Algorithms for Multiple Genome Rearrangement by Signed Reversals
S. Wu, X. Gu

Pacific Symposium on Biocomputing 8:363-374(2003)

ALGORITHMS FOR MULTIPLE GENOME
REARRANGEMENT BY SIGNED REVERSALS

SHIQUAN WU, XUN GU
Center of Bioinformatics and Biological Statistics
Towa State University, Ames, IA 50011, USA
squu@ecs.iastate.edu, rqu@iastate.edu

‘We discuss a multiple genome rearrangement problem by signed reversals: Given a
collection of genomes, we generate them in the minimum number of signed rever-
sals. It is NP-hard and equivalent to finding an optimal Steiner tree to connect the
genomes by reversal paths. We design two algorithms to find the optimal Steiner
nodes of the problem: Neighbor-perturbing algorithm and branch-and-bound al-
gorithm. The first one is a polynomial running time approximation algorithm. It
searches for the optimal Steiner nodes by perturbing initial Steiner nodes nearby
their neighborhoods and improving them better and better until convergence. The
second one is an exact exponential running time algorithm for a median problem.
It finds the optimal Steiner node by checking all candidates that satisfy the nec-
essary conditions for optimal Steiner nodes. We implement the algorithms into
two programs respectively and show by experimental examples that they are more
efficient than other similar ones, such as GRAPPA, BPAnalysis, and MGR, etc.

1 Introduction

Phylogenetic trees show the evolutionary relationship of species. They are in-
ferred based on DNA or amino acid sequences. Three major methodologies are
widely used for the purpose: Parsimony method, maximum likelihood method,
and distance-based method %1, Genome projects have generated enormous
types of informative genome data for phylogeny reconstructions®. One inter-
esting and challenging problem is about comparative genome-wide gene orders
for multiple genomes and phylogeny inference. Most earlier discussions focus
on edit distances defined by local mutations such as insertion, deletion, substi-
tution 1911, and furthermore recombination 7. Recently, distance was widely
discussed based on the orders of genes. Breakpoint analysis first investigated
such kind of distances '415, However, the biological meaning of breakpoint
distance is not very clear. To overcome this, reversal distance was then in-
troduced. It is defined as the minimum number of signed/unsigned reversals
needed to account the difference of the gene orders of two genomes'#:*>. Sorting
by reversal is an important problem in comparative genomics. It transforms
one genome into another by signed or unsigned reversals >*%. Sorting by un-
signed reversals is NP-hard "8, while sorting by signed reversals is polynomial-
time solvable'?'3. Indeed, the signed reversal distance between any two signed

permutations can be computed by linear running time algorithms?.

A multiple genome rearrangement problem discusses how to reconstruct
optimal distance-based phylogenetic trees for a collection of genomes !°:16:18,
The problem is NP-hard . Therefore, the practical purpose turns out to find
good approximation solutions. Various approximation algorithms/programs
(such as GRAPPA, BPAnalysis, MGR, etc.) are developed for solving different
versions of multiple genome rearrangement problems ®:6:15:16,18

In this paper, we discuss a multiple genome rearrangement problem by
signed reversals '®: Given a collection of genomes, we generate them in the
minimum number of signed reversals. It is NP-hard and equivalent to finding
an optimal Steiner tree to connect the genomes by reversal paths. We focus on
designing efficient algorithms to find the optimal Steiner nodes for the genomes.

The rest of the paper consists of five parts. In Section 2, we introduce
the mathematical model of our multiple genome rearrangement problem. In
Section 3, we review some related previous algorithms on the problem. In
Section 4, we design an approximation algorithm and an exact algorithm for
the problem. In Section 5, we compare our algorithms/programs with other
similar ones (such as GRAPPA, BPAnalysis, and MGR, etc.) and show that
ours are more efficient than those. And finally, we discuss some possible further
work and appliocations in Section 6. We obtain the following results.

(1) Design a neighbor-perturbing algorithm. It is a polynomial running
time approximation algorithm and searches for the optimal Steiner nodes for all
given genomes by perturbing initial Steiner nodes nearby their neighborhoods
and improving them better and better until convergence.

(2) Find the necessary conditions for optimal Steiner nodes.

(3) Based on the necessary conditions, we design a branch-and-bound algo-
rithm. It is an exact exponential running time algorithm for a median problem
and finds the optimal Steiner node by checking all possible candidates that sat-
isfy the necessary conditions for optimal Steiner nodes.

(4) Two programs are implemented from the algorithms, respectively. Ex-
perimental examples show that our algorithms/programs are more efficient
than other similar ones, such as GRAPPA, BPAnalysis, and MGR, etc.

2 Problem and model

First of all, we introduce the notations and set up the mathematical model of
the multiple genome rearrangement problem by signed reversals '8.

Definition (1) Let X denote an alphabet (e.g., the set of genes) and | X| = n.
Assume p = (p1p2 - - - Pi—1 PiPi+1 - PjPj+1 - - - Pn) is a signed permutation (i.e.,
genome) on X. Each p; stands for a gene and its sign represents its strand

of DNA. A positive (or negative) sign means that the gene is in the forward
(or backward) strand. A signed reversal on a segment [i,j] of p is defined
as the mutation r(p;i,j) = (p1p2 -+ Pic1—Pj -+ — Pit1 — PiPj+1 -+ - Pn), Where
the segment [, j] changes both its orientation and signs (i.e., strand).

(2) Define N(p) = {ql¢g = r(p;i,j) for all 1 < ¢ < j < n}, which is
the collection of all permutations that can be obtained from p by one signed
reversal. N(p) is called a reversal neighborhood (or sphere) of p. Let P be
a collection of permutations. A reversal neighborhood (or sphere) of P is
defined as N(P) = UpepN(p). Define N1(P) = N(P), No(P) = N(N1(P)),
and Ni(P) = N(Ni_1(P)), the k—neighborhood (or k—sphere) of P.

MGRBSR Problem (Multiple Genome Rearrangement By Signed Reversal)
Given a collection of permutations G = {g1,¢2, - -, gm }, We generate G from
some p € G in the minimum number of signed reversals, i.e., to find a collection
of signed permutations t;(1 < k < s) on X such that (1) any g; is obtained
from p by a series t,,tx,,- - -, tx;, where each #;, , is obtained from #;, by one
signed reversal, i.e., tg,, € N(ty,;), and (2) s is minimized. Denote d(p,G) = s.

Various kinds of multiple genome rearrangement problems are widely dis-
cussed. The problems are NP-hard® and equivalent to finding optimal Steiner
trees for G in the space of permutations 6:10:14:15:16,18 = e here discuss the
MGRBSR Problem involving only pure signed reversals.

3 Previous related work

Many algorithms are designed to solve various kinds of multiple genome rear-
rangement problems. Most of them are approximation algorithms.

Breakpoint analysis The breakpoint distance between two genomes is de-
fined as the number of consecutive pairs of genes that are adjacent in one
genome but not in the other. Breakpoint analysis is one of the earliest meth-
ods for genome rearrangement problem based on gene orders. There are sev-
eral efficient approximation algorithms and programs for the problems, such
as GRAPPA and BPAnalysis >'®. However, breakpoint analysis gives many
approximation solutions that do not have a clear biological meaning. It could

not find a more biologically accurate rearrangement (reversal) distance®.

Grid search Sankoff et al 16 discussed a multiple genome rearrangement
problem for reversals and transpositions. For three genomes, a local optimal
solution was searched upon a grid consisting of a series of reversal paths (see
Fig.1a). A general problem with m genomes is recursively approximated by a

series of groups of three genomes.

Nearest path search Wu and Gu '® discussed a multiple genome rear-
rangement problem for pure signed reversals. An approximation solution was
obtained by a nearest path search algorithm upon a simple grid (see Fig.1b).
For three genomes, suppose ¢g; and g, are the pair with the greatest reversal
distance. The algorithm at first finds a shortest reversal path P, from g; to
g2, then improves Py to another better reversal path P, (where P is in some
neighborhood of P; and closer to g3 than P;), and repeatedly improves a series
of reversal paths to get a closest reversal path Py (in some neighborhood of
Py_1) to g3. Next, it constructs a grid by P, and g3. Finally, a local optimal
solution is obtained by searching on the grid. This simplifies Sankoff’s Grid
search algorithm '8 and is shown to be efficient by experimental examples.

Greedy split Bourque and Pevzner ® designed a multiple genome rearrange-
ment algorithm based on recursively greedy splitting. For the given genomes
91,92, *, gm, the algorithm at first connects the nearest pair, say g1 and gs,
by a shortest reversal path. Suppose g1, 92, -, gm—1 have been connected by
some reversal paths. Then the algorithm finds a nearest point (the split site)
on all these paths and connects g, to the split site (see Fig.1c). The algorithm
can be applied to both unichromosomal and multichromosomal genomes.

R
! Aéy@ o
=

Figure 1: (a) Grid search (b) Nearest path search (¢) Greedy split

4 Approximation algorithms

In this section, we design two algorithms: Neighbor-perturbing algorithm and
branch-and-bound algorithm. Multiple genome rearrangement problems by
signed reversals can be efficiently solved by applying these two algorithms.

4.1 Neighbor-perturbing algorithm

Any minimum spanning tree is a 2-approximation solution of the optimal
Steiner tree (to prove this, add a multiple edge for each edge of the optimal

Steiner tree 7" and compare a spanning tree Ty with these edges. Then we
have an inequality on the lengths of the trees: L(TarinSpanningTree) < L(To) <
2L(T*)). Any minimum spanning tree can be regarded as a trivial Steiner tree
with each given g; as a trivial Steiner node. Within N(g;), we can find some
Steiner node better than g;. For a median problem, we at first choose g, as
an initial Steiner node sg. Then find a Steiner node s; € N(sg) better than
S0, and next find so € N(s1) better than s;, and so on. The Steiner nodes
are improved better and better. This is the idea of our neighbor-perturbing
algorithm. Neighbor-perturbing algorithm is to perturb an initial Steiner node
within its neighborhood and improve it better and better until convergence.

The neighbor-perturbing algorithm consists of two steps: Initialization and
iteration. For a median problem, in the initialization step, we rearrange the
genomes so that the path g;¢-93 forms a minimum spanning tree. g, is then
chosen as the initial Steiner node, i.e., so = go. We start perturbing from g, so
that the iteration converges fast. In the iteration step, we perturb each s; and
find a better s;11 € N(s;) (Fig.2b). The Steiner nodes are improved better
and better from so(= g2) to s1,82,-+-,8;, -+, until s; finally converges at s
(Fig.2a).

Algorithm Neighbor-perturbing (Median problem)
Input Permutations: G = {g1,92,93}-
Output Optimal Steiner node.
Step 1 Initialization:
(1.1) Rearrange each g;: d(g1,93) = maz{d(z,y)|z,y € G}.
(1.2) Initial Steiner node sp = go.
Step 2 Iteration:
(2.1) Suppose s; have been defined. Check each z € N(s;):
Denote d*(z,G) = d(x,g1) + d(z, g2) + d(z, g3).
If z is better than s;, i.e., d*(z,G) < d*(s;, G),
then define s;41 = .
(2.2) Repeat (2.1) until convergence.

For the general multiple genome rearrangement problem, in the initializa-
tion step, we choose a minimum spanning tree T as an initial Steiner tree.
We rearrange the genomes so that ¢g; and g, are the two longest leaves in T'.
There are at most m — 2 Steiner nodes. If we perturb g; and g, to get two
Steiner nodes, it may take a longer time for the convergences. So we choose
92,93, -+, gm—1 as the initial Steiner nodes so as to get a better approximation
solution and a fast convergence. In the iteration step, we perturb and improve
each Steiner node s by checking all z € N(s). If SU{z}—{s} generates a better
Steiner tree than S does, then replace s by x (Fig.2c). The Steiner nodes/tree
are improved from the initial ones better and better until convergence.

Algorithm Neighbor-perturbing (General case, see Fig.2c)
Input Permutations: G = {g1,92, -, 9m }-
Output Optimal Steiner nodes S.
Step 1 Initialization:
(1.1) Define the reversal distance graph for G (vertex set) by
all pairwise signed reversal distances d(z,y)(z,y € G).
(1.2) Find a minimum spanning tree and its two longest
leaves o and yg. Choose the initial S = G — {zg, yo }.
Step 2 Iteration:
(2.1) For each s € S, check all z € N(s):
If the optimal Steiner tree generated by S U {z} — {s}
is better than that generated by S, then replace s by z.
(2.2) Repeat (2.1) until convergence.

92=So
S1
S

Sir1

S ©

93 (b) lteration from s;to s, 93

[91(=X0)

[} (a) Steiner node path:
0 S0 S11 +wer Spy Sjg1ieesS

(c) General iteration

Figure 2: (a) Initial Steiner node so = g2. Recursively iterate/update the Steiner nodes:
80,81, .,8i,- - until convergence (at s). (b) Process of iteration from s; to s;4+1: Suppose
s; have been generated. Check each x € N(s;), if x is better than s;, then update s;4+1 = z.
If no better z is found, then return s; (optimal). (c) General iteration: Assume g1 and gm
are the two longest leaves in the minimum spanning tree. Then g2, 93, -, gm—1 are chosen
as the initial Steiner nodes. Each s; is generated from g;4+1(i = 2,3,---,m — 1) by a series
of iterations. In each iteration, for Steiner node s;, check all z € N(s;), if SU{z} — {s;}
generates a better Steiner tree, then replace s; by z, i.e., s; is updated by a new s;. The three
edges s;_15;, gi+15i, Si+15; are replaced by three new s;_15;, g;+15:, Si+15i, respectively.
The old Steiner tree is updated by a new one. The iterations are repeated until convergence.

Theorem 1 The Neighbor-perturbing algorithm is a 2-approximation algo-
rithm and has a running time O(m>n*logm).

Proof The algorithm is obvious 2-approximation. O(m?*n*logm) is from all
steps: O(mn) for all d(g;, g;) and O(m>n3logm) for minimum spanning trees.

4.2 Branch-and-bound algorithm

In this part, we design an exact algorithm, branch-and-bound algorithm, to find
the optimal Steiner node for a median problem. Assume G = {g¢1,¢2,93}. We

rearrange the genomes so that the path g; g2gs forms a minimum spanning tree.
Denote d*(z,G) = d(z, g1) + d(z, g2) + d(z, g3). For any optimal Steiner s, the
correspoding optimal Steiner tree must at first connect s to some s; € N(ga),
and then connect s; to go (see Fig.3a). gos1¢91 and go$1g3 are two optimal
reversal paths from g, to g; and g3, respectively. They share a common part
9251 (51 € N(g2)). We can see that d(g2,s1) + d(s1,9:) = d(g2,9:)(i = 1,3)
and d*(s1,G) < d*(g2,@G), i.e., s1 is a Steiner node better than g.

Generally, any optimal Steiner tree connects s and g, through a series
of Steiner nodes so(= g2),s1,82,--+,8j,--- such that s; € N(s;j_1)(j > 0)
(see Fig.3b). sos1s2---s;---g1 and sos182---8;--- g3 are two optimal rever-
sal paths from ¢go to g; and g3, respectively. They share a common part
508182 ---s;. Each s, is better than s;_1 (¢ > 1). We state this as a theorem.
Theorem 2 (Necessary conditions for an optimal Steiner node) Let G =
{91, 92,93} (genomes). If s is an optimal Steiner node, then

9(g2,5) +d(s, i) = g(g2,9:) (i =1,3). (1)

Moreover, there exist a series of Steiner nodes so = g2,51,82,+, 8j, ", 8p = §
such that g(g2,s;) + d(sj,9:) = 9(g2,9:) (i = 1,3;5 > 0) and d*(s,G) <
d*(Sj,G) < d*(Sj_l,G) < d*(SO,G), (p >4 > 2)

Proof By the previous statements and Fig.3.

o % 9

92
X0
b b
sy Si
xo by
b,
o by
s s o o
9 93 o g3 o 9

6 (@s, isshared g, (b)Optimal path: ssg, 91 (c) Branches and leaves 91 (d) Process of branch growth

Figure 3: (a) Two optimal reversal paths g2s1¢1 and g2s1g3 share a common part g2s1.
d(g2,81) + d(s1,9i) = d(g92,9:)(i = 1,3) and d*(s1,G) < d*(92,G). (b) s is an optimal
Steiner node. go---sj---g1 and ga---5s;j---g3 are two optimal reversal paths from g2 to
g1 and to g3, respectively. g(g92,s;) + d(s;,9:) =9(92,9:)(= 1,3;5 > 0) and d*(s,G) <
d*(s;,G) < d*(sj—1,G) < d*(s0,G) for each j. (c) Generation relations are shown by the
branches/leaves, each leaf is obtained from one branch (candidate) of last generation. (d)
Process of growing branches: For each leaf b, check all x € N(b), if = satisfies Eq. (1), then
take z as a new branch/leaf. bi,ba,---, by are from b. Update s by z if d*(z, G) < d*(s, G).

Theorem 2 gives us the idea of our branch-and-bound algorithm. Any s sat-
isfying Eq. (1) is a candidate of the optimal Steiner node. By s; € N(s;—1)(j >
0) and Eq. (1), we can recursively search for the optimal Steiner node from
all possible candidates starting from go. At first, we check all z € N(go). If

s1 € N(g2) satisfies Eq. (1), then it is one of the first generation candidates of
g2. Next, we find all second generation candidates s, from each first generation
candidate s1 by s2 € N(s1) and Eq. (1). We repeatedly find all candidates
for all generations until convergence. The optimal Steiner node can be found
by min;d*(sj,G) over all candidates s;. The relations between all candidates
of different generations can be expressed as a tree (see Fig.3c-d). Suppose at
some iteration step we have found some candidates of some generations (see
Fig.3c). Let B be the set of all candidates (denoted by branches) and L the set
of all the current generations (denoted by leaves). For each leaf b € L, check
all z € N(b) — B, if x satisfies Eq. (1), then z is a new candidate and it is then
put into both the branch set B and the leaf set L. If z is better than s, i.e.,
d*(z,G) < d*(s, @), then update the optimal Steiner node s by z. New leaves
(new generation candidates) by, by, - -, by are obtained from b (see Fig.3d). b
is removed from L and becomes an internal node in next iteration. We repeat
the process until convergence, i.e., no new branch can be found.
Branch-and-bound algorithm consists of two steps: Initialization and iter-
ation. It starts at go, grows branches and update the optimal s (see Fig.3d).
Algorithm Branch-and-bound (Median problem, see Fig.3)
Input Permutations: G = {¢1, g2, 93}
Output Optimal Steiner node s.
Step 1 Initialization:
(1.1) Rearrange each g;: d(g1,93) = maz{d(z,y)|z,y € G}.
(1.2) Initial B = {g2}, L = {g2}, s = ¢o.
Step 2 Iteration: (see Fig.3d)
(2.1) Grow branches and update the optimal Steiner node:
For each b € L, check every z € N(b) — B:
If g(g2,) + d(z, g:) =g(g2,9:)(i = 1,3), then
x is a new candidate: B = BU {z}, L = LU {z}.
If d*(z,G) < d*(s,d), then update s = x.
Remove b from L after all x € N(b) — B is checked.
(2.2) Repeat (2.1) until convergence.
Theorem 3 The branch-and-bound algorithm finds the optimal Steiner node
in a running time O(n3e[nro/2]). Where o = min{d(z,y)|z,y € G} and e,
deponds on n (e.g., e, < 3 in the examples in next section).
Proof By Theorem 2 for the optimum and Theorem 3 '8 for the running time.

5 Comparisons and examples

We show that our algorithms are more efficient than other similar ones. Theo-
retically, our neighbor-perturbing algorithm is more efficient than the greedy-

split algorithm ¢ and other similar algorithms. The greedy-split algorithm
greedily connects all given genomes one after another. Usually, a greedy algo-
rithm may generate an approximation solution far away from the optimal one
in the worse case. However, our neighbor-perturbing algorithm starts from a
minimum spanning tree, which is a 2-approximation solution. The neighbor-
perturbing algorithm improves each Steiner node again and again and has more
chances to get the optimal one. This is its advantage over other algorithms.

The two algorithms are implemented into two programs, GenomeNP and
GenomeBnB, respectively, which take a reversal distance program “signed.c”
as a subroutine written by Hannenhalli (http:// www-hto.usc.edu/software).
We show by experimental examples that our algorithms/programs are more
efficient than other similar ones, such as GRAPPA, BPAnalysis, MGR, etc.

Example 1 G = {p,q1, ¢} (the genomes of human, sea urchin,fruit fly) 616,

p= 26131712-24151832-2-16-3-334-287511019252211
29 14 20 -21 -8 6 30 -23 9 27 31

= 264252251-2819112920-21692783023-241614-2 32
3-3115-7331013 1712 18
26 14 17 -28 -6 -21 23 -30 22 11 20 9 -8 -29 -16 -25 -2 -19 -10 -1
-7-5-13-4333-32-18-1524-12 27 31

By GenomeNP, we obtain an optimal Steiner node:

s= 26131712-24151832-2-3-3341420-21-86-728-29-11
-22-25-19-10-1-5-16 30-23 9 27 31

Therefore, d(S,p) = 4’d(87q1) = 201d(87q2) = 151 and d(p7 {qlaq2}) S 39.
GRAPPA and BPAnalysis obtained d(p, {q1,¢2}) = 43, MGR also obtained
d(p,{q1,q2}) < 395615 However, can 39 be improved better? MGR did not
answer. Since d(S,p)+d(S, ql) Z d(pa ql) = 24’ d(S,p)+d(S, q2) Z d(p7 q2) = 191
d(s,qu) +d(s,q2) > d(q1,q2) = 32, so d(p,{q1,¢2}) > [(24 + 19 + 32)/2] = 38.
GenomeBnB checks all possible candidates and obtains d(p, {q1,¢2}) = 39.

q2

Example 2 G = {4,B,---,K} are the following the genomes of: human,
asterina pectinifera, paracentrotus lividus, drosophila yakuba, artemia fran-
ciscana, albinaria coerulea, cepaea nemoralis, katharina tunicata, lumbricus
terrestris, ascaris suum, onchocerca volvulus, respectively ©.

A= 1-321722312320630782131249-10-1811 33 -28
19 14 34 13 25 4 22 -29 26 5 35 -15 -27 -16 -36

B= 1307223123-326821319-101119141833-13-5
-22 -4 -25-20-36 17 -26 34 -16 -35 15 -24 -27 29 -28

C= 1307223123-326821319-101119 14 18 33 28 -29
2724 -153516-34 26 -17 36 20 25 422 5 13

D= 12522317123206 153027 3118-19-9-21-8-7 33
-28 10 11 32 -4 -24 -13 -34 -14 22 -29 26 5 35 -16 -36

E= 12522317123206 153027 3118-19-9-21-8-733
-28 10 11 32 -4 -24 -13 -34 -14 26 5 35 -22 -29 -16 -36

F= 1341324281510947 111716 19 2 36 35 20 21 -29 -25
-27-12-30 -18 -14 -26 -6 -32 31 8 -33 -3 22 5 23

G= 134132415102894 7111716 192 36 35 20 21 -29 -25
-27-12-30-18 -14 26 -6 -32 -33 -3 31 8 22 5 23

H= 117212-19-9-21-8-733-32-11-10 28 -4 -25 -24 -13
-34 -14 -26 -16 -36 -35 -29 -20 -18 3 23 15 30 27 22 6 31 5

I'= 1272173620329101135123021919182833 7816
2614341324153225422236315

J= 1162617202211369152834107 3518 14 3227 36 4
1223253152230291911 243338

K= 1351030291124323152527267 14364 191222202
211361632281734918315338

Spanning tree

Figure 4: (a) The distance graph for the 11 genomes. (b) The minimum spanning tree of
the genomes. (c¢) Optimal Steiner tree. The total distance 149 < 150 (obtained by MGR).

We at first construct the signed reversal distance graph for the genomes
from all pairwise signed reversal distances (Fig.4a), then find a minimum span-
ning tree T' of the graph (Fig.4b), and finally generate the following optimal
Steiner nodes a,d, e, f, h,i and k by perturbing T by GenomeNP (Fig.4c).

a= 1-3217-1110-9-271833-281914341325422-29265 35
3078213124223123206-15-16-36

d= 125315-35-29-22-12-17-23-3143413241530272206
4-32-11-1028-33 7821919 -18 -26 -16 -36

e= 125223171232061530273118-19-9-21-8-733-2810
11 32 -4 -24 -13-34 -14 22 29 26 5 35 -16 -36

f= 1341324151094 7111716 19 2 36 35 20 21 -29 -25 -27 -12
-30 -18 -14 -26 -6 -32 31 8 -33 -28 -3 22 5 23
h= 11712-19-9-21-8-733-28 10 11 32 -4 -25-23 -3 18 22 29
35361626143413241530272206315
t= 1272162614 3413241510 11 35 12-18 -19 -9 -21 -8 -7 -33 -28
3017 36 20-4-25-23-32229326315
k= 135182732-9-34-17-28 10 30 29 11 24 3 23 -7 -26 -16 -6 -13
-21-2-20-22-12-19 -4-36 -14 1525 31 5 33 8
GenomeNP perturbs A, E, F, I, K, D, H into a,e, f,i, k,d, h, respectively.
The minimum spanning tree (see Fig.4b, length: 180) is perturbed into the op-
timal Steiner tree (Fig.4c) with a length 149, which is better than 150 obtained
by MGRS. Our algorithms/programs are better than MGR. and others.

6 Discussion

We have designed two algorithms (Neighbor-perturbing algorithm and branch-
and-bound algorithm) and two programs (GenomeNP and GenomeBnB) to
find the optimal Steiner nodes. The experimental examples show that the
algorithms/programs are more efficient than other similar ones. Our discus-
sions are based on signed reversals. However, we can extend the discussions
to other mutations, such as insertion, deletion, substitution, reversal, transpo-
sition, translocation, fusion, fission, etc. The algorithms have great potential
applications in a wide range of genomes including multichromosome genomes.

In the iteration steps of the algorithms, we always check all nodes in N (z).
We can get better approximation solutions by checking Ny (z) for some greater
k. By randomly checking only some nodes in N(z), or Ni(z), we can also
expect to get some satisfactory approximation solutions. Similarly, if we ran-
domly check only some of the candidates, the branch-and-bound algorithm
then becomes a nice approximation algorithm.

Acknowledgment This work is supported by the NIH grant RO1 GM62118
to X.G. and Wu is also is supported in part by NSF of China (19771025).

References

1. Bader, D.A., Moret, B.M.E. and Yan, M., (2001) A linear-time algorithm
for computing inversion distances between signed permutations with an
experimental study. Lecture Notes in Computer Science, 2125: 365-376.

2. Bafna,V. and Pevzner, P. (1994) Genome rearrangements and sorting by
reversals. In Proc. 34th IEEE Symp. of the Foundations of Computer
Science, 148-157. IEEE Computer Society Press.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Bafna, V. and Pevzner, P. (1995) Sorting permutations by transpositions.
Proceedings of the 6th Annual Symposium on Discrete Algorithms, pages
614-623. ACM Press, January 1995.

. Bafna, V. and Pevzner, P. (1996) Genome rearrangements and sorting

by reversals. STAM Journal on Computing, 25(2):272-289.

Blanchette, M., Bourque, G., and Sankoff, D. (1997) Breakpoint phyloge-
nies. In Genome Information Workshop (GIW 1997), (eds. Mivano S.
and Takagi, T.), pp.25-34. University Academy Press, Tokyo.

Bourque, G. and Pevzner, P. (2002) Genome-Scale Evolution: Recon-
structing Gene Orders in the Ancestral Species. Genome Res.12:26-36.
Caprara, A. (1997) Sorting by Reversals is Difficult. Proceedings of the
First Annual International Conference on Computational Molecular Bi-
ology (RECOMB’97), ACM Press.

Caprara, A. (1999) Formulations and hardness of multiple sorting by
reversals. Proceedings of the Third Annual International Conference
on Computational Molecular Biology (RECOMB’99), ACM Press.

Gu, X, (2000) A simple evolutionary model for genome phylogeny infer-
ence based on gene content. Comparative genomics (ed. Sankoff and
Nadeau), pp.515-524. Kluwer Academic Publishers.

Gusfield,D., Algorithms on Strings, Trees, and Sequences: Computer
Science and Computational Biology. Cambridge University Press, 1997.
Hillis, D., Motitz, C., Mable, B., Molecular systematics. Sinauer Associ-
ation, Inc. Massachusetts USA, 1996.

Hannenhalli, S. and Pevzner, P. (1995a) Transforming men into mice
(polynomial algorithm for genomic distance problems. Proc. IEEE Symp.
of the Foundations of Computer Science.

Hannenhalli, S. and Pevzner, P. (1995b) Transforming cabbage into
turnip (polynomial algorithm for sorting signed permutations by rever-
sals). Proc. of 27th Ann. ACM Symp. on Theory of Comput., 178-189.
Sankoff, D. (1999) Genome rearrangement with gene families. Bioinfo-
matics, 15:909-917.

Sankoff, D. and Blanchette, M. (1998). Multiple genome rearrangement
and breakpoint phologeny. J. Comp. Biol. 5: 555-570.

Sankoff, D., Sudaram, G. and Kececioglu, J. (1996) Steiner points in the
space of genome rearrangements. International Journal of the Founda-
tions of Computer Science, 7:1-9.

Wu, S. and Gu, X., (2001) A greedy algorithm for optimal recombination.
Lecture Notes on Computer Science, 2108:86-90.

Wu, S. and Gu, X., (2002) Multiple Genome Rearrangement By Rever-
sals. Pacific Symposium on Biocomputing 7:259-270.

