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SNP markers are becoming central for studying genetic determinants of complex
diseases. Large SNP data collected in such studies call for the development of
specialized analysis tools. We present methods for selecting sets of SNPs that can
be associated to sample properties in case/control studies. We also describe how
scoring and selection can be statistically tested. This is done at the single locus as
well as at the set level.

1 Introduction

Much of human DNA sequence variation is due to single nucleotide poly-

morphisms (SNPs), which are single base pair positions in genomic DNA at
which different sequence alternatives (alleles) exist in normal individuals in
some population(s). They are distinguished from rare sequence variations by
a requirement for the least abundant allele to have a frequency above 1% in
the population. The density of SNPs differ between different genomic regions
and different populations, but the overall frequency, for the global human
population, is estimated to be around 1 in every 200-600 base pairs. The
importance of SNPs in various areas of clinical medicine is gaining increasing
attention 14. Association studies, using polymorphic markers (such as SNPs),
in genome-wide scans have been advocated as the most efficient way of iden-
tifying genetic regions or genes implicated in common complex diseases and
traits 15. The collection of SNP variants/allelles that an individual possesses
in a number of key genes (termed his/her genotype over this set of loci) are
assumed to play an important role in conferring drug response variability.
Therefore, pharmacogenomics (and other) association studies are expected to
reveal sets of SNPs that separate phenotypically distinct classes of samples
according to their genotype signatures.



The sequencing of most of the human genome, the improved understand-
ing of this sequence, mostly of its coding part, and the fast development of
parallel measurement platforms such as microarrays are three important re-
cent advances in molecular biology. The combination of these advances drive
an increasing interest and activity in measuring gene expression profiles of
different cell types and disease stages or types as well as in understanding
the role of human sequence variation in influencing disease and treatment
susceptibility. Gene expression profiling data are accumulating at a fast rate
and the association between profile properties and clinical attributes is being
explored 13,5,10,17. Such studies reveal sets of genes that separate phenotypi-
cally distinct classes of samples according to their expression signatures. The
study of naturally occurring DNA sequence variations and the relationship
between genetic variants and clinically meaningful phenotypes precedes the
interest in expression profiling by many years. The recent developments men-
tioned above, however, bring them together and allow for the exploitation of
common characteristics and for the study of joint properties.

In this paper we describe statistical methods, visualization tools and al-
gorithmic approaches to questions that arise in pursuing correlations between
SNPs as well as sets of SNPs and sample properties. Some of the methods
draw on the common characteristics of expression data 2,4,3 and genotyping
data in case/control studies.

A pioneering effort to positionally clone a gene that affects susceptibility
to type 2 diabetes in Mexican Americans is reported by Horikawa et al 12.
The authors show that certain combinations of polymorphisms in the gene
encoding calpain-10 are associated with the risk of type 2 diabetes. By indi-
cating a role for a calpain protease, these findings propose a fundamentally
new hypothesis for diabetes research.

This study exemplifies the long process and the various stages involved
in finding genetic determinants of any clinically meaningful condition. Signif-
icant evidence for linkage of type 2 diabetes to the distal long arm of human
chromosome 2 was reported in 1996 by Hanis et al 9 and the locus was des-
ignated NIDDM1. The implicated region was large, with the 1-lod support
interval, which is expected to contain the responsible gene in 80 to 90% of the
cases, extending over 12 cM. In later studies this region was narrowed down to
7 cM, corresponding, in this case, to a relatively short span of 1.7 million base
pairs, rather than the expected 7 million a. Finding the causative gene(s) in
1.7 Mb of sequence is a difficult task: this particular interval contains at least

athe average ratio of physical distance to genetic distance across the human genome is
approximately 1 million base pairs per cM



7 known genes and 15 ESTs; none of these are obvious candidates. Horikawa
et al. 12 chose to screen polymorphisms in the region for association with
diabetes, relying on linkage disequilibrium (LD). Further investigation of the
results of the said screening led to genotyping 63 SNPs in a larger set of about
100 diabetic cases and controls. The authors applied simulation based statis-
tical tests to the results and implicated CAPN10 as associated with increased
risk of diabetes. We demonstrate our methods on data that further extends
this study, finding interactions between genes in different chromosomes and
identifying a specific set of SNPs and a specific genotype profile for these that
helps explain evidence for linkage in the CAPN10 region.

The main contribution of the current work is in providing methods for
selecting and for statistically benchmarking sets of SNPs (as opposed to single
SNPs) that jointly associate with a property of interest. An approach to
identifying sets of SNPs, associated with disease, is described by Ott et al

in 11. In this pioneering work SNPs were ordered by a score that combined
allele association, Hardy-Weinberg equilibrium and evidence for genotyping
errors. Contributions from the highest scoring SNPs were combined to form
a single genome-wide test. The statistical significance of the scores is assessed
by simulations. Our approach differs in the way we score individual SNPs
and sets of SNPs and in the way we model and compute the related statistics.
We also apply less greedy selection methods. These typically perform better
when the features are highly dependent.

The current paper and 11 share an emphasis on rigorous and critical sta-
tistical assessment of conclusions based on the data. As genotyping and as-
sociation studies explore new frontiers it is important that methods remain
grounded in sound statistics.

The paper is organized as follows. We start by describing the running
example data, in Section 2. In Section 3 we describe an information theory
driven method for scoring SNPs for their relevance to a partition of the set
of samples. Assigning statistical meaning to this score is also discussed and
an application introduced in Section 4. Data visualization is demonstrated
in Section 5. Finding SNP set association, including a statistical test, is the
topic of Section 6. We conclude with methods applicable for quantitative
traits, in Section 7, and a discussion in Section 8.

2 Data

We analyzed 216 SNPs typed in Mexican-Americans (from Starr County,
Texas) with type 2 diabetes 12. Of these, 88 SNPs were on chromosome 2
in the NIDDM1 region, 63 SNPs were on chromosome 15 in the CYP19 re-



gion and 65 SNPs were on chromosome 7. In previous studies these regions
had shown at least nominally significant evidence for linkage 9, moreover it
was shown that there is statistical interaction between genes on chromosomes
2 and 15 7. The study consisted of 170 families, 330 possible affected sib-pairs.
One patient from each affected sib-pair was selected into a set of representa-
tives for the analysis, but not all representatives from all families were typed
for all SNPs in the study. 108 families were typed for SNPs on chromosomes
2 and 15, one member from each of 96 families was typed on chromosome 7.
The overlap between families typed on chromosomes 2, 15 and 7 is 57 families.
A random sample of 112 individuals from Starr County, Texas not diagnosed
with diabetes at the time of the study was also typed for most of the SNPs.

3 Scoring SNP for relevance

Consider a partition of the samples into disjoint classes C = {C1, ..., Cn} (for
example affected/unaffected individuals). Denote the number of samples in
each class by d1, d2, ...dn respectively, and the total number of samples by D.
We want to score each SNP locus l according to its relevance to the partition
C. One way of mathematically defining locus relevance (with respect to C),
is by the mutual information score. Let G denote the partition of the tissues
induced by the genotypes at l. The mutual information of the partitions G
and C is defined as the difference between the measure-theoretic entropy of
the partition C and the conditional entropy of C conditioned on G:

s = H(C) − H(C|G), (1)

where H is the entropy 6, i.e. H(C) = −Σn
i=1di/D · log(di/D). This score

measures the amount of information the genotype at the locus under consid-
eration gives about membership in each one of the sets C1, C2, ...Cn. Figure
1 shows an example of loci with high and low mutual information scores.

Together with the mutual information score we compute the correspond-
ing significance level (p-value) in the following way. Consider a random as-
signment of the samples to n groups of the appropriate sizes d1, d2, ..., dn. We
call such assignments admissible. For a locus l, let S be a random variable
obtained by computing (1) for a partition uniformly drawn over the set of all
admissible assignments and fixed partition G defined by the genotypes at l.
Then given a score s we define:

p-value(l, s) = Prob(S ≥ s). (2)

Note that this way of scoring SNPs, and of computing their p-values, allows
to compare relevance of SNPs on the same scale, since it takes into account



possible missing genotype data. In the example of Figure 1, the p-value for
locus 1 is 0.0002, the p-value for locus 2 is 1. Whenever no confusion arises
we will denote p-value(l, s) by p-value(s).

Locus 1: AA AA AA AA AA Aa Aa Aa Aa aa aa aa aa aa aa

Locus 2: BB BB BB BB BBBb Bb Bb Bb Bbbb bb bb bb bb

Labels: + + + + + + + + + − − − − − −

Figure 1. Illustration of the mutual information score for two classes: one with 9 individuals
labels by ’+’, the other one with 6 individuals labelled by ’-’. At locus 1, all people in the
first class have genotypes AA or Aa, and all people in the second class have genotypes aa.
This locus is informative and has the score of 0.97 (p-value=0.0002). At locus 2, there is no
difference between genotype frequencies in different classes, the mutual information score
for this locus is 0 (p-value=1).

For modest size data sets like the one we are considering, these p-values
can be computed exactly, exhaustively counting over all possible admissible
label assignments. For data sets with many samples, for micro-satellite loci
or for haplotype data these p-values can be estimated by simulations.

In the diabetes data, we considered several ways to partition the samples.
We compared all patients with all controls, and we compared subgroups of
patients. One way of partitioning the patients was generated using linkage
signal. Patients were partitioned into 3 groups: patients from families that
showed evidence for linkage (NPL score > 0.6) in the NIDDM1 region, pa-
tients from families with evidence against linkage (NPL score < -0.6) and
patients from families with no linkage signal (-0.6 ≤ NPL score ≤ 0.6). The
first group has 38 patients, the second group has 16 patients and the third
group has 54 patients. Analogous partitions were considered using NPL scores
on chromosomes 15 and on chromosome 7. We will use the ’linkage’ partition
L generated by NPL scores on chromosome 2 in the examples below. SNPs
with high scores for L may help explain evidence for linkage in this region and
point to genes related to diabetes susceptibility.

Results for the highest scoring chromosome 2 SNPs and the partition L
are shown in Table 1. We identified 10 informative SNPs on chromosome
2 with p-values less than 0.05. Interestingly, 7 of these are tightly linked



Table 1. Top scoring SNPs from chromosome 2. The nucleotide indicates the location of
the SNP relative to the A of the ATG of the initiator Met of the CAPN10.

Chromosome number SNP number Nucleotide (bp) Score p-value
2 30 11098 0.15 0.0058
2 48 15111 0.16 0.0062
2 19 7917 0.14 0.0082
2 59 6018 0.17 0.0099
2 56 5415 0.13 0.0124
2 28 23527 0.12 0.0154
2 65 23527 0.11 0.0269
2 33 (65kb) 0.11 0.0403
2 31 (60kb) 0.10 0.0414
2 43 4852 0.08 0.0451
2 27 (100kb) 0.06 0.0619
2 18 (330kb) 0.08 0.0657
2 36 41509 0.08 0.0807
2 49 41943 0.08 0.0806
2 51 41959 0.07 0.1038

polymorphisms in the calpain-10 gene; others are linked SNPs from the region
between GPR35 and ATSV on chromosome 2.

4 Overabundance analysis

To estimate the overall significance of a set of SNPs with respect to a given
partition we compare the observed number of SNPs with score ≥ s for each
score level s with the expected number of SNPs with scores ≥ s for random ad-
missible labellings of the samples. The higher the gap is between the observed
number of significant SNPs (high mutual information score) and the expected
number of significant SNPs, the more significant the sample partition is.

At a given score level s, let p = p-value(s). Suppose that in the data we
observe N(s) SNPs with score ≥ s. In a data set with N SNPs we expect
to see E(s) = pN SNPs with a score better than s. Moreover, the number
of SNPs with score ≥ s we observe for uniformly and independently drawn
labellings is a random variable n(s), with n(s) ∼ Binom(N, p). The surprise
rate at s is defined as

σ(s) = Prob(n(s) ≥ N(s)) =

N
∑

k=N(s)

(

N

k

)

pk(1 − p)k.

Finally, the maximum surprise score for the partition is

Ω = max
s

(− log(σ(s))).



Figure 2 shows results of overabundance analysis for chromosome 2 SNPs
and the partition into diabetes patients and random sample.

Note that the exact numerical value of the partition score Ω should not
be taken literally, as it relies on strong statistical assumption (namely, that
the different loci are not linked and thus can be treated as independent).
Nevertheless, this score is useful when we want to compare two partitions of
the samples (to select which is more supported by the SNP data). Another
application for the partition score is class discovery 3.
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Figure 2. Overabundance analysis of SNPs of chromosome 2 with respect to the af-
fected/random sample partition. In the upper part of the figure we plot the distribution
of SNPs p-values with respect to this partition (green curve) vs. the expected distribution
of p-values for random admissible partition (blue curve). The gap between the two curves
show that there is an overabundance of significant SNPs. The red line (at p-value =0.0659)
correspond to the max-surprise score 12.84 (depicted at the lower half of the figure).

5 Visualization of the data

In this Section we present a few figures that allow us to visualize the SNP
data with respect to different sample partitions, and different SNP ordering
methods b. As a result we can highlight different aspects of the data.

bThese figures were generated by SNPTool, part of BioTools, a software package developed
at Agilent Labs, for internal research and scientific collaborations.



Figure 3 shows data for SNPs from chromosome 2 with highest mutual
information scores. Note that this Figure shows that the top SNPs 2 59, 2 48,
2 30, 2 19, 2 19, 2 65 are very similar. Indeed these SNPs are polymorphisms
(see Table 1) from the CAPN10 gene in strong linkage disequilibrium.

Figure 4 shows the same data, but now each row is sorted by genotype
with each class. This way of plotting illustrates well the mutual information
score. The first 5 SNPs got high scores because individuals from ’not-linked’
group do not have homozygous genotypes for the rare allele at these SNPs,
plotted in yellow.

SNPs could also be sorted by their chromosomal location, which together
with their scores may provide additional insight to the interesting genomic
regions that may be related to disease susceptibility.

6 Selection of SNP subsets for classification

Assume we are given a sample partition C (e.g., diabetics/random samples or
’linked’/’not-linked’ families). For complex, multi-genic diseases like diabetes,
it is not necessarily the case that a single SNP would suffice to explain the
genetic origin of the disease. In this Section we describe an approach to
select a set of SNPs that together contains a strong genotype signature of the
sample class. To rigorously define the SNP-subset search problem, we need
to choose an appropriate optimization criteria, and search for a set of SNPs
that maximize it. In this paper we describe a simple approach that is based
on the classification accuracy of the SNP subset. Intuitively, a good set of
SNPs, A, is such that knowing the genotypes over A for an unknown sample
will allow us to make a good guess about the class membership of this sample.
We first show how to construct a classifier (Naive Bayesian Classifier) using
a SNP set A. We shortly describe how the classification accuracy of such a
classifier can be estimated (using LOOCV approach). We then describe simple
search heuristics to select the set of SNPs, and evaluate the success rate of
these methods with respect to the ’linked’/’not-linked’ partition. Finally, we
conclude the section with a comparison of the best classification accuracy
achieved, and a classification accuracy for a random admissible assignment of
classes.

6.1 The naive Bayesian classifier

Consider a set of SNPs A. One simple way to construct a classifier is to
consider the naive Bayesian classifier based on the probabilistic approach to



this problem 8. For each SNP, we compute the probability of a given label,
given genotypes of the training set of samples. Then these one-SNP classifiers
are combined together to predict the labels of test samples.

For a sample x with unknown label, in the case of two classes (e.g.
’linked’/’not linked’) labelled by ’+’ and ’-’, applying Bayes rule to the set of
SNPs:

log
P (+|x)

P (−|x)
= log

P (+)

P (−)
+ log

P (x|+)

P (x|−)
= log

P (+)

P (−)
+

∑

a∈A

log
P (xa|+)

P (xa|−)

= log
P (+)

P (−)
+

∑

a∈A

(

log
P (xa|+)

P (xa|−)
− log

P (+)

P (−)

)

, (3)

where xa is the genotype of sample x at locus a. In the above formula we
assumed independence of SNP loci in the set A given the partition of the

samples. For positive log P (+|x)
P (−|x) , we predict that the label of x should be ’+’,

otherwise the label is ’-’.
The accuracy of the classifier can be measured by the number c of correct

predictions it makes for the test samples, and we can use it to find the ’best’
subset of SNPs. Training and test sets of samples can be defined using leave
one out cross-validation technique (LOOCV). On each step of the LOOCV
algorithm we ’hide’ one sample and construct a classifier using the remaining
samples. Then this classifier is used to predict the label of the ’hidden’ sample,
and the procedure is repeated for every samples in the data. LOOCV method
can be modified to hide more than one sample at a time and can be applied
to more than 2 classes.

6.2 SNP subset selection

As it is not computationally feasible to exhaustively try all possible SNP
subsets we describe here a few simple efficient methods to select SNP subsets.

One approach to find the SNP subset is to order SNPs by their scores,
e.g. by mutual information score, and consider classifiers using k top scoring
SNPs Ak for each k = 1, 2, ..., N . Then, we choose the subset Ak0

for which
the classifier with k0 SNPs makes the biggest number of correct predictions
ck0

= max1≤k≤Nck. In the Mexican-American diabetes data set this approach
did not work well, because genotypes at many SNPs are not independent since
many SNPs in this data set are very close to each other and are in strong
linkage disequilibrium. The number of correct predictions for ’linked’/’not
linked’ classes was close to the prior probability of making a correct prediction
0.7 (Figure 5). This approach is very computationally efficient, since the



calculation time is linear with the number of SNPs, and will probably work
best in the data sets with independent SNPs.

Another approach is to select the subset using forward (backward) se-
quential search 16,1. On the first step of the forward sequential search, we
select a SNP a1 out of the whole set of SNPs A such that the corresponding
classifier makes the biggest number of correct predictions. We set A1 = {a1}.
On each step k = 2, ..., N , we find a SNP ak such that the classifier corre-
sponding to the set Ak = Ak−1 ∪ {ak} makes the biggest number of correct
predictions among the classifiers with subsets Ak−1 ∪ {a}, a ∈ A\Ak−1. The
’best’ subset is defined by k0 for which the classifier with the set Ak0

makes
the biggest number of correct predictions. Backward sequential search works
in the reverse direction, i.e. we start with the set of all SNPs, and on each step
of the algorithm remove a SNP such that the classifier build using remaining
subset of SNPs makes the biggest number of correct predictions.

Using backward sequential search we identified a subset of 11 SNPs from
chromosome 2 with combined genotypes that predict the ’linkage status’ with
87% accuracy (Figure 5). Similarly, a set of 11 SNPs from chromosomes 2
and 2 SNPs from chromosome 15 was found that predicts the ’linkage status’
with 90% accuracy. Another interesting result was found for chromosome
7 and 15 SNPs. Out of 57 families typed for SNPs on both chromosomes,
22 showed evidence for linkage on chromosome 7 (NPL > 0.6), 17 showed
evidence against linkage (NPL < −0.6). A set of 7 SNPs from chromosomes
7 and 15 was found that predicts ’linkage status’ on chromosome 7 correctly
in 38 out of 39 samples (Figure 6).

Note that the number of steps in forward/backward sequential searches
may become quite big for data sets with many SNPs. To save on the compu-
tational time, we can limit the searches to top scoring SNPs only.

6.3 Statistical significance

We estimated the significance of LOOCV results by simulations, i.e. we sim-
ulated random admissible labels of the samples and ran LOOCV with the
corresponding set selection method for each labelling. Then we compared the
observed probability of the maximal number of correct predictions for random
labels with the number of correct predictions for the original labels.

In the current example, 100 random admissible labellings of the samples
were simulated and we ran LOOCV with backward sequential search algorithm
for these labels. The probability of finding a subset of SNPs on chromosome
2 that better predicts set membership than the original subset is 0.04. Also



observe that prediction quality of ’linkage’ status is consistently better than
the average prediction quality for random labellings (Figure 5).

7 Quantitative traits

In many studies, clinical quantitative information is available for the samples.
This information may help define more homogeneous subgroups of patients
for which SNP association with disease susceptibility will be easier to detect.
Similar to (1), we can score each SNP l, and each quantitative measurement
q, in the following way. We find a threshold t such that the mutual infor-
mation score of l with respect to the partition of samples into samples with
q ≥ t and samples with q < t is maximal. Analogous to (2) we can compute
the p-value for this score, counting over all possible assignments of samples to
groups. This computation can be effectively and efficiently carried out using
dynamic programming methods, as described in the supplementary informa-
tion (http://dogbert.cs.technion.ac.il).

8 Discussion

We presented methods for analyzing and visualizing SNP case/control data.
In particular we described processes for selecting subsets of loci that jointly
correlate with sample properties. The selection process an be compared to a
null-model by means of simulations. In future work we will further address
this crucial statistical testing. We also briefly discussed similar methods that
apply to quantitative traits. We are planning to test these and other means
of scoring quantitative trait predictors on biological data. More scientific
activity in this space will drive the emergence of appropriate methodology.
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Figure 3. Graphical representation of the highest scoring SNPs from chromosome 2 and
’linked’/’not-linked’ partition. Each column represents all genotypes for a given person; each
row represents all genotypes for a given SNP. Blue corresponds to homozygous genotype
for common allele, yellow corresponds to homozygous genotype for rare allele and green
corresponds to heterozygous genotype. White corresponds to missing data. Loci are ordered
with respect to mutual information score. Columns marked by ’|’ on the x-axis correspond
to patients from ’not linked’ group, columns marked by ’-’ on the x-axis correspond to
patients from ’linked’ group.
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Figure 4. Same data as in Figure 3, now data in each row is sorted by genotypes within
each group. This plot helps to visually assess mutual information score, since it is clear
that the top 5 SNPs got high scores because individuals in ’not-linked’ group do not have
homozygous genotypes for the rare alleles at these SNPs. Note that columns no longer
correspond to a particular individual.
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Figure 5. LOOCV results for SNPs on chromosomes 2 and 15. ’Linkage’ status was correctly
predicted for 91% of patients, using subset of SNPs identified by backward sequential selec-
tion method. Using SNPs from chromosome 2 only ’linkage’ status was correctly predicted
for 87% of patients.
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Figure 6. LOOCV results for SNPs on chromosomes 7 and 15. ’Linkage’ status on chro-
mosome 7 was correctly predicted for 98% of patients using subset of SNPs identified by
backward sequential selection method.




