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Residual dipolar coupling (RDC) represents one of the most exciting emerging NMR
techniques for studying protein structures. However, solving a protein structure using RDC
data alone is a highly challenging problem as it often requires that the starting structure
model be close to the actual structure of a protein, for the structure calculation procedure to
be effective. We report in this paper a computer program, RDC-PROSPECT, for
identification of a structural homolog or analog of a target protein in PDB, which best
matches the 1 5N-1H RDC data of the protein recorded in a single ordering medium. The
identified structural homolog/analog can then be used as a starting model for RDC-based
structure calculation. Since RDC-PROSPECT uses only RDC data and predicted secondary
structure information, its performance is virtually independent of sequence similarity
between a target protein and its structural homolog/analog, making it applicable to protein
targets out of the scope of current protein threading techniques. We have tested RDC-
PROSPECT on all 1 5N-1H RDC data (representing 33 proteins) available in the BMRB
database and the literature. The program correctly identified the structural folds for ~ 80%
of the target proteins, significantly better than previously reported results, and achieved an
average alignment accuracy of 97.9% residues within 4-residue shift. Through a careful
algorithmic design, RDC-PROSPECT is at least one order of magnitude faster than previously
reported algorithms for principal alignment frame search, making our algorithm fast enough
for large-scale applications.

1   Introduction

Since the publication of the seminal work by Tolman et al.1 and Tjandra & Bax,2
residual dipolar coupling (RDC) in weak alignment media has gained great
popularity in solving protein structures using NMR techniques. RDC provides
information about angles of atomic bonds, e.g., N-H bonds, of a protein’s amino
acids with respect to a specific 3-dimensional (3D) reference frame. Using such
information, an NMR structure could, at least theoretically, be solved through
molecular dynamics (MD) simulation and energy minimization, under the
constraints of the RDC angle information. A key advantage of RDC-based NMR
structure solution is that RDC data can be obtained using a small number of NMR
experiments and done in a very efficient manner.3 Potentially, it could also
overcome a number of limitations of traditional NOE-based NMR structure
determination techniques, e.g., the size limit for a target protein.4

Though recognized for its great potential for solving larger proteins faster, direct
application of RDC data for protein structure solution remains a highly challenging
problem. The problem mainly comes from the well-known four-fold degeneracy



nature of RDC.5 An RDC value of an N-H bond (for example) does not uniquely
define a single orientation of the N-H bond as desired, rather it only restricts the
orientation to two symmetric cones, making the search space of feasible structural
conformations extremely large. In addition, inclusion of the RDC terms in the
NMR energy function for structure calculation has resulted in a highly rippled
energy surface with innumerable sharp local minima,6 making the search problem
exceedingly difficult. In the absence of long-range NOE distance information, it is
practically intractable to find the global minimum by conventional optimization
techniques. However, if the starting model is close to the true structure, convergence
will become much easier. Therefore, a great amount of efforts have been made to
obtain good starting structures for RDC-based NMR structure calculation.

Existing methods for deriving protein structures from RDC data alone mainly
fall into two categories: de novo fragment assembly methods7-10 and whole protein
structural homology search methods.11,12 De novo methods build protein structures
by assembling structural fragments that are consistent with RDC data. These
methods typically require a complete or near-complete set of RDC data to be
effective, and are often very time-consuming. One example of such methods is the
RosettaNMR program,10 which typically need more than 3 RDC data per residue for
its structure calculation to be accurate. As these methods typically attempt to
assemble a protein structure in a sequential manner, they often suffer from problems
resulting from accumulation and propagation of small errors from each individual
fragment. Structural homology search methods generally require fewer RDC data and
much less computing time, but are applicable only to proteins with solved
homologous structures. Based on theoretical estimates on the total number of unique
structural folds in nature and on the low percentage (< 5%) of novel structural folds
among all structures submitted to PDB in the past few years,13 people generally
believe that the majority of the unique structural folds in nature are already included
in PDB. Hence structural homology search methods are becoming increasingly
popular. Annila et al.11 are the first to use assigned RDC to search for structural
homologs. Their work demonstrated the feasibility of fold recognition using RDC
data alone. Meiler et al.12 developed a program, DipoCoup, for structural homology
search using secondary structure alignment. While all the aforementioned methods
contain interesting ideas, they have been tested only on a very small set of proteins,
in a few cases only on one protein, ubiquitin. Therefore, their true practical
usefulness is yet to be determined.

We have recently developed a computer program, RDC-PROSPECT (RDC-
PROtein Structure PrEdiCtion Toolkit), for protein fold recognition and protein
backbone structure prediction. Currently the program uses only assigned N-H RDC
data in a single ordering medium and predicted secondary structure to identify
structural homologs or analogs from the PDB database. RDC-PROSPECT identifies
a structural fold through finding a structural fold in PDB, which best matches the
N-H RDC data, using a dynamic programming approach. Compared with existing
methods, RDC-PROSPECT has a number of unique capabilities. Firstly, RDC-
PROSPECT requires only a small number of RDC for fold recognition. On our test
set consisting of all publicly available N-H RDC data of 33 proteins deposited in



the BMRB database (www.bmrb.wisc.edu) and published in the literature, RDC-
PROSPECT achieves an 80% fold recognition rate on an average of 0.7 RDC data
per residue. The requirement of fewer RDC data implies smaller number of NMR
experiments needed to solve a structure. Secondly, RDC-PROSPECT does not
require sequence similarity information for fold recognition, making the program
equally applicable to proteins with only remote homologs or structural analogs in
the PDB database, which represents a significant challenge to current threading
methods. Thirdly, RDC-PROSPECT runs significantly faster than almost all
existing RDC-based methods, using a novel search algorithm for the principal
alignment frame of the RDC data.

2  Methods

An RDC measures the relative angle of an atomic bond in a residue, with respect to
the principal alignment frame14 of the protein (more rigorously, each rigid portion of
the protein structure). The principal alignment frame, represented as an (x, y, z)
Cartesian coordinate system, is dependent on the medium where the protein situates
and the protein structure itself.  In this paper, we consider only the RDC data of N-
H bonds, the easiest RDC data to get experimentally. The RDC data measured by
NMR experiments for each N-H bond is defined as15

D = Da (3cos2_ – 1) + 1.5 Dr (sin2_ cos2_ )                        (1)
where _ is the angle between the bond and the z-axis of the principal alignment
frame (x, y, z), and _ is the angle between the bond’s projection in the x-y plane and
the x-axis; Da and Dr represent the axial and rhombic component of the alignment
tensor, respectively. Intuitively, Da and Dr measure the magnitude (intensity) of the
alignment. From an NMR experiment, we will get a set of {Di} values without
knowing which Di corresponds to the N-H bond of which residue in a protein and
what the principal alignment frame is. Our goal here is to develop a computational
procedure to find a protein fold in the PDB database and search for an (x, y, z)
Cartesian coordinate system that produces a set of calculated N-H bond RDC values
using equation (1), which best match the experimental RDC data. In this paper, we
solve a constrained version of this fold recognition problem, assuming that the
RDC data are already correctly assigned to individual residues.

2.1  Alignment of RDC data with structural fold
The RDC-based fold recognition problem can be rigorously stated as follows. Let D
= (D1, …, DK) be a list of assigned experimental N-H RDC data (DNH) of a target
protein. Let D*(T, F) = (D*

1, …, D*
M) be the calculated RDC data of a template

structure T, assuming the principal alignment frame is F. We want to find an
alignment A: i_A(i) between D and D*(T, F), that minimizes the following
function:

      _i ( _1 |Di – D*
A(i)

 | / _   +  _2 M (Si,  S*
A(i)) ) + _j pGj  (2)



where Di is aligned with  D*
A(i)

 , and _ is the standard deviation of the experimental
DNH; Si and S*

A(i)
 are the predicted secondary structure type of position i of the target

protein and the assigned secondary structure of position A(i) of the template
structure; M() is a penalty function for secondary structure type match/mismatch,
with M() equals –1 for match and 1 for mismatch;  pGj is the total gap penalty for
the j-th gap in the alignment, which has the following form a + Ljb, with a being
the opening gap penalty, b being the elongation gap penalty and Lj being the length
of the j-th gap (the number of consecutive skipped elements). _1 and _2 are two
scaling factors, which are empirically determined (using simulated data) as _1 = 1 and
_2 = 1.

The D*(T, F) values of the template structure T are calculated using equation (1)
for a specified alignment frame F (we will discuss how to systematically search for
the correct alignment frame in the next subsection). To estimate Da and Dr in (1),
we use the equations in the histogram method proposed by Clore et al.:16

   Dzz   =  2 Da
   Dyy   =  - Da (1 + 1.5 Dr/Da)        (3)

where Dzz  and Dyy  are the maximum or the minimum values of the experimental
DNH, respectively, with |Dzz| > |Dyy|.  _ and _ in equation (1) are calculated for the
N-H bond of each residue of the template structure with respect to the specified
alignment frame F.

We have used PSIPRED17 for secondary structure prediction of a target protein
sequence.  We consider three classes of secondary structures: helix (H), strand (E),
and coil (C). In assessing secondary structure matches (using function M()), we
consider only PSIPRED predictions with confidence level of at least 8 on the scale
of 0-9. For a prediction with confidence level < 8, we assign a special category U
(uncertainty) to this position and set M (Si,  S*

A(i)) = 0 when Si = U.
The alignment problem also employs a few additional rules as hard constraints,

when aligning a list of RDC data with a protein structure. These include (a) if a
position in the target protein does not have assigned RDC data, its corresponding
alignment score (the D-portion in (2)) will be set to zero; (b) no penalty for gaps in
the beginning and the end of a global alignment; (c) no alignment gap is allowed in
the middle of an H- or E- secondary structure of the template structure; and (d) we
consider alignment scores defined by (2) only for helix and strand regions while for
coil regions, we penalize length difference of aligned coils. This is done for the
following consideration: homologous proteins are generally more conserved among
their corresponding core secondary structures (helices and strands) but not the coil
regions. Considering detailed sequence alignment between coil regions often hurts
the fold recognition and alignment accuracy, especially when dealing with remote
homologs and structural analogs.

We have implemented a simple dynamic programming algorithm for finding the
globally optimal solution of this alignment problem under the specified hard
constraints. The dynamic programming algorithm consists of a set of recurrences,
similar to the Needleman-Wunsch algorithm.18 At each step of the recurrence
calculation, the hard constraints are checked to guarantee no violation of constraints.



2.2  Assessment of prediction confidence
Considering that the alignment scores are not normalized with respect to the lengths
and the composition of amino acids, we use Z-score to assess the quality of an
alignment. For an RDC alignment problem with a set of experimental RDC data
DNH and a template structure T, we calculate the Z-score of the alignment score T0 as
follows. The RDC data with their respective secondary structure types are randomly
shuffled multiple times. For each reshuffled RDC list, we calculate the alignment
score with the template T. The Z-score of T0 is defined as

Z  =  (Ta – T0) / _a  (4)
where Ta and _a  are the average alignment score of the reshuffled RDC lists and
their standard deviation. For our current work, we run 500 times of reshuffling (we
have also tried significantly larger number of reshuffling but found that 500 gives
similar Z-scores to that with higher numbers). Figure 1 shows a plot of Z-score
with respect to the fold recognition specificity on our test set of 33 proteins against
our template structure database. For example, when Z-score is > 20, the prediction
specificity is > 70%.

Figure 1.  Fold recognition Z-score versus prediction specificity.

2.3  Principal alignment frame search and fold recognition
One of the challenging issues with the RDC-based fold recognition problem is that
we do not know the principal alignment frame from the experimental data, which is
required for the calculation of RDC values using equation (1). If the 3D structure of
the target protein is known, this problem is equivalent to finding the correct
rotation, in a fixed 3D Cartesian coordinate system of the structure that gives the (_,
_)-angles of its N-H bonds and hence the calculated RDC values, which best match
the experimental RDC data. For our fold recognition work, the problem is to find
the rotation of a template structure that gives the best match with the experimental
data, defined by equations (2) and (4). Note that any rotation of a 3D protein
structure (say in PDB format) can be accomplished by a combination of clockwise
rotations around x-axis by _ degree and around z-axis by _ degree. More specifically,
the new coordinates of a data point [x, y, z], after a (_, _)-rotation, can be calculated
as
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where the two rotation matrices are defined as
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For each given template structure, our fold recognition algorithm will search
through all possible (_, _)-rotations. For each (_, _)-rotation, the algorithm
employs the alignment algorithm of Section 2.1 to find the optimal alignment
between the (assigned) experimental RDC data and the calculated RDC data for the
template under this particular rotation. One thing to notice is that the range of both
_ and _ is between 0 and 180 degrees as there is no need to consider 180 < _, _ ≤
360 because of the four-fold degeneracy of RDC data.20

We have extensively tested and evaluated different increments for _ and _,
ranging from 1 degree to 30 degrees. We found that the search surface (made of
values of the calculated RDC) over the (_, _)-plane is very smooth, and an
increment of 30 degree is adequate for our fold recognition.  So we use 30 degrees as
default increment value for RDC-PROSPECT. For each template, our algorithm
will conduct 36 (6x6) RDC data alignments. The alignment with the optimal
alignment score among the 36 alignments is considered the best alignment between
the RDC data and the template. For cases we need to get very accurate alignment
frame, we use a finer grid for searching the (α ,γ) angles, which takes longer search
time.

Our overall fold recognition procedure is carried out as follows. For each set of
assigned RDC data, we search our template database consisting of all proteins in the
SCOP40 database.19 Currently, SCOP40 (release 1.63 of May 2003) consists of
approximately 5,200 protein domains covering 765 folds and 2,164 families.
Hydrogen atoms are added to the structure using the program REDUCE.20 Secondary
structure assignment is carried out using the program DSSPcont.21 For each
template, we calculate the Z-score of its best alignment with the experimental RDC
data using equation (4). Then all the templates are ranked based on their alignment
raw scores.

3  Results



We have tested RDC-PROSPECT on all publicly available N-H RDC data deposited
in the BMRB database and published in the literature (by July, 2003), which contain
51 sets of RDC data for 33 proteins. The goal of the tests is to evaluate the fold
recognition rate using RDC data (plus predicted secondary structure of a target
protein) and the accuracy of the alignment with the correct structural folds. Tables 1
and 2 summarize the fold recognition and alignment results on the 33 proteins using
51 sets of RDC data – for some proteins, there are multiple sets of RDC data
collected by different labs and/or in different ordering media.

For the fold recognition prediction, we consider a prediction as correct if a
member protein from the same family or superfamily of the target protein is ranked
in top three among all proteins in SCOP40, otherwise as incorrect. From Table 1,
we can see that RDC-PROSPECT correctly identified the structural folds for 41 out
of 51 RDC data sets (80.4% success rate), and identified 26 structural folds for 33
target proteins (78.8% success rate). Hence we consider the performance of RDC-
PROSPECT as quite successful even under our very conservative definition of
correct fold recognition, i.e. ranked among top three out of thousands of possible
structures.

It is somewhat unfortunate that there is very little published data by other
RDC-based structure prediction programs. Most of them were tested only on one
protein, ubiquitin. The only meaningful comparison we can do is with RosettaNMR
that was tested on 4 proteins using experimental RDC data, ubiquitin (1d3z), BAF
(1cmz), cyanovirin-N (1ci4), and GAIP (2ezx), and 7 proteins using simulated RDC
data.10 Of the 4 proteins with experimental data, RosettaNMR predicted correct
structures for 1d3z and 1cmz, and partially (~50%) correct structures for 1ci4 and
2ezm. Our program correctly identified the backbone structures for 1d3z, 1cmz, and
2ezx (the same protein as 1ci4), but did not find the correct structural fold for 2ezm
due to inadequate secondary structure information (only 9.9% of the residues have
reliable secondary structure prediction by PSIPRED).

From Table 2, we can see that alignment accuracy for the 26 target proteins
with correct fold recognition is very high. The percentage of 4-shifts is commonly
used for assessing  threading  alignment  accuracy.   RDC-PROSPECT   achieved  
an   average alignment accuracy of 97.9% residues aligned within 4-residue shifts to
their correct positions. None of the other RDC-based structure prediction programs
provide this kind of statistics.

Figure 2 shows the predicted structures (right) versus the actual structures (left)
for four target proteins with < 25% sequence identity with their best structural
templates.

4  Discussion

Our  results  have  clearly  demonstrated  that  RDC-based  fold  recognition,   when
Table 1.  A summary of fold recognition accuracy

Targe
t

No.

PDB
code

Length Data
Set
No.

template
name

template
length

Seq.
Iden.

Rank Z-score



1 1ap4 89 1 d2pvba_ 107 19.1 1 10.2
2 d2pvba_ 107 19.1 1 10.2
3 d2pvba_ 107 19.1 1 10.5

2 1b4c 92 4 d1ksoa_ 93 37.2 2 11.0
3 1brf 53 5 d1rb9__ 52 64.8 1 7.0

6 d1dx8a_ 70 32.9 1 5.0
4 1c05 159 7 d1fjgd_ 208 45.2 1 12.6
5 1cmz 152 8 d1dk8a_ 147 28.8 1 10.1

9 d1agre_ 128 37.5 1 12.3
6 1d3z 76 10 d1bt0a_ 73 59.2 1 12.5

11 d1bt0a_ 73 59.2 1 13.7
12 d1h4ra3 84 20.4 1 14.4
13 d1h8ca_ 82 18.6 1 16.0
14 d1bt0a_ 73 59.2 1 13.4
15 d1h4ra3 84 20.4 1 15.8
16 d1h4ra3 84 20.4 1 15.2
17 d1h4ra3 84 20.4 1 16.9
18 d1bt0a_ 73 59.2 1 14.7
19 d1h4ra3 84 20.4 1 17.1
20 d1bt0a_ 73 59.2 1 13.1

7 1d8v 263 21 d1hwma_ 251 37.0 1 97.5
8 1e8l 129 22 d31zt__ 129 100 1 14.1

23 d31zt__ 129 100 1 12.8
9 1f3y 165 24 d1jkna_ 165 99.4 1 14.8
10 1i42 89 25 d1i42a_ 89 100 1 10.6
11 1j6t,A 148 26 d1a6ja_ 150 24.2 1 24.4
12 1j6t,B 85 27 d1opd__ 85 97.6 1 23.6
13 1j7o 76 28 d1exra_ 146 49.0 1 21.3
14 1j7p 67 29 d1j7qa_ 86 18.6 1 9.7
15 1jwe 114 30 d1b79a_ 102 88.6 1 16.2
16 1khm 89 31 d1j4wa1 74 26.7 1 45.1
17 1kqv 76 32 d1irja_ 85 28.7 1 11.4
18 1l3g 136 33 d1bm8_ 99 72.8 1 16.5
19 1lud 162 34 d1ra9__ 159 29.8 1 26.6
20 1n7t 103 35 d1mfga_ 95 91.3 1 19.4
21 1ny9 90 36 d1ash__ 147 18.2 1 12.6
22 2ezx 89 37 d1ci4a_ 89 97.8 1 7.4
23 3eza,A1 123 38 d1zyma1 123 100 1 14.4
24 3eza,A2 125 39 d1zyma2 125 100 1 8.6
25 3eza,B 85 40 d1opd__ 85 97.6 2 14.8
26 3gb1 56 41 d2igd__ 61 82.0 1 13.2

Only the highest ranked correct template is listed for each protein. The first two columns represent
the target id in our test and in PDB code. The third column represents the sequence length of the
target. The fourth column represents the id of the RDC data set for each protein, some of which
have multiple data sets. The fifth and sixth columns are the correct template id in SCOP code and its
sequence length. The seventh column represents the sequence identity between a target protein and
its correct template. The eighth column shows the rank of the top template among all SCOP40
proteins while the ninth shows the corresponding Z-score. No correct templates are identified in top
three templates for proteins 27-33 (including 1d2b, 1ghh, 1o8r, 1qn1, 2ezm, 2gat, 4gat).

Table 2.  Summary of alignment accuracy
Shift 0-shift 1-shift 2-shift 3-shift 4-shift

Accuracy (%) 63.1 90.1 95.3 96.8 97.9



 x-shift represents the percentage of residues that are within x residues to its correct alignment
positions.

            
Figure 2.  Actual (left) and predicted structure (right) on four target proteins with < 25% sequence

identity with their best structural folds in SCOP40.

coupled with predicted secondary structure, is highly effective and robust for
identification of native-like structural folds and prediction of its backbone structure.
Our test examples cover a wide range of prediction scenarios. The test proteins span
over 5 SCOP classes and more than 20 SCOP fold families with varying sequence
lengths. Their N-H RDC data coverage ranges from 43.4% to 95.5%, and their
predicted secondary structure ranges from 9.9% to 76.3% (for the remaining residues,
their predictions are “uncertain” and hence not used). We now discuss some key
advantages and unsolved issues of RDC-PROSPECT along with some future
developments.

4.1  Efficient algorithm for alignment tensor orientation search
If we use N to represent the number of rotation angles we have to search along each
axis, previous similar algorithms9,22 all require N3 combinations of rotations while
our algorithm requires only N2, saving at least one order of magnitude of search time
and making our program much faster than other similar programs.

4.2 Combination of RDC data and predicted secondary structure for fold recognition
We found that predicted secondary structure, though not perfect, complements the
RDC data for fold recognition. While RDC data are good for identification of global
structural environment, secondary structure is good for finding the local structural
environment (e.g., in a helix or in a strand). Our test data have shown that without
either one of the two types of data, RDC-PROSPECT’s performance drops
significantly. In this work, we used predicted secondary structures based on protein
sequence information only. Actually, secondary structures could be derived more



accurately using experimental data, like chemical shifts data. The only reason we did
not use chemical shifts is that only 10 out of 33 proteins have such data available in
the BMRB database. Using chemical shifts data will improve the performance of the
program. For example, the otherwise missed correct template for the protein 2ezm
can be identified when chemical shifts based secondary structure prediction is used.

4.3  Why some protein structures cannot be correctly predicted?  
For 7 out of 33 target proteins, RDC-PROSPECT did not place the correct
structural folds in the top three templates. We have done a detailed analysis on the
failed predictions and found that the failures can be attributed to two classes of
reasons.

a. proteins composed mainly of coils: this group includes 1o8r, 1qn1, 2gat,
4gat (6gat). As discussed in Section 2, RDC-PROSPECT considers only coil length
conservation but does not conduct detailed alignment for coil region. When a protein
is mainly composed of coils, RDC-PROSPECT does not perform well. Work is
currently under way to improve on such cases.

b. others: we found that various other reasons could also contribute to the
failure of our RDC-based fold recognition. The reasons range from inaccurate
estimation of Da and Dr, to incorrect prediction of secondary structures, to errors in
the measured RDC data.

In this work, we have used raw RDC data without treatment of the data for
contributions from internal dynamics. Our results suggest this is feasible in
practice. As Rohl and Baker discussed,10 internal dynamics likely contribute to the
observed RDC to a greater content in flexible loops. Our method doesn’t perform
alignment in the coil region, so this greatly alleviates the effect of dynamics that
could potentially harm the alignment.

4.4  Comparisons with DipoCoup
DipoCoup is a popular program to perform 3D structure homology search using
RDC and pseudo-contact shifts together with secondary structure information. A
basic problem with DipoCoup is that it does not use gap penalty in alignment, thus
its applicability is significantly limited. In contrast, RDC-PROSPECT allows the
flexibility of having gaps inside or outside secondary structures. Moreover,
DipoCoup uses secondary structure fragment as alignment unit, while RDC-
PROSPECT conducts alignments at residual level, making it more flexible and
robust. This also allows us to use sparse secondary structure information, which
DipoCoup could not handle.

4.5  Assignment of RDC data
Like other RDC-based structure prediction programs, RDC-PROSPECT assumes
that the RDC data have been assigned to individual residues. This should not limit
its applications, as sequential assignments of NMR data (RDC data included), unlike
NOE data assignments, are generally solvable using existing programs. A recently



published work by Coggins & Zhou23 has achieved ~80% assignments without any
error for 27 test proteins using their PACES program. Assignments at such level
are adequate for RDC-PROSPECT to perform well for most proteins. We have
previously published an algorithm/software24 for sequential assignments of NMR
data using chemical shifts data. We are in the process of merging the two programs
to do fold recognition using unassigned RDC data.

In conclusion, our method has convincingly testified the capability of fast and
accurate protein fold recognition through combining sparse RDC data and threading
technology. An important feature of our RDC-based homology search method is
that it does not use sequence information for alignment. Our program provides a
good complimentary and crosscheck tool to the conventional threading methods.  It
is especially attractive for the low sequence identity situations that the conventional
structure prediction methods generally do not perform reliably. As we continue to
work on this project, we will (a) use chemical shifts data for more reliable prediction
of secondary structures, (b) include other types of RDC data, such as C-H RDC,
which can be easily added into the framework of RDC-PROSPECT, and (c) include
traditional statistics-based threading energy terms, such as pair-wise interaction
potentials, in our RDC-based fold recognition method, as in our threading program
PROSPECT.25 We expect that RDC-PROSPECT will prove to be useful in
structural genomics projects for high-throughput structure determinations, due to the
efficient and effective application of RDC-PROSPECT to fit sparse RDC data with
solved structures from a minimum number of NMR experiments.
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