6 not recovered in the other tests, were found
(not shown).

4 Discussion

We found that our inference algorithm, NETWORKINFERENCE, is successful at
recovering both multiple targets of a regulator and regulatory loops. Our algorithm
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Figure 7. Sampling recovery. Recovery for various sampling intervals from 1 to 30. Numbers next to
links represent number of data sets in which that link was found, as described in Fig. 4. Graphs with
intervals 5 and 10 are from [2], and show percentages instead of number of trials. Intervals 1 and 2
(persistent) represent the situation when the behavior persisted, in order to allow influence to
propagate through the entire pathway. Mean±SE of percent recovered and correct are shown for
each sampling type. Asterisks preceding the percent recovered and percent correct indicate that the
value is significantly different from those of interval 5. Compare with the true structure in Fig. 2a.



repeatedly proved its ability to find multiple targets of a regulator from different
topologies, in our 10 gene network, in the gene cascade, and in the convergence
network where it found all eight children of the activity node. Feedback regulatory
loops are a prominent feature in many biological systems, thus it is encouraging
that our algorithm correctly recovered the loop in 100% of the trials tested. It is
often the impression that Bayesian network algorithms should have difficulty
discovering loops in a structure, due to the acyclic nature of Bayesian networks.
However, use of a dynamic Bayesian network negated this problem.

NETWORKINFERENCE had difficulty, however, recovering multiple regulators
of a target gene in both the simple two-parent cases and the more complex
convergence network. Because Bayesian networks are designed to guard against over-
fitting, they naturally prefer simpler model structures to more complex ones. In the
absence of large amounts of data suggesting inclusion of multiple parents, models
with only one regulator as a parent often score better than models with both. As the
amount of data increases to support the inclusion of additional parents, however,
these edges appear. The amount of data needed varies, and is partially dependent on
the degree to which two properties are satisfied: Bayesian network recovery of
multiple parents works best when first, the value of the child depends on the value
of each parent independently, that is, the child’s value would be different were one or
the other of the parents not present; and second, many possible combinations of
parent states are observed [10].

In the case of correlated influence of multiple parents, these properties do not
hold. In addition, even in the case of independent influence, the regulated gene was
usually pushed in our simulations to its maximum or minimum expression level,
where regulation by either parent would be more than sufficient to keep it at its
extremum. As a result, only when the regulated gene was increasing or decreasing
could the influences of both parents be detected. Given that these properties fail to
hold in our simulations, it is to be expected that larger amounts of data would be
required to fully recover all links in these networks.

In Yu et al. [14], we examine the influence of the amount of data on network
recovery and demonstrate that more data enables a Bayesian network inference
algorithm to recover networks with larger numbers of parents. To test whether
NETWORKINFERENCE was capable of identifying multiple parents given larger
amounts of data in this context, we ran BRAINSIM with uncorrelated regulators
(Fig. 2b) of independent influence weight 0.1 through 20 behavioral transitions,
resulting in 401 sampled data points per bird region and thus 12,000 observations of
the 202 variables, unrealistic experimentally. NETWORKINFERENCE successfully
recovered all links in the underlying structure, including gene 3 and gene 5 as joint
parents of gene 6. We have not yet determined the minimum amount of data required
for successful recovery, and it will be interesting to see if the required amount is
close to the realm of experimental feasibility.



Our simulation framework enabled us to test in fine detail another important
experimental consideration, sampling regime. It is clear that sampling with an
interval too long for the system’s dynamics produces poor results. Even the
sampling interval of 6, whose recovery graph did not visually look much worse than
the intuitive choice of 5 (Fig. 7), performed significantly more poorly than the
shorter intervals in terms of both proportion recovered and proportion correct. It is
encouraging that the intervals of 2, 3, and 4 all performed as well as interval 5.
Interval 1 only observed enough of the network dynamics to recover the entire
system when the period of data sampling was lengthened. In Fig. 7, it can be seen
how those links most often recovered with the shorter sampling period were the first
links in the pathway. Thus an interval of 1 is not too short to recover the dynamics
of the system; however, it is too short to observe the entire system with a
biologically realistic number of data samples.

Our results suggest a strategy for finding the correct sampling regime for a
biological system by slowly increasing the interval. With increasing sampling
interval, first more distal elements of the pathway are recovered as the samples
expand to cover the dynamics of the entire system. Then there is a plateau when the
recovered graph does not change. When the sampling interval exceeds the internal
dynamics of the system, recovery begins to skip nodes in the graph with more and
more regularity, and links genes to further and further downstream elements. Thus
an interval somewhere on the plateau should be chosen.

In summary, our network inference evaluation approach is showing us the
promises and limitation of this algorithm, and thus, areas that need improvement.
Our approach also is informative on how to sample data from real biological
systems for use with network inference algorithms.
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