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Abstract

The problem of computing the tertiary structure of a protein from
a given amino acid sequence has been a major subject of bioinformatics
research during the last decade. Many different approaches have been
taken to tackle the problem, the most successful of which are based
on searching databases to identify a similar amino acid sequence in the
PDB and using the corresponding structure as a template for model-
ing the structure of the query sequence. An important advance for the
evaluation of sequence similarity in this context has been the use of a
frequency profile that represents a part of the protein sequence space
close to the query sequence instead of the query sequence itself. In this
paper, we present a further extension of this principle by using profiles
instead of the template sequences, also. We show that, by using our
newly developed scoring model, the profile-profile alignment approach is
able to significantly outperform current state of the art methods like PSI-
BLAST, HMMs, or threading methods in a fold recognition setup. This
is especially interesting since we show that it holds for closely related
sequences as well as for very distantly related ones.

Since the first use of alignment procedures for evaluation of similarity be-
tween two sequences, various successful advances in this concept have been
proposed. One major improvement of the alignment procedure that made its
way into many popular bioinformatics tools is the use of a frequency profile
instead of a sequence which was first proposed by Gribskov1 and is one of the
major ingredients of the well-known PSI-BLAST program2. The aim of replac-
ing a single sequence by a frequency profile representing its protein family is to
discard part of the sequence information that is not conserved throughout this



family. Therefore, the profile will be a better representation of strongly con-
served features like the tertiary structure of the protein than the sequence itself.
While this concept proved useful when replacing one sequence in an alignment
by a profile, it has been shown recently by Rychlewski et al.3 that using profiles
on both sides of the alignment is even better when trying to establish relation-
ships between distantly related proteins. Using this profile-profile approach in
their FFAS method, they managed to reach the second rank in the CAFASP2
contest of fully automated protein structure prediction servers. Despite the
straight forward idea of replacing both sequences by frequency profiles, it is
far from obvious how the alignment score should be calculated in this case.
Rychlewski et al. used the simple dot product for computing the score but
also noted that a more sophisticated method might prove advantageous.

A major new contribution to the profile-profile alignment approach has re-
cently been made by Yona and Levitt4 who were the first to propose a scoring
formula for profile-profile alignments that was constructed on a theoretically
sound basis. Their scoring system is based on an information theoretic mea-
sure of difference between the two probability distributions represented by the
profiles. Since their profile-profile score is not constructed along the lines of
the common similarity score for sequences, there are two major drawbacks to
the approach: First, they measure only the similarity of the two probability
distributions provided by the profiles and do not take into account the similari-
ties between amino acids. Ignoring these contributions which have been crucial
to sequence alignment methods for the last decades will most likely limit the
sensitivity of an alignment scoring system. Second, they have to construct an
ad-hoc transformation that will make their score applicable in the case of lo-
cal sequence alignment. Our approach is an extension of the usual amino acid
similarity score to the profile-profile situation (the sequence-sequence score is a
special case of our formula) Thereby, our alignment score avoids both of these
drawbacks and can directly be used for local alignment without any changes.
Therefore, we believe that the proposed log average score may have signifi-
cant practical and performance advantages. Yona and Levitt compare their
profile-profile tool with tools from the BLAST family like Gapped BLAST,
IMPALA and PSI-BLAST, showing that they can detect more protein super-
family relationships using their method than using PSI-BLAST. Due to lack of
availability at the time of setting up the benchmarks performed in this paper,
we have not been able to include their prof sim tool in this study.

In the following, we are presenting a formula for applying the popular sim-
ilarity matrix scoring for sequences to the more general case of scoring two
frequency profiles which has been introducede in more detail earlier5 and com-
pare the performance of the new alignment score with other popular alignment



methods in terms of fold recognition performance.

1 Introducing Log Average Scoring

The popular similarity matrix alignment scores like PAM6 or BLOSUM7 have
a strong foundation in statistical test theory. The alignment score of an align-
ment of two sequences without gap penalties is a direct measure of the sta-
tistical evidence supporting the hypothesis that the two sequences are related
against the alternative that they are unrelated. The definition of the term
“related” in this context is part of the used substitution model. The most
interesting features of alignment scores are an immediate consequence of this
property. A score of zero means that there is no evidence in the alignment
whether the sequences are related or unrelated whereas a positive score indi-
cates relatedness and a negative score indicates that the sequences are rather
unrelated. If pi is the background amino acid probability distribution and prel

denotes the probability distribution of “related” amino acid pairs, the sub-
stitution matrix alignment score for a pair (i, j) of amino acids is calculated
by

M(i, j) = log
(
prel(i, j)
pipj

)
(1)

This is usually scaled by a factor 10
log 10 in the Dayhoff models and 2

log 2 for the
BLOSUM matrices. While it seems straightforward to extend this score to two
profile vectors α and β by using the formula

scoreaverage(α, β) =
20∑
i=1

20∑
j=1

αiβj log
prel(i, j)
pipj

(2)

(called average scoring) we have shown earlier5 that the original meaning of
the alignment score can be extended to the profile-profile case by using the log
average score:

scorelogaverage(α, β) = log
20∑
i=1

20∑
j=1

αiβj
prel(i, j)
pipj

(3)

The double sum occuring here can be interpreted as a bayesian probability
for the profile vectors being related according to the substitution model, thus
giving a meaning to the sum of this score over all alignment positions.



2 Benchmarks

In order to evaluate whether the proposed profile-profile alignment scores are
useful for measuring the relatedness of two profiles, we performed several tests
measuring fold recognition performance. The SCOP-1.50 database8 was taken
as gold standard for measuring the relatedness of proteins on different levels.
Using the ASTRAL server9, a subset of this protein domain database was
selected such that every two domains in the database were showing a maximum
homology level of 40% sequence identity. This domain set is referred to as
PDB40D10 and its members will be called templates in the following.

2.1 Frequency Profile Construction

For each template sequence, a multiple alignment was constructed by running
PSI-BLAST2 against the KIND database11, a non redundant protein sequence
database. A frequency profile was calculated from this multiple alignment
using a sequence weighting algorithm that is a slightly modified version of an
algorithm by Henikoff12. a The resulting frequency profile was cut down to the
original template length by throwing away positions that correspond to a gap
of the template sequence in the multiple alignment.

This template database of frequency profiles was used in a fold recognition
setup: The objective is to find the most closely related protein domain in the
PDB40D set for a given protein chain (in the following also called target). This
is done by first constructing a frequency profile for the target using PSI-BLAST
and sequence weighting methods exactly as described for the templates. Then,
all the template frequency profiles are subsequently aligned against the query
frequency profile and the template with the highest score is the best guess for
the structure of a domain contained in this chain.

2.2 Data Set

The performance of some state-of-the-art algorithms for fold recognition were
compared with the newly developed profile-profile alignment scoring formula
using a modified “leave-one-out” benchmark. All 2232 protein chains from
the PDB containing one complete domain from the PDB40D set were used as
benchmark set. When performing the fold recognition for each chain, all the
domains belonging to the chain itself were removed from the PDB40D template

aThe extended version tries to minimize the relative entropy regarding the background
amino acid distribution rather than to maximize the absolute entropy of the profile, leading
to small differences in the profile as compared to the Henikoff version. See also Krogh et.
al.13 for the connection between sequence weighting and entropy.



Figure 1: Test set composition: number of chains with the most closely related PDB40D
domain belonging to the same SCOP level as indicated.

set. Each of the chains was aligned against the PDB40D template set except
for the domains belonging to the current chain.

Figure 1 shows the composition of the benchmark set. Chains that contain
a domain for which the PDB40D holds a member of the same SCOP family
are likely to be quite easy fold recognition targets since SCOP family members
ought to be quite closely related according to the definition of SCOP, making
them tractable targets for fold recognition methods. Chains that have the most
closely related domain on the SCOP superfamily level are harder to predict
correctly, but according to the SCOP definition these domains probably have
a probable common evolutionary origin. Hence it is possible that algorithms
trying to find distant sequence similarities are successful in finding these rela-
tionships. The hardest level for fold prediction is the SCOP fold level since the
templates in the PDB40D that share the same fold with a domain contained in
the chain do not share more than a “major structural similarity” according to
the SCOP definition. The SCOP class level finally is an impossible target for
fold recognition by definition since all templates in our database have a SCOP
fold different from the domains belonging to the chain. Nevertheless, these
chains were taken into account when calculating the overall fold recognition
percentages in order to get an unbiased estimation of the performance for a
completely unknown target.

2.3 Algorithms, Implementations and Parameters

We used our Java implementation JProP of a dynamic programming engine
using the two profile-profile alignment scores introduced in equations 2 and 3
to compare the performance of the profile-profile alignment with three other



successful fold prediction approaches: HMMs, threading and PSI-BLAST. In
addition, we used a plain sequence alignment program to serve as a lower
bound in the evaluation procedure.

Sequence Alignment: We used the 123D threading program to produce
global dynamic programming sequence alignments using Dayhoff’s 250 PAM
matrix.

PSI-BLAST: PSI-BLAST2 was run against the KIND database11 aug-
mented by the PDB40D proteins and the first hit in the PDB40D set that did
not belong to the chain itself was taken as the fold prediction.

HMMer: We chose HMMer14,15 in its latest version 2.2g as a representa-
tive for the current state of the art in profile HMMs (see Lindahl et al.16 for a
comparison of HMMer with SAM-T98 and other programs). A HMM database
was built from the PDB40D list containing HMMs trained from the same multi-
ple alignments used for constructing the frequency profiles. The search param-
eters of the HMM database were calibrated using the hmmcalibrate tool from
the HMMer package. The target sequence was used to search this database
using the hmmpfam tool. The e-value output of the found templates was used
as score.

Profile 123D: 123D17 is a fast profile threading program based on con-
tact capacity potentials and dynamic programming which has been in use for
some years already, e.g. in CAFASP2 and CASP4. It has recently been sub-
ject to parameter optimization18 and the basis for an analysis of confidence
measures10. We chose 123D as a representative for the class of threading al-
gorithms tractable by dynamic programming. We used the parameters from
the Zien et al. paper on parameter optimization using a machine learning
approach18. Frequency profiles on the target side were used. Information on
the tertiary structure coded in contact capacity potentials, secondary structure
information and the sequence itself were used on the template side to produce
a global alignment. The resulting threading score was used for further analysis.

JProP profile-profile alignment: Our program JProP is a pure Java
implementation of the dynamic programming alignment algorithm and can be
configured to perform various alignment scoring schemes, average scoring and
log average scoring being two of them. For the benchmarks we used gap cost
parameters that were optimized using a machine learning approach on a small
benchmark set described by Zien et al.18. The substitution model used for
computing the scores was the BLOSUM62 model7 and we applied it using an
affine gap cost model and global dynamic programming alignment.



Figure 2: Fold recognition performance for the 1640 chains from the SCOP family level.
Numbers indicating percentage of correctly predicted targets from this difficulty level, line
segments indicating estimated 95% confidence intervals. SEQ: plain sequence-sequence align-
ment, PSI: PSI-BLAST, PPA: profile-profile alignment using average scoring, 123D: 123D
profile threading, HMM: HMMer, PPL: JProP profile-profile alignment using log average
scoring

3 Fold Recognition Results

3.1 SCOP Family Level

We performed the modified leave-one-out fold recognition benchmarks and
analysed the results separately for the difficulty of the targets as described
above. Figure 2 shows the results for the 1640 chains from the SCOP family
level. The 95% confidence intervals indicated in the plot were estimated by
using a normal approximation. It is remarkable that even on this level of
close relationship (SCOP definition is “clear evolutionary relationship” with
a general level of pairwise sequence identity greater than 30%) the sequence
alignment is clearly outperformed by all other methods. PSI-BLAST is very
good at detecting these close relationships but is already outperformed by the
simple profile-profile average scoring approach and clearly left behind by the
threading program 123D. As expected, the HMM is very good at detecting and
precisely evaluating these close relationships with 89.27% correctly assigned
targets. Thus it is very interesting to see that the newly introduced profile-
profile alignment with log average scoring can still add more than 2%, yielding
a total of 91.34% of fold recognition performance which is a quite significant
lead due to the high performance level and the large sample size.



Figure 3: Fold recognition performance for the 304 chains from the SCOP superfamily level.
See text or caption of figure 2 for details.

3.2 SCOP Superfamily Level

Since profile-profile alignment was originally designed to detect remote homol-
ogy relationships we expect to see the largest performance gain on the SCOP
superfamily level shown in Figure 3. The plain sequence alignment is clearly
the worst when compared to the more sophisticated methods, getting less than
half the performance of the next candidate PSI-BLAST. While PSI-BLAST is
on par with the simple profile-profile approach, the performance gap to the
threading program is already widening. The HMM is better than the thread-
ing approach on this level of relationship, predicting 46.71% of the targets
correctly. The log average scoring profile-profile alignment clearly shows its
strength in detecting weak sequence homology relationships here by outper-
forming the HMM approach by almost 6% getting a total of 52.63% correct
recognition results.

3.3 SCOP Fold Level

On the fold level the relationships between the proteins to be recognized are
fairly weak. Since the relations are weaker than the SCOP superfamily level it
is not likely that the most closely related domain from the PDB40D set shares
the same evolutionary origin with part of the chain. Only a major structural
similarity is present. This is the setting for which threading approaches are
designed, since they make use of tertiary and secondary structure information
instead of relying on the sequence information alone.

Figure 4 shows the results for the 121 chains from this category. A slightly



Figure 4: Fold recognition performance for the 121 chains from the SCOP fold level. See
text or caption of figure 2 for details.

different picture shows up here. The worst performer is PSI-BLAST with
only 6.6% followed by sequence alignment and HMMs with 9.09% and 10.74%,
respectively. It should be noted that the results of the PSI-BLAST and the
HMMer program on this level are probably hampered by the fact that these
programs are the only ones to use significance cutoffs. Thus, sometimes no
prediction at all is produced by these two programs, lowering their chance
of producing “random” hits. The 123D profile threading programs performs
competitively on this level, but again, even the threading approach on these
hard targets at 19.81% is outperformed by the profile-profile alignment with the
log average score leading with 21.49%. The confidence intervals indicate that
these differences are not very significant due to the small sample size, but it is
still intriguing to see the completely sequence homology based profile-profile
alignment outperform the threading program which makes use of additional
structural information. A closer look at the composition of the ≈ 20% shares
for 123D and log average profile-profile alignment revealed here that only about
10% of the recognized targets for these two candidates were identical. This
stresses the usefulness of trying different algorithms when predicting folds in
this very hard category. It also leaves room for speculations on an algorithm
combining the strengths of these candidates being possibly capable of reaching
30% fold recognition performance on this SCOP level.

3.4 Overall Fold Recognition

Figure 5 shows a weighted average of the previous results combined with the
167 chains from the SCOP class level that cannot be correctly predicted by
homology search. The theoretical maximum performance that can be reached
in this plot is thus 92.52%. The results obey the pattern from the previous
results. The threading approach and the HMM both at about 72.5% outper-



Figure 5: Fold recognition performance for all 2232 chains. See text or caption of figure 2
for details.

form PSI-BLAST and the average scoring profile-profile approach leaving the
plain sequence alignment well behind. The log average scoring profile-profile
alignment manages to increase the recognition rate by another 3%.

4 Discussion

The profile-profile alignment approach to fold recognition is basically a method
for detecting very remote sequence similarity relationships. Sequence informa-
tion that is not conserved in the most closely related sequences is thrown away
by using the frequency profiles constructed by PSI-BLAST instead of the se-
quences themselves. Thus, a frequency profile is representing a part of the
sequence space around the sequence rather than a single point in sequence
space. In principle, this should allow for an improved detection of remote
sequence homologies.

Nevertheless it is crucial to use a meaningful and sensitive approach to
calculate the alignment score in order to receive best results. The effect of this
can clearly be seen in the differing results between the mediocre performance
of the average score and the superior performance of the log average score.

Our results show, that even simple profile-profile approaches like the aver-
age scoring perform competitively to PSI-BLAST. HMM and threading meth-
ods are already capable of outperforming PSI-BLAST in terms of fold recog-
nition performance. Choosing the log average scoring, our profile-profile align-
ment tool outperforms these more advanced tools. On the superfamily level,
which is by design the most suitable application scenario for profile-profile



alignment, the log average profile-profile alignment leads the competition by
6% fold recognition performance. Perhaps even more interesting is the fact that
it can outperform the applications HMMer, fine tuned on the family level, and
123D threading, fine tuned on the fold level, as well. Thus profile-profile align-
ment proves to be a useful tool for judging the similarity of two proteins by
the alignment score for a broad range of similarity relations from very close to
very remote.’

5 Further developments

We are currently working on an extension of the profile-profile alignment score
to incorporate a secondary structure component into the scoring system. Fur-
thermore, it will be interesting to see whether the promising results of the
alignment score when used for fold recognition also translate into a gain of
alignment quality and reliability.
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Gapped BLAST and PSI-BLAST: a new generation of protein database
search programs. Nucleic Acids Research, 25(17):3389–3402, 1997.

3. Leszek Rychlewski, Lukasz Jaroszewski, Weizhong Li, and Adam Godzik.
Comparison of sequence profiles. Strategies for structural predictions
using sequence information. Protein Science, 9:232–241, 2000.

4. Golan Yona and Michael Levitt. Within the twilight zone: A sensi-
tive profile-profile comparison tool based on information theory. J. Mol.
Biol., 315:1257–1275, 2002.
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