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Many linkage disequilibrium (LD) measures have been used to study LD patterns and for
haplotype block partitioning. We examine the properties of one of these measures, Lewontin’s'D

, in order to understand the dependency of its confidence interval (CI) to allele frequency
and sample size as well as its applications in defining haplotype blocks. This measure and its
CIs were used to partition haplotypes into blocks by Gabriel et al. [1] as well as in many other
applications. Gabriel et al. [1] utilized a bootstrap approach to calculate the CI for

'D
. Under

this method, over 1,000 bootstrap samples may be needed to obtain an accurate estimate of the
CI for each pair of single nucleotide polymorphism (SNP) markers which can be very
computationally intensive, particularly when many SNP markers are involved. We develop two
alternative methods for calculating the CI for 

'D
 without bootstrap: one based on the

approximate variance of 
'D

 given by Zapata et al. [2] and the other based on a maximum
likelihood estimate (MLE) of 

'D
 together with Fisher Information theory. Both methods

depend on normal approximation for the estimates of 
'D

 for large sample sizes. We assess and
compare the coverage of the CIs using the three methods through extensive simulations. We
define the coverage as the fraction of times the estimated CI contains the true value of 

'D
. In

general, the average coverage of the bootstrap method is less than the pre-specified coverage.
When the sample size is small

(100)≤
, the remaining two methods slightly under estimate the

coverage with MLE approach having smaller standard error compared to Zapata’s method.
When the sample size is large

(200)≥
, the estimated coverage from both Zapata’s and MLE

methods are very close to the pre-specified coverage with the MLE method having the smallest
standard error among all three methods. In most typical scenarios, we recommend the use of
MLE method for all sample sizes. Only under rare specific cases, would the bootstrap method
be better suited for determining the CI, i.e. small sample size, at extreme allele frequencies and

0'3 <<− D .

1 Introduction

Linkage analyses have been successfully used to map many simple, monogenic and
high penetrant diseases that obey the rules of Mendelian inheritance [3]. However,
their utilities for mapping human complex diseases are limited. Recently, the
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analysis of linkage disequilibrium (LD) patterns has been of great interest in
genome-wide association studies that attempt to identify genetic variation
responsible for common human diseases [4, 5, 6, 7]. Compared to traditional
linkage studies, association studies based on LD have two major advantages to
achieve fine scale mapping. First, only unrelated individuals need to be genotyped,
which makes it feasible to survey a large number of samples. Second, LD utilizes
historical recombination events, rather than just those found within a pedigree. The
interest in LD patterns have been advocated by the completion of the human
genome and the establishment of large single-nucleotide polymorphisms (SNPs)
collections, such as identified by the SNP Consortium [8, 9].

Recent studies have revealed that the human genome can be divided into
long chromosomal segments with high LD punctuated by short regions with low LD
[10, 11, 12]. Gabriel et al. [1] relied on the standardized gametic disequilibrium
coefficient 

'D
 [13], a commonly used LD measure  that is  not significantly

influenced by allele frequencies [14, 15, 16], to identify regions with high LD.
Since point estimates of 

'D
 are unstable for low LD, especially under conditions of

extreme allele frequencies or small sample size, Gabriel et al. [1] relied on the
confidence intervals (CI) for 

'D
 instead of the estimate of LD  between any two

SNPs. Gabriel et al. [1] utilized a bootstrap approach [17, 18] to calculate the CI for'D
. Under this method, over 1,000 bootstrap samples may  be required to obtain an

accurate estimate of the CI of 
'D

 for every pair of SNP loci , which can be very
time consuming, particularly when many markers are involved in the analysis.

Zapata et al. derived the approximate sampling variance of 
'D

 between pairs of
biallelic [2] and multiallelic [19] loci via large-sample theory. Through extensive
simulations with various sample sizes and allele frequencies, they determined that
the asymptotic sampling distribution of 

'D
 generally coincides with the the oretical

normal distribution [19]. Therefore, the sampling variance of 
'D

 provides an
efficient way to compute its CI under the presumption of normal approximation.
Teare et al. [20] studied the properties of the sampling distributions of 

'D
 using

simulations. However, no comparisons have been done to compare the bootstrap
and Zapata’s methods in estimating the CI of 

'D
.

In this paper, we propose a technique based on maximum likelihood estimation
(MLE) of 

'D
 together with Fisher Information theory  for a second approach in

directly estimating the sampling variance and CI [21]. Similar to Zapata’s method, it
is also based on the normal approximation by large-sample theory. Therefore, both
Zapata’s and MLE methods drastically reduces computational costs incurred by the
bootstrap. We examine and compare the coverage rates for the CI estimated by
bootstrap, Zapata’s, and the MLE methods under various conditions of LD, allelic



frequencies and sample size. Our study provides practical guides for choosing
proper methods in computing the CI of 

'D
 under different circumstances.

2 Methods

2.1 The LD measure 
'D

In this paper, we only consider two biallelic loci. Suppose there are two loci, A with
alleles 

1A
 and 

2A
, and B  with allele s 

1B
 and 

2B
, respectively. Let 

ijp
 be the

frequency of haplotype )2,1;2,1( == jijBiA , 
(1,2)ipi=

 be  the frequency of

allele 
iA

 and 
(1,2)jqj=

be the frequency of allele 
jB

. If 
n

 haplotypes are

sampled from a population, the haplotype frequencies can be estimated as follows,ˆ /(1,2;1,2)ijijpnnij===
, where 

ijn
 is the number of  

ijAB
 haplotypes . If 

/2n

diploid individuals with genotype data are sampled, 
ˆ (1,2;1,2)ijpij==

 is then

determined by the EM algorithm [22, 23, 24]. Let 
12ˆˆˆ (1,2)iiipppi=+=

, and

1,2)(jq̂q̂q̂ 2j1jj =+= . For clarity and consistency in the presentation, we always

assume that the observed data is 
11122122(,,,,)nnnnn

, where 
(1,2;1,2)ijnij==

 is

the number of haplotype 
ijAB

 and 
11122122nnnnn=+++

 is the total number of

haplotypes. A natural measure of gametic disequilibrium, ,D  which is the

difference between the observed frequency of a haplotype and its expected
frequency under the assumption that the alleles at two loci segregate independently,
is defined as

1111 qppD −= . (1)

The LD measure, 
'D

, is defined by

max
'
D

D
D = , (2)

where ()()maxmin,(1)(1)0min(1),(1)0ijijijijpqpqwhenDDpqpqwhenD−−<=−−>

. (3)

The quantity 
maxD

 is the maximum value that the gametic disequilibrium parameter

can achieve given the marginal frequencies of the sampled observations [13]. D ,



'D , and maxD  can be estimated by using ijp̂ , ip̂  and jq̂  and is denoted as D̂ , 'D̂ ,

and maxD̂ , respectively.

2.2 Haplotype Data and Genotype Data Generation

Under the assumption that the population is panmictic and given 
'D

, 
1p

 and 
1q

,

the expected frequency of haplotype 
11AB

 is  
1111max'ppqDD=+

. The  frequencies

for the other haplotypes can also be computed through 
1p

, 
1q

and 
'D

. Then 
n

haplotypes are sampled from a multinomial distribution with parameters
11122122(,,,,)npppp

. Pairing two haplotypes together can subsequently generate

genotypes for 
/2n

 individuals. In our simulation, we  vary the haplotype sample

size 
n

 from 100  to 500  and  the minor allele frequenc ies )2.0,2.0(),( 11 =qp ,

( )4.0,2.0 , and (0.4,0.4), respectively. The prespecified LD measure, 
'D

, ranges

from –0.9 to 0.9. For each given set of parameters, we generate 1,000 replicate sets
of haplotypes or genotypes.

2.3 Estimation of the Confidence Interval and the Coverage

For each simulated sample of 
n

 haplotypes or 
/2n

 genotypes, we estimate the CI

of 
'D

 by the bootstrap, Zapata’s and MLE approach. In the bootstrap method, 'D̂  is
computed for each of 1,000 simulated data sets containing the same number of
haplotypes or genotypes. The upper and lower confidence limits for the 

1α−
 CI are

then determined from the empirical bootstrap distribution of 'D̂  by 
1/2α−

 and
/2α

 quantile method, respectively. For Zapata ’s and MLE methods , 
ˆ 'D

 and its

asymptotic sampling variance, 
ˆ ('VarD

), are computed first . Under  the asymptotic

normality assumption of 
'D

 for large sample size , the upper and the lower

confidence l imits  are expressed as  

()/2ˆˆ ''DZVarDα+∗

 and
()/2ˆˆ ''DZVarDα−∗

, respectively, where 
/2Zα

 is the 
1/2α−

 percentile of the

standard normal distribution.
The entire process is repeated for 1,000 replicate data sets and the coverage is

defined as the fraction of times that the CI correctly contains the pre-specified
parameter, 

'D
, which is used in generating the haplotype or genotype data.



2.4 Variance Estimation of 'D  by MLE with haplotype data

One method of approximating the variance of an unknown parameter is through the
use of Fisher Information along with MLE [21]. The log-likelihood for the observed
data 

11122122(,,,,)nnnnn
 is expressed as:

22111221221111log(,,,,|',,)log(),ijijijLnnnnnDpqnp===∑∑
(4)

where 
(1,2;1,2)ijpij==

 is a function of 
'D

, 
1p

 and 
1q

, and 
1111max'ppqDD=+

.

The Fisher Information matrix with respect to ),,'(
11
qpD  can then be

calculated and is denoted as ),,'(
11
qpDF . The sampling variance of 'D̂  for

unknown magnitude of LD and allelic frequencies is explicitly estimated by

( )[ ]
11 ˆ,ˆ,'ˆ1111

1 |,,')'ˆ(
qpDMLE qpDFDV −≈ (5)

(i.e. the first element within the inverse of the Fisher Information matrix calculated
with the MLE) [21].

2.5 Variance Estimation of 'D  by MLE with genotype data

In order to estimate 
'D

 and its variance when only genotype data is available, we
modify the method described in section 2.4 by computing the likelihood of the
genotype data rather than the haplotype data. The log-likelihood for the observed
genotypic data ),,,,,( 22211211 xnnnnn  is expressed as:

( ) ( ) )log(log,,'|,,,,,log 22112112

2

1

2

1
1122211211 ppppxpnqpDxnnnnnL

i j
ijij ++












= ∑∑

= =

(6)

where 
(1,2;1,2)ijpij==

 is again a function of 
'D

, 
1p

 and 
1q

, and
1111max'ppqDD=+

. Here x  denotes the number of individuals who are

heterozygous at both loci, and 
ijn

 represents the total number of  correctly inferred
ijAB

 haplotypes with xnnnnn 222211211 ++++= . Similarly, the inverse of the

Fisher Information matrix gives an estimate for the variance of Lewontin’s LD
measure [22].

2.6 Variance Estimation by Zapata et al. [2]



Zapata et al. [2] utilized the method based on the Taylor approximation to obtain the
asymptotic sampling variance of 

'D
. For a large sample size, variance of the

gametic disequilibrium, D, is computed as
2111111ˆˆ ˆˆˆˆˆˆ (1)(1)(12)(12)ˆ ()pqpqDpqDVDn−−+−−−≈

. (7)

 Furthermore, Zapata et al. [2] approximated the variance of 'D̂  by

( )
( )
( ) ( )[ ]{ })1(|'ˆ||ˆ|2ˆˆˆ|'ˆ|)ˆ(|'ˆ|1

*
ˆ

1
'ˆ

21max

2
max

ffDDbpapDDDnVarD

Dn
DVZapata

−+−+−−














=

(8)

where 
()1ˆ1aq=−

 and 
1ˆbq=

 if 
ˆ '0D<

or 
1ˆaq=

 and 
()1ˆ1bq=−

 if 
ˆ '0D>

. In

addition, 
f

 is 
11ˆp

, 
12ˆp

, 
21ˆp

, and 
22ˆp

 when 
maxˆD

 is 
11ˆˆ pq

, 
()11ˆˆ 1pq−

, 
()11ˆˆ 1pq−

,

and 
()()11ˆˆ 11pq−−

, respectively.

2.7 Adjustment for the Confidence Interval

In order to obtain the 
1α−

 CI, certain precautionary measures are  taken under
various conditions. Since 

'D
 is the normalized value of the gametic disequilibriumD

, its absolute value  cannot be  greater than 1. When computing the CI by Zapata’s
and MLE methods, circumstances may arise when either of the lower or upper
confidence limits using the above approaches exceeds this range. This interval does
not accurately depict a complete 

1α−
 CI, thus we suggest the following tactics to

ascertain the CI under different circumstances. Let 
X

 be a random variable with

normal distribution 
ˆˆ (',('))NDVarD

.

(1) If 1)'ˆ(2/'ˆ −<−= DVarZDL α  and  1)'ˆ(2/'ˆ <+= DVarZDU α , t he

lower confidence limit is defined as -1 and the upper confidence limit is
defined as the smallest of 1 and U*, where U* is the unique value that
satisfies the equation α−=≤≤− 1*)1Pr( UX .

(2)  If 1−>L  and ,1>U the upper confidence limit is defined as 1 and the

lower confidence limit is defined largest of -1 and L*, where L* is the
unique value that satisfies the equation .1)1*Pr( α−=≤≤ XL

(3) If 1−<L  and ,1>U the lower and the upper confidence limits are simply

defined as -1 and 1, respectively.



When 0'ˆ =D , the two loci are said to be in complete linkage equilibrium and

the estimation of the sampling variance is problematic. 
maxD

 is undefined for
0D=

, thus direct calculation of the estimated variance of 'D  is impossible for
both Zapata’s and the MLE methods. We suggest the following strategy to ascertain
a 
1α−

 CI for the Zapata’s method and the MLE method t aking advantage of the
duality between the hypothesis testing and the estimate for CIs. Let

( ) ( )∏∏∑
= =≤−

− 







=

2

1

2

10 22211211
11

1..111
,,,

,,'Pr
i j

n
ij

nnnn

ijp
nnnn

n
qpD , (9)

( ) ( ) ,
,,,

,,'Pr
2

1

2

10 22211211
11

1..111

∏∏∑
= =≥−

+ 







=

i j

n
ij

nnnn

ijp
nnnn

n
qpD (10)

where ,22211211 nnnnn +++= ,1211.1 nnn += and .21111. nnn +=
(1,2;1,2)ijpij==

is calculated by given values of 
',D 1p

 and 
1q

. Because we do not know the true

value of 
1p

 and 
1q

, the  parameters  are replaced by their MLEs, 
1ˆp

 and 
1ˆq

. Let

0
~ '
0 >D  be the value of 'D  such that ( ) 2/,,'Pr 11 α=− qpD  and 0ˆ '

0 <D  be the value

of 'D  such that ( ) 2/,,'Pr 11 α=+ qpD . The α−1  CI of 'D  is defined as ].
~
,ˆ[ '

0
'
0 DD

       'D̂  can also take the maximum value of 1 if any one or more of the haplotypes
is never observed. When this occurs, all three methods will be unable to directly
determine the CI of 

'D
. Bootstrap will be subject to repeated sampling distribution

of 1'ˆ =D  and for all three methods, the estimated sampling variance will be equal to
0

. We employ similar tactics used for interval estimation when 0'ˆ =D . Let '
0D̂  be

the value of 'D that satisfies α=)ˆ,ˆ,'|,,,,Pr( 1122211211 qpDnnnnn . The α−1  CI of

'D is defined as ].1,ˆ[ '
0D  Similar methods can be used to define the α−1  CI of

'D when 1'ˆ −=D .

3 Results

Table 1 gives the average estimates of 
'D

 and its sampling variance for bootstrap,
Zapata’s and MLE methods using haplotype data. The results using genotype data

are similar to the results based on haplotype data. However, ( )'D̂VZapata  or ( )'D̂VMLE
were typically larger for genotype data than that for haplotype data. Our findings
remain consistent with Zapata’s observation [2] pertaining to the trends of the
sampling variance of 

'D
 under different conditions of LD and allele frequencies.

All three methods displayed an increase in sampling variance with a decrease in



magnitude of |
'D

| and sample size, or at extreme allele frequencies. The bootstrap
method displayed the smallest variance in most cases. The MLE method typically
had larger sampling variance compared to Zapata’s, but the differences were minor
and diminish with an increase in the sample size.
Table 1. 

'D
 and its average estimated sampling variance using different methods based on haplotype

data.

The sample size of haplotype

100 200 500

average variance  average variance  average variance

D' p q  a
ve

ra
ge

 D
'

 B
oo

ts
tr

ap

 Z
ap

at
a

 M
L

E

 a
ve

ra
ge

 D
'

 B
oo

ts
tr

ap

 Z
ap

at
a

 M
L

E

 a
ve

ra
ge

 D
'

 B
oo

ts
tr

ap

 Z
ap

at
a

 M
L

E

-0.9 0.2 0.2 -0.905 0.0211 0.0218 0.0218 -0.902 0.0115 0.0113 0.0113 -0.899 0.0048 0.0048 0.0048

0.2 0.4 -0.900 0.0113 0.0110 0.0110 -0.901 0.0057 0.0056 0.0056 -0.900 0.0023 0.0023 0.0023

0.4 0.4 -0.906 0.0051 0.0051 0.0051 -0.901 0.0027 0.0027 0.0027 -0.901 0.0011 0.0011 0.0011

-0.3 0.2 0.2 -0.345 0.0803 0.0905 0.0905 -0.327 0.0470 0.0540 0.0540 -0.308 0.0221 0.0246 0.0246

0.2 0.4 -0.306 0.0490 0.0490 0.0490 -0.303 0.0254 0.0258 0.0258 -0.299 0.0105 0.0106 0.0106

0.4 0.4 -0.298 0.0216 0.0212 0.0212 -0.302 0.0108 0.0107 0.0107 -0.298 0.0043 0.0043 0.0043

0.3 0.2 0.2 0.338 0.0265 0.0187 0.0189 0.328 0.0092 0.0087 0.0087 0.315 0.0033 0.0033 0.0033

0.2 0.4 0.308 0.0339 0.0292 0.0292 0.303 0.0149 0.0139 0.0139 0.294 0.0056 0.0055 0.0055

0.4 0.4 0.331 0.0135 0.0127 0.0130 0.323 0.0061 0.0060 0.0061 0.314 0.0023 0.0023 0.0024

0.9 0.2 0.2 0.940 0.0026 0.0035 0.0039 0.931 0.0015 0.0020 0.0025 0.917 0.0007 0.0010 0.0013

0.2 0.4 0.897 0.0075 0.0073 0.0074 0.900 0.0037 0.0037 0.0037 0.901 0.0015 0.0015 0.0015

0.4 0.4 0.933 0.0019 0.0026 0.0031 0.923 0.0011 0.0015 0.0019 0.916 0.0005 0.0006 0.0010

Table 2 shows our coverage results under haplotype sample sizes of 100, 200,
and 500. Although we used 

'D
, ranging from –0.9 to 0.9, we only present

combinations of minor allele frequencies at 0.2 and 0.4 and 
'D

 values of 3.0±  and
9.0±  with 95% CIs for illustrative purposes. When LD was high (

'0.9D=
) and

sample size was small, both Zapata’s and MLE approaches tended to overestimate
the coverage rates. At a haplotype sample size of 200, the average and standard
error of the coverage rates for the MLE method were found to be 0.945 and 0.0011,
if we consider the full spectrum of simulated conditions. Zapata’s and bootstrap
method averaged 0.943 and 0.929, respectively. As sample size increased, MLE-
based approximations consistently were closer to the expected coverage of 95%
with the least standard error than those obtained by either Zapata’s or the bootstrap
methods. Despite having the highest standard error for the coverage rate, the
bootstrap had better coverage when we simulate data with small sample size,
extreme allele frequencies and 0'3.0 <<− D . Zapata’s and MLE methods  were
most analogous to each other having the closest coverage rates to the expected



coverage, relative to the bootstrap method. To further study the subtle differences
between Zapata’s and MLE, we calculated the mean and the standard deviation of
the CI lengths based on haplotype samplings, as shown in Table 3. Although the
Table 2. The coverage rates for 95% CI with different 

'D
, allele frequencies and sample size based on

haplotype data. The average coverage and its standard error for each sample size condition are listed.

The sample size of haplotypes

100 200 500

D' p q  B
oo

ts
tr

ap

 Z
ap

at
a

 M
L

E

 B
oo

ts
tr

ap

 Z
ap

at
a

 M
L

E

 B
oo

ts
tr

ap

 Z
ap

at
a

 M
L

E

-0.9 0.2 0.2 0.999 0.999 0.999 0.993 1.000 1.000 0.994 0.998 0.998
0.2 0.4 0.993 0.999 0.999 0.988 0.992 0.992 0.904 0.974 0.974
0.4 0.4 0.908 0.908 0.908 0.910 0.951 0.951 0.938 0.937 0.937

-0.3 0.2 0.2 0.959 0.795 0.795 0.935 0.879 0.879 0.944 0.922 0.922
0.2 0.4 0.932 0.904 0.904 0.950 0.928 0.928 0.939 0.937 0.937
0.4 0.4 0.954 0.946 0.946 0.951 0.947 0.947 0.960 0.959 0.959

0.3 0.2 0.2 0.932 0.932 0.933 0.949 0.952 0.952 0.942 0.958 0.959
0.2 0.4 0.947 0.953 0.954 0.943 0.938 0.938 0.943 0.946 0.946
0.4 0.4 0.932 0.948 0.951 0.927 0.946 0.946 0.909 0.932 0.934

0.9 0.2 0.2 0.998 1.000 1.000 0.781 0.931 0.931 0.845 0.914 0.953
0.2 0.4 0.991 0.989 0.989 0.963 0.968 0.968 0.919 0.990 0.990

 0.4 0.4 0.875 0.965 0.965 0.836 0.987 0.987 0.810 0.890 0.924

Average 0.952 0.945 0.945 0.927 0.952 0.952 0.921 0.946 0.953

Standard Error 0.0014 0.0031 0.0031 0.0040 0.0010 0.0010 0.0032 0.0009 0.0006

Table 3. The average lengths of 95% CIs with different 
'D

, allele frequencies and sample size based on
haplotype data. The average length and its standard deviation for each sample size condition are listed.

The sample size of haplotype

100 200 500

average length average length average length

D' p q  B
oo

ts
tr

ap

 Z
ap

at
a

 M
L

E

 B
oo

ts
tr

ap

 Z
ap

at
a

 M
L

E

 B
oo

ts
tr

ap

 Z
ap

at
a

 M
L

E

-0.9 0.2 0.2 0.7506 1.1074 1.1074 0.4262 1.1846 1.1846 0.2503 1.2128 1.2128
0.2 0.4 0.3985 1.2012 1.2012 0.2694 1.2723 1.2723 0.1797 0.6065 0.6065
0.4 0.4 0.2492 1.2700 1.2700 0.1916 0.8240 0.8240 0.1285 0.1603 0.1603

-0.3 0.2 0.2 1.0208 1.4338 1.4338 0.8022 0.9795 0.9795 0.5639 0.6081 0.6080
0.2 0.4 0.8490 0.9361 0.9360 0.6170 0.6256 0.6256 0.4007 0.4023 0.4023
0.4 0.4 0.5716 0.5684 0.5681 0.4052 0.4036 0.4034 0.2558 0.2554 0.2553

0.3 0.2 0.2 0.6157 0.5298 0.5326 0.3735 0.3639 0.3658 0.2241 0.2246 0.2258
0.2 0.4 0.7171 0.6729 0.6739 0.4774 0.4598 0.4604 0.2932 0.2912 0.2915
0.4 0.4 0.4563 0.4409 0.4452 0.3063 0.3039 0.3070 0.1870 0.1881 0.1901

0.9 0.2 0.2 0.2796 1.3464 1.3551 0.1456 1.2134 1.3623 0.1048 0.1685 0.3215



0.2 0.4 0.3180 1.2763 1.2769 0.2211 1.1111 1.1118 0.1462 0.2897 0.2903
 0.4 0.4 0.1645 1.3965 1.4776 0.1241 0.5905 0.9316 0.0858 0.1003 0.1624

Average 0.5326 1.0150 1.0231 0.3633 0.7777 0.8190 0.2350 0.3756 0.3939

Standard Deviation 0.2660 0.3687 0.3767 0.2005 0.3629 0.3772 0.1360 0.3106 0.2993
Table 4. The coverage rates for 95% CI with different 

'D
, allele frequencies and sample size based on

genotype data. The average coverage and its standard error for each sample size condition are listed.

The sample size of Genotype

50 100 250

D' p q  B
oo
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tr

ap
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ap
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a
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L

E
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oo

ts
tr

ap

 Z
ap
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a

 M
L

E

 B
oo

ts
tr

ap

 Z
ap

at
a

 M
L

E

-0.9 0.2 0.2 0.773 0.952 0.964 0.630 0.961 0.991 0.565 0.953 0.998
0.2 0.4 0.445 0.981 1.000 0.617 0.978 0.999 0.909 0.972 0.997
0.4 0.4 0.714 0.984 0.996 0.905 0.985 0.993 0.928 0.927 0.992

-0.3 0.2 0.2 0.896 0.725 0.777 0.941 0.758 0.783 0.942 0.768 0.886
0.2 0.4 0.931 0.834 0.942 0.945 0.781 0.889 0.949 0.800 0.937
0.4 0.4 0.938 0.817 0.910 0.941 0.833 0.939 0.940 0.851 0.946

0.3 0.2 0.2 0.931 0.886 0.939 0.940 0.883 0.939 0.946 0.895 0.946
0.2 0.4 0.951 0.861 0.972 0.945 0.837 0.946 0.954 0.849 0.940
0.4 0.4 0.923 0.849 0.919 0.939 0.868 0.939 0.944 0.860 0.940

0.9 0.2 0.2 0.879 1.000 1.000 0.806 0.949 1.000 0.823 0.923 0.926
0.2 0.4 0.592 0.988 0.998 0.834 0.997 0.998 0.937 0.987 0.997

 0.4 0.4 0.833 0.975 0.975 0.783 0.989 1.000 0.841 0.911 0.911

Average 0.817 0.904 0.949 0.852 0.902 0.951 0.890 0.891 0.951
Standard Error 0.0411 0.0092 0.0036 0.0232 0.0091 0.0038 0.0149 0.0076 0.0013

Table 5. The average lengths and its standard deviation of 95% CIs under various conditions of 
'D

,
allele frequencies and sample size based on genotype data. Conditions were identical to Table 4.

The sample size of Genotype
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Average 0.6575 1.1993 1.3834 0.4620 0.8745 1.0687 0.3017 0.4154 0.5746
Standard Deviation 0.3791 0.5305 0.5166 0.2881 0.4957 0.5586 0.1993 0.3708 0.5403

MLE method generally had larger CI lengths than Zapata’s, it produced the least
amount of variation as sample size increased. Furthermore, the bootstrap method
had the shortest average and standard deviation for CIs lengths.

In many studies, genotypic data rather than haplotype data are generated. Thus,
we performed the same procedures to examine the effects of genotype data to the CI



estimates and coverage rates for all three methods. Although the overall trends of
performance were nearly identical, the average coverage rates from genotypic data
were much less than that obtained from the haplotype-based results for the bootstrap
and Zapata’s methods while MLE remained unaffected. Furthermore, the standard
error and CI lengths proved larger for all three routines (Tables 4 and 5).
Considering all simulated conditions and a genotype sample size of 250 (consisting
of 500 haplotypes), the coverage rate and standard error for the MLE was 0.940 and
0.0016, respectively. Zapata’s and bootstrap methods averaged 0.864 and 0.912,
respectively. The MLE routine demonstrated the closest coverage rate to 95% with
the smallest standard error compared to all three techniques while Zapata’s
performance appears to worsen evaluated against haplotype-based findings. This
drop in performance may originate from errors introduced when estimating

( )'D̂VZapata  after inferring the haplotype frequencies. Furthermore, the bootstrap

approach had poor coverage when the magnitude of LD was high, but improved
with increase in sample size. This may be due to the problem that the EM algorithm
does not always find the maximum of the likelihood function.

4 Discussions

We compare three methods of estimating the CI of the commonly used normalized
gametic disequilibrium measure, 

'D
. Aside from the bootstrap approach, we

present two direct methods for determining the CI through the use of the asymptotic
sampling variance of 

'D
. Both later methods assume that 

'D
 has a normal

distribution under large sample size and its sampling variance is approximated

either by ( )'D̂VZapata  or ( )'D̂VMLE . Our findings suggest that the MLE method

outperforms the remaining two methods by displaying satisfactory coverage and
smaller variation with respect to the length of CI and the coverage rate. However,
under conditions of small sample size, extreme allele frequencies and 0'3.0 <<− D ,
it appears that the bootstrap performs best. We attribute the ill performance of
Zapata’s and MLE method under these conditions to high variability of 

'D
, as

observed by Zapata et al. [2], and small sample size. Considering that the bootstrap
method is more time consuming, we suggest using the MLE method in large-scale
studies.

When the genotype data is used in estimating the CI of 
'D

, the trend of the
performance is nearly identical with that obtained using the haplotype data.
However, we notice that there are differences between the coverage rate and such
differences are affected by the magnitude of the pre-specified 

'D
 and the allele



frequencies at the two loci. The increase in CI lengths and a reduction in average
coverage rates may reflect the influence from haplotype frequency estimation.

References

1. Gabriel S.B. and Schaffner S.F., Nguyen H., et al., Science 296 (2002) pp.
2225-2229.

2. Zapata C., Alvarez G., Carollo C., Am. J. Hum. Genet. 61 (1997) pp. 771-774.
3. Hall J.M., Lee M.K., Newman B., et al., Science 250 (1990) pp. 1684-1689.
4. Kruglyak L., Nat. Genet. 22 (1999) pp. 139-144.
5. Nordborg M. and Tavaré S., Trends Genet. 18 (2002) pp. 83-90.
6. Risch N. and Merikangas K., Science 273 (1996) pp. 1516-1517.
7. Weiss K.M. and Clark A.G., Trends Genet. 18 (2002) pp. 19-24.
8. Sachidanandam R., Weissman D., et al., Nature 409 (2001) pp. 928–933.
9. Venter J.C., Adams M.D., Myers E.W., et al., Science 291 (2001) pp. 1304-

1351.
10. Daly M.J., Rioux J.D., Schaffner S.F., et al., Nat. Genet. 29  (2001) pp.

229–232.
11. Jeffreys A.J., Kauppi L., Neumann R., Nat. Genet. 29 (2001) pp. 217-222.
12. Patil N., Berno A.J., Hinds D.A., et al., Science 294 (2001) pp. 1719-1723.
13. Lewontin R.C., Genetics 49 (1967) pp. 49-67.
14. Devlin B. and Risch N., Genomics 29 (1995) pp. 311-322.
15. Hedrick P.W., Genetics 117 (1987) pp. 331-341.
16. Lewontin R.C., Genetics 120 (1988) pp. 849-852.
17. Efron B., Ann. Stat. 7 (1979) pp. 1–26.
18. Efron B. and Tibshirani R.J., An Introduction to the Bootstrap. (Chapman &

Hall, New York, 1993).
19. Zapata C., Alvarez G., Carollo C., Ann. Hum. Genet. 65 (2001) pp. 395-406.
20. Teare M.D., et al., Ann. Hum. Genet. 66 (2002) pp. 223-233.
21. Ferguson T.S., A Course in Large Sample Theory. (Chapman & Hall, London,

1996).
22. Excoffier L. and Slatkin M., Mol. Biol. Evol. 12 (1995) pp. 921-927.
23. Hawley M.E. and Kidd K.K., J. Hered. 86 (1995) pp. 409-411.
24. Long J.C., Williams R.C., Urbanek M., Am. J. Hum. Genet. 56 (1995) pp. 799-

810.




