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There has been increased work in developing automated systems that involve natural
language processing (NLP) to recognize and extract genomic information from the literature.
Recognition and identification of biological entities is a critical step in this process. NLP
systems generally rely on nomenclatures and ontological specifications as resources for
determining the names of the entities, assigning semantic categories that are consistent with
the corresponding ontology, and assignment of identifiers that map to well-defined entities
within a particular nomenclature. Although nomenclatures and ontologies are valuable for text
processing systems, they were developed to aid researchers and are heterogeneous in structure
and semantics. A uniform resource that is automatically generated from diverse resources, and
that is designed for NLP purposes would be a useful tool for the field, and would further
database interoperability. This paper presents work towards this goal. We have automatically
created lexical resources from four model organism nomenclature systems (mouse, fly, worm,
and yeast), and have studied performance of the resources within an existing NLP system,
GENIES1. Using nomenclatures is not straightforward because issues concerning ambiguity,
synonymy, and name variations are quite challenging. In this paper we focus mainly on
ambiguity. We determined that the number of ambiguous gene names within the individual
nomenclatures, across the four nomenclatures, and with general English ranged from 0%-
10.18%, 1.187%-20.30%, and 0%-2.49% respectively. When actually processing text, we
found the rate of ambiguous occurrences (not counting ambiguities stemming from English
words) to range from 2.4%-32.9% depending on the organisms considered.

1   Introduction

The amount of scientific literature has increased exponentially over the past
few years, providing a rich source of genomic information.  Recently, there has
been increased activity involving exploration of natural language processing (NLP)
and information retrieval (IR) methods to help extract, organize and facilitate access
to the information. One type of application involves automatic extraction of
genomic entities, such as genes and proteins2, 3, 4, 5, 6 . In order to perform extraction,
a system generally requires a resource that specifies and classifies genomic entities,
that associates them with normalized terms and also unique identifiers that
preferably are identifiers associated with a standardized nomenclature system so
that the extracted entities are well-defined. In addition, an automated extraction
system must be able to effectively utilize the resources.

Associating terms mentioned in text with specific biological entities is
extremely challenging because 1) new genes are continually being named or known
ones renamed, 2) the number of biomolecular entities is very large, 3) the
nomenclature conventions differ for different organisms, 4) researchers do not



strictly follow standard naming conventions when they write articles, and 5) the
names of biological entities are associated with synonymy and ambiguity: a gene
can have multiple aliases (synonyms) in addition to its official symbol, and genes
that are functionally different across species often have the same name (ambiguity).
In addition to ambiguities among gene names, problems also arise when a gene has
the same name as an English word, such as the genes named was, nervous, and to.

There are numerous specialized genomic databases, which are invaluable
resources that were developed to assist biological researchers. These databases are
also valuable for NLP purposes because they publish nomenclature and ontological
specifications for biomolecular entities in online databases that are continually
updated.  Among these are model organism databases, such as Mouse Genome
Informatics (Mus musculus: http:// www.informatics.jax.org, FlyBase (Drosophila
melanogaster. http://www.flybase.org), WormBase (Caenorhabditis elegans:
http://www.wormbase.org), and Saccharomyces (yeast) Genome Database
(Saccharomyces cerevisiae: http://www.yeastgenome.org). Although these
databases are resources for NLP, they were developed for different purposes, and
therefore a variety of automated procedures must be developed to use them
effectively for NLP. One issue is that they are heterogeneous: the database formats
are different, as are the ontological specifications and naming conventions.
Obtaining a uniform structure and semantics containing gene names and their
unique identifiers is a crucial first step in recognizing and identifying them in the
literature.  A resource developed specifically for NLP that automatically acquires
biological knowledge for NLP purposes from diverse resources, and that provides
effective tools for utilizing the knowledge would be of great benefit to the NLP and
research community. As a first step towards this goal it is important to study issues
that influence the effectiveness of such a resource. The work reported in this paper
has several aims. One is to develop a lexicon automatically for NLP use containing
gene names from several model organism databases. Later, this will be expanded to
other types of entities and organisms. The second is to study aspects of
performance, especially ambiguity, when using the lexicon to process abstracts. We
performed an experiment to test recall when using an existing NLP system
GENIES1  and the lexical resources that were generated. We analyzed the errors in
order to categorize and determine the causes. Additionally, the ambiguous nature of
the lexical resource that was created was quantified because ambiguous lexical
entries pose difficult problems for NLP systems and lead to decreased precision.
Ambiguity within each species, across all four species, and with general English
words was measured.  

2   Background and Related Work

2.1 Model Organism Databases
The research done here is based on the gene nomenclatures of four model

organisms: mouse, fly, worm, and yeast, as mentioned above, because they have



excellent resources that are easy to access through their websites, the organisms are
well-studied, much effort has gone into development of their nomenclatures, and
their nomenclatures are mature. Their websites specify information needed for NLP
such as official gene symbols, locus names, gene synonyms (aliases), unique
identifiers, as well as other information, such as mappings to the same entity in
other standardized nomenclature systems, such as Gene Ontology
(http://www.geneontology.org). Additionally, the websites list associations
betweens genes and journal articles, providing a reliable and cost-effective resource
that can serve as a gold standard for evaluation.

2.2 Name Recognition Systems

There have been many systems and experiments described in the literature that
employ different techniques for biological name recognition.  Recognition of gene
names is a partial solution: in order to obtain important biological information,
identification of the exact gene being referred to is crucial, as the names serve as
indices to the literature that contains the knowledge and the results7.  Fukuda2

developed the system PROPER which identifies protein names in the literature,
using rules based on protein nomenclature. Another system4 utilizes a name
dictionary that contains human symbols and aliases extracted from different
databases, such as HUGO, and LocusLink.  An algorithm developed by Hanisch5

uses name tokenization as well as a curated gene symbol dictionary to recognize
protein names.  Proux3 also uses both lexical analysis and contextual analysis for
recognizing gene symbols and names. In addition to protein and gene names, a
system to recognize chemical names has also been developed6. Our system GENIES
recognizes biological entities and also extracts their relations. GENIES can use
either a straightforward lexical lookup method or process text that has already been
tagged by a separate module.

Hirschman7performed a lexical-based pattern matching experiment for
tagging genes using a list of genes symbols and synonyms obtained from FlyBase.
A list of known associations between journal articles and gene names contained
within each article served as the gold standard, against which the experimental
results were compared. For the full text of the articles, this experiment yielded a
precision of 2%. This experiment showed that problems in precision were largely
due to gene name ambiguities (with each other, between genes and proteins, and
with English words).

Our work differs from the above related work on biological entity
recognition in that we are focusing on the automated acquisition of a uniform
lexical resource for NLP and on issues affecting performance of the resource,
whereas the related work focused on development of methods for recognizing gene
names. Furthermore, in measuring performance we study issues associated with
performance in conjunction with identification and not just recognition. Our work is
similar to Hirschman’s. However, we experiment with four different organisms and



quantify ambiguity within and across organisms as well as with general English
words.

3   Methods

3.1 Creating a Lexical Resource and Measuring Its Ambiguity

We automatically created a lexicon from the four model organism databases.
Specific files containing gene information were downloaded from the fly, mouse,
and worm websites in January 2003.  These files included FBgn.acode,
wormpep.93, MRK_List1.sql.rpt, MRK_LocusLink.rpt,, and  MRK_Synonym.sql.rpt
from Flybase, WormBase and MGI. The file from the yeast database,
registry.genenames.tab, was downloaded in June 2003.  Since the file format for
each different organism varied, the files were processed using different Perl scripts
to extract gene symbols, aliases, full names, and identifiers, and to map the
information to a single uniform format. For each organism, a gene name lexicon
was created so that there was one entry per gene name, which contained the gene
name, unique database identifier, and full name, if one exists. Figure 1a shows an
example of three entries associated with the same name but denoting different
genes. Also for the name of each entry, we kept track of whether it was an official
symbol, synonym (alias), or full name, but this is not shown in the figure.

fbp1 MGI:109606^formin binding protein 1
fbp1 MGI:95492^fructose bisphosphatase 1
fbp1 MGI:95568^folate receptor 1 (adult)

Figure 1a - Ambiguous gene name entries
created from the MGI nomenclature.  The name
f b p 1  refers to three distinct genes, one
corresponding to an official symbol and the other
two to aliases.

fbp1 MGI:109606^forming binding
protein 1+MGI:95492^fructose bisphos
phatase 1+MGI:95568^folate receptor 1
(adult)

 Figure 1b -  The merged lexical entry
for fbp1.  The target forms in 1a were
combined by concatenating the
individual target forms, and a ‘+’ was
used to separate them.

After the initial lexical entries were created, an automated program merged all
entries associated with the same name that had different target forms, so that all of
the entries were combined into a single entry with a single target form consisting of
the union of the individual target forms.  Figure 1b shows an example of the merged
entry. After merging entries, the number of ambiguities in the lexicons was counted.

Once the individual lexicons were created, we explored resources to use
for identifying English words so that we could identify gene names that were
ambiguous with general English. We explored three different resources, analyzed
their effectiveness, and chose the best.  We considered a resource effective if it did
not intentionally contain genes names. The three sources were: 1) a list of English
words  obtained f rom the Moby lexicon project  websi te



(http://www.dcs.shef.ac.uk/research/ilash/Moby/mwords.html) containing 74,550
English words, which occurred in two or more published dictionaries, 2) words
obtained from the Wall Street Journal (WSJ) corpus, and 3) a list of words that
occurred in Medline abstracts from 1969-2002.  The WSJ corpus consisted of one
million words selected from samples of articles appearing in 1988 and 1989. The
words in the WSJ corpus were tagged with parts of speech; we eliminated words
from the corpus that were tagged as proper nouns because they were not general
English words. As a result of manual analysis of the different lists, we determined
that the Moby lexicon was the most appropriate to use. Based on the list of English
words in the Moby lexicon, we identified gene names that were also English words
and computed how often they occurred within each organism database. They were
then removed from each of the four lexicons. In addition, we found that the majority
of single and double letter names, such as a, a1, and to were highly ambiguous even
if some were not general English words, and also removed them from the lexicons,
thereby creating individual lexicons MB (mouse), FB (fly), WB (worm), and SC
(yeast). Therefore for each lexicon, each unique name had only one entry, which
was not an English word.

The entries in each of the four lexicons were then combined to create a
combined lexicon. Using the same merging process described above, entries for
ambiguous names were merged. In the resulting lexicon each entry corresponded to
a unique name, creating lexicon ALL4. Target forms for ambiguous gene names
were combined as before except they could also consist of a union of identifiers
associated with the four different nomenclatures. Ambiguous gene names were then
quantified across species.

3.2 Evaluating Recall and Ambiguity

In independent runs, we used GENIES with each of the five lexicons to study
performance, and to analyze problems. One aspect measured recall. This was
accomplished by using the lexical lookup method in GENIES, which is a
straightforward string matching procedure that finds the longest match. We used
GENIES to capture other information as well, but for this work we only focus on
gene name recognition. We realized that straightforward string matching was not an
ideal method, but our aim was to perform an analysis of the instances where genes
were missed, and to categorize and quantify the reasons, as a preliminary step to
refining lexical lookup. Our intention was to determine the tools that would be most
useful to accompany the lexicon. We focused on the mouse model organism
(lexicon MB), and automatically obtained a gold standard set of abstracts by
downloading a file named MRK_Reference.rpt from the MGI website, which
listed MGI gene identifiers and the corresponding Medline abstracts containing
those genes. This correspondence was established manually by curators8, thus
serving as  an  independen t  and  accura te  go ld  s t andard
(ftp://ftp.informatics.jax.org/pub/reports/index.html). Based on this file, 45,000



Medline abstracts were obtained that contained at least one curated MGI gene. The
abstracts were divided into two groups according to the number of MGI genes they
were associated with: Group I had 26,000 abstracts that each corresponded to only
one curated MGI gene, whereas Group II had 19,000 abstracts associated with two
or more genes.

All 45,000 abstracts were parsed using GENIES with lexicon MB. The
output that was generated for each abstract contained the target forms as specified in
lexicon MB (see Figure 1b). For each abstract, the MGI identifiers obtained were
compared with the MGI identifiers that were associated with that abstract in the
gold standard. A true positive instance was considered to be one where the output
contained at least one instance of the appropriate MGI identifier. Recall was
calculated for each group and an overall average was computed. Recall was
computed as the ratio of the number of appropriate MGI identifiers that were found
divided by the total number that should have been found. In order to determine the
cause of recall errors, a random sample of 100 abstracts associated with errors from
each group (200 abstracts in all) was chosen, and an error analysis was performed
by one of the co-authors (LC) who has a background in biology. When manual
analysis of the abstract failed to detect the appropriate gene, the complete article
was retrieved and examined to see whether mention of the gene occurred
somewhere else in the article other than in the abstract.

In the next step, we determined the number of ambiguities in the output that
contained the appropriately retrieved MGI identifiers. This phase consisted of three
parts: one part involved using lexicon MB to determine occurrences of ambiguity
within the mouse nomenclature, the second part involved using lexicon ALL4 to
determine occurrences of ambiguities when considering all four nomenclatures, and
the third, lexicon MBE, also included ambiguities with English words. To create
lexicon MBE, gene names were added to MB that were previously removed because
they were English words. Lexicons MB, ALL4, and MBE were each used by
GENIES in three separate runs to process the set of abstracts. For each run, the
number of MGI genes that were appropriately identified and that had more than one
target form was counted and compared to the number of MGI genes that were
appropriately retrieved.

4   Results

4.1 Ambiguity of the Lexical Resources

Table 1 shows the amount of ambiguity within each database, across all
databases, and with English words for gene symbols as well as for all names, which
includes gene symbols, full names, and aliases as listed in the individual
nomenclature databases. In the mouse database, only 43 out of the 19,175 gene
symbols (0.22% of all gene symbols) had ambiguities with other gene symbols and
only 948 out of the 55,795 names (1.69% of all names) had ambiguities with other



names in the mouse database. The other databases also exhibited a very low rate of
ambiguity within the same organism, except for Flybase, which had a rate of .68%
for symbols, but 10.18% when considering all names.

Table 1. Results quantifying ambiguities of model organism gene names within each
respective database, with English words, and across databases. * The category “all names” in
the table comprises gene symbols together with synonyms (aliases).

We determined that Moby was the best of the three resources that we
experimented with for identifying English words.  The Wall Street Journal corpus
did not have broad enough coverage of English. The Medline articles did have good
coverage of English, but the corpus also contained many gene names and symbols,
and therefore was inappropriate. Based on the Moby list of words, 307 (1.60%) of
the mouse gene symbols were found to be ambiguous with English words, and an
additional 539 mouse names (1.52%) were ambiguous with English words. Flybase
exhibited the largest amount of ambiguities with English (2.40%), and WormBase
exhibited none. Results for the Yeast were similar to those for the Worm.

Not surprisingly, in all the databases, the amount of ambiguities increased
substantially when considering all four nomenclatures. When compared to the other
three organisms 1,585 mouse gene symbols (8.27%) were ambiguous, and 3,963
mouse names (6.62%) were ambiguous with the other three organisms.  The Yeast
database exhibited the largest rate of ambiguity with other databases, amounting to
20.3% for gene symbols and 18.89% for all the names.

4.2 Recall

In a total of 25,804 abstracts from Group I that were processed, 7,899 did
not result in identification of the appropriate MGI gene, yielding a recall of 69.4%.
Of the 96,712 genes that were associated with 18,636 abstracts from Group II (two
or more genes per abstract according to the gold standard), 70,305 genes were not
recognized, resulting in a much lower recall of 27.3%. Overall a recall of 36.2%
was achieved. An analysis of the failures identified seven primary reasons, which
are shown in Table 2. The most frequent cause in Group 1 was due to simple name

Ambiguities in
Database

Ambiguities with
English words

Ambiguities across
databases

MOUSE symbols (19,175) 43 (0.22%) 307 (1.60%) 1585 (8.27%)
all names* (55,795) 948 (1.69%) 846 (1.52%) 3693 (6.62%)

WORM symbols (3,221) 0 (0%) 0 (0%) 205 (6.36%)
all names* (27,268) 0 (0%) 0 (0%) 511 (1.87%)

FLY symbols (43,394) 296 (0.68%) 731 (1.68%) 1668 (3.84%)
all names* (82,553) 8407 (10.18%) 1985 (2.40%) 3279 (3.97%)

YEAST symbols(5,117) 0 (0%) 3 (0.06%) 1039 (20.30%)
all names* (7,264) 120 (1.65%) 5 (0.07%) 1372 (18.89%)



variation between names in the abstracts and in the lexical entries. This can be
further divided into more specific categories: a) punctuation variations (bmp-4,
bmp4); b) numerical variations, (syt4, syt iv), c) variations of Greek letters (iga, ig
alpha), and d) word order differences (integrin alpha 4, alpha4 integrin). Gene
name variations accounted for 79% of the failures in Group I, and for 22% in Group
II. However, when errors in only abstracts were considered, the error rate in Group
II became 61%. A significant source of error occurred in Group II (58%) because
we processed only abstracts, but the curated genes appeared in the full text only and
not in the abstracts. In contrast, only 2% of Group I errors were due to this reason.
Another substantial source of error was due to partial matches (trophoblast specific
protein alpha, trophoblast specific transcription factor), which accounted for 14%
in Group I. Smaller amounts of error were due to several other reasons: a) a gene
name was not found in either the abstract or in the full text, b) a gene name was the
same as an English word, which was deliberately removed from the lexicon, c) gene
names only appeared in the reference section but not in the text of the article, and d)
the original abstract was missing from the Medline database.

Table 2. Reasons for
recall failures based
on analysis of 100
abstracts in Group I
and 100 genes in
Group II. *Numbers
in parentheses sign-
ify the error occurred
in the full text and
not in the abstract.

4.3 Ambiguities in the Output

We determined ambiguous occurrences when using the MB lexicon. For
Group I abstracts, 1,557 (8.7%) out of 17,891 MGI genes that were recognized
appropriately by the straightforward lookup method had an ambiguous target form.
Similar results were found for Group II abstracts, where 2,073 (7.9%) of the 26,378
genes had multiple target forms; the rates of the two groups did not differ
significantly. Similar results were obtained for Group I and II abstracts, and
therefore we combined the results. In total, 43,721 MGI genes were recognized
correctly; of those 10% (4,389) had multiple mouse gene targets, and 24.7%
(10,818) of the MGI genes had identical symbols with one or more fly genes. The
ambiguities with C. elegans and yeast were 2.4% and 4.2%, respectively. Overall
32.9% of the curated MGI genes shared the same name with other genes, either
within MGI database or across the species we examined (see Table 3).

The last question we addressed was ambiguity with English words. With
lexicon MB (which had English words removed), roughly 328,000 gene symbols
were recognized by the lexical lookup method.  When Moby English words were

Reasons for failure Group I Group II Total
1. Gene name variations 79 22 (8)* 101 (8)*
2. In full text only 2 58 60
3. Partial match 14 14 (6)* 28 (6)*
4. Not in article at all 1 4 5
5. Same as English word 3 1 4
6. In reference section only 0 1 1
7. Abstract missing 1 0 1
Total 100 100 200



included and lexicon MBE was used, about 149,000 additional MGI IDs (a 45%
increase) were obtained when processing the same set of abstracts, bringing the total
to 477,000.

Table 3. Occurrences of ambiguities of
MGI gene names within MGI and across
species. These were obtained as a result of
processing a set of 45,000 abstracts. Note
that the total number of ambiguities is not
the simple sum of individual ambiguities
since many overlap.

5  Discussion

Results showed that the number of ambiguous names within each species
varied from 0%-10.18%, with the number per name ranging from 2 to over 100;
most ambiguities were caused by gene synonyms or aliases. For example, fbp1, as
shown in Figure 1, corresponded to 3 different genes, but 2 of the names were
aliases. One factor contributing to ambiguity is that some nomenclatures
intentionally include broader terms in their synonym lists to facilitate access to gene
data because authors do not always use the appropriate names. One potential
solution would involve refinement of the synonym lists provided by the databases to
include a separate category for terms that are broader. Another factor that
contributes to ambiguity is the gene nomenclature rules established by the organism
databases themselves. The four different species have various naming rules that
specify how researchers should name their genes.  For example, the rule for naming
yeast genes states that the gene name symbol should consist of three letters (the
gene symbol) followed by an integer (e.g. ADE12), and also requires that the name
symbol be unique within that nomenclature. The low percentage of ambiguities
within the yeast database, as well as with English words shows that this rule was
effective in avoiding problems due to ambiguity. Similarly, the standards for
naming genes in WormBase follow this pattern: “A Predicted Gene: A dot name,
such as F59E12.2; A Named Gene: A three letter name, such as zyg-1.” This also
accounts for the low percentage of ambiguities within the worm database and with
English words, but there still exists ambiguity with names in other organisms as
shown in Table 1.

However, the other two species (mouse and fly) have a higher percentage of
ambiguities within their respective databases. The naming conventions for these two
are more lenient. For the fly nomenclature, the names should be concise, should
allude to the gene's function, mutant phenotype or other relevant characteristic, and
should not have been previously used for a Drosophila gene.  This more general rule
does not place too many restrictions on the format of the gene names, and thus more
ambiguities tend to arise. For example, alp is a symbol for the abnormal leg pattern
gene and is also a synonym for activin like protein at 23B.  For the mouse gene

Ambiguities Number
Within MGI 10.0% (4,389)
With Flybase 24.7% (10,818)
With WormBase 2.4% (1,045)
With Yeast 4.2% (1,798)
Total 32.9% (14,373)



nomenclature the names of genes and loci should be brief, should convey accurate
information, and should begin with a letter. This less stringent rule may lead to
ambiguities within the database, as well as with English words. One potential
solution would involve refinement of the naming conventions.

Not surprisingly, the ambiguities of gene names across the four nomenclatures
seemed to be more severe, ranging from 1.19%-20.30%. Factors similar to the ones
we discussed above for a single nomenclature apply in this situation also. However,
another factor is that historically, different nomenclatures tend to name orthologs (
the same genes in different species that typically have the same functions) with the
same name. For example, MGI has curated 9,981 mouse/human ortholog
relationships, and only 2,329 of them differ in their names. Using the same names
for orthologs makes intuitive sense and facilitates user comprehension, but is
confounding for NLP applications.

When we employed the NLP engine to recognize gene names in Medline
abstracts using the lexicon ALL4, the ambiguity problem was exacerbated. Overall,
33% of the mouse genes that were extracted shared a name in common with other
genes, either within the mouse database or across databases for different organisms.
This shows that the ambiguity problem is a serious one for NLP and that more
research in this area is needed. This problem may be reduced significantly if the
appropriate organism-specific lexicon is used to process an article. This suggests
that a method that first identifies the applicable organism(s) for each article would
help alleviate the ambiguity problem somewhat.

The information presented in this research may not be complete in a
number of respects.  We found that the worm data that we collected did not contain
any aliases.  It may be because only the official symbols are used in the literature, or
because information concerning aliases were not available on the website.  If aliases
are used in journal articles in place of the official worm symbols, they would cause
more ambiguities than we determined. This also raises the issue of completeness.
We obtained the names of synonyms (aliases) from the websites and considered
ambiguity in gene names and in the number of ambiguous occurrences based on that
information. However, the ambiguity problem would be worse if the information we
obtained was incomplete. We also did not account for ambiguities with other
organisms, or with biomedical terms, such as drug names, diseases, clinical
procedures, or symptoms. In particular, we did not consider ambiguities between
gene and protein names, which is a serious problem also. Therefore it is likely that
the quantities we obtained for ambiguities and ambiguous occurrences substantially
underestimated the problem if the broader biomedical domain were to be
considered. Future work will involve expanding our study of ambiguity to include
more organisms and also terms in the Unified Medical Language System 9, a
comprehensive nomenclature system containing medical and biological terms.
Because gene-disease and gene-drug relationships contain important genomic
information, gene names that are ambiguous with clinical terms will be worthwhile
to study further.



The amount of gene names ambiguous with English words ranges from 0-
2.4% of gene names in all four organisms. However, this seemingly low percentage
of genes could cause substantial difficulties for NLP and IR systems. If a gene name
is a frequent English word, such as was, and to it will occur frequently in the
articles, and cause a large decrease in precision unless special disambiguation
procedures are available. Such a situation is consistent with the results reported by
Hirschman and colleagues7. Their results showed an extremely low rate of precision
(2%) because English words were included in their list of gene names.  We found
that when we used a lexicon containing English words, an additional 149,000 (45%
increase) “genes” were extracted. The percent of these that occurred as actual gene
names is currently under study, but the rate is probably low as suggested by the low
rate of recall error that occurred when we removed genes that were English words
from the lexicon (2%). It appears that sacrificing genes that are English words is
likely to result in a small drop in recall and substantial increase in precision. It will
also be interesting to see in what form common English words actually appear in the
articles. For example, we did not find any occurrences of a gene named Was in the
45,000 articles.

While examining the gene names, we converted all the symbols to non-
italicized lowercase letters.  Although this helped to discover gene name
ambiguities within and across species, gene names in the literature can usually be
identified by features such as capitalization (either the first letter or all of the
letters), being italicized, or being surrounded by quotation marks or parenthesis.
Ambiguities between genes of the same string but with different cases may be easy
to resolve, as would genes that are completely or partially upper case when
occurring in the middle of sentences.  A pre-processor could easily tag these
situations and avoid ambiguities with English words.  However, this process would
still not be straightforward since different organisms may have different
conventions.  A pre-processor would have to determine which rules to use based on
which organism the article discussed.

In this study, Group I abstracts showed a substantially higher rate of recall
(69.4%) than that for Group II (27.3%). In Hirschman’s work, the full text articles
resulted in a much higher recall rate than the abstracts. Not surprisingly, in the
random sample for Group II, 58% of missed MGI genes were not in the abstracts.
Interestingly, Group I only had only 2% in this category. Presumably, this was
because these articles were identified by the curators as containing only one primary
gene, and therefore that gene was likely to be in the abstract. For abstracts with
multiple genes, many of the genes may not be considered primary findings and
therefore do not occur in the abstract, but possibly the most important ones do. The
largest recall problems occurred because of simple gene name variants. A
refinement of the string matching algorithm could alleviate this problem, and bring
about increased recall, although it could also possibly result in decreased precision.
6   Conclusions



Identifying gene names is crucial for database interoperability and for
development of automated techniques that extract important genomic information
from the biomedical literature.  Nomenclature databases are invaluable resources for
identifying gene names, but these resources are heterogeneous. Combining the
nomenclature information into one resource could facilitate interoperability and also
benefit NLP systems in this domain. However, a uniform resource alone is not
enough. Our results show that the ambiguous nature of gene names within and
across model organism databases presents a significant roadblock to reliable gene
identification. More work on disambiguation by the NLP community is needed to
address ways to resolve this problem. Furthermore, quantification of the ambiguities
and their detrimental effect on the precision of automated text processing systems
may provide useful feedback to the model organism communities. NLP methods
could be cost-effective tools to assist in the curation process, but the ambiguous
nature of the names and the lack of standard conventions across organisms are
serious obstacles for NLP.
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