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We present a method for jointly learning dynamic models of transcriptional regulatory net-
works from gene expression data and transcription factor binding location data. Models are
automatically learned using dynamic Bayesian network inference algorithms; joint learning is
accomplished by incorporating evidence from gene expression data through the likelihood, and
from transcription factor binding location data through the prior. We propose a new informative
structure prior with two advantages. First, the prior incorporates evidence from location data
probabilistically, allowing it to be weighed against evidence from expression data. Second, the
prior takes on a factorable form that is computationally efficient when learning dynamic regula-
tory networks. Results obtained from both simulated and experimental data from the yeast cell
cycle demonstrate that this joint learning algorithm can recover dynamic regulatory networks
from multiple types of data that are more accurate than those recovered from each type of data
in isolation.

1 Introduction and motivation

Discovering networks of transcriptional regulation is an important problem in molec-
ular biology, and progress toward this goal has been accelerated by the advent of new
technologies for collecting high-throughput data. Data collected using different tech-
nologies offer different perspectives on a problem, but jointly analyzing such data in
a single framework enables a consensus perspective to emerge. In addition, joint
analysis is likely to produce more accurate results since noise characteristics and bi-
ases of the various technologies should be largely independent. Here, we present
a framework for jointly learning dynamic models of transcriptional regulatory net-
works from both gene expression data and transcription factor binding location data.

Most early research on automatic learning of transcriptional regulatory networks
used only gene expression data.1,2 However, recent simulation studies suggest that
regulatory networks learned from gene expression data alone can be considerably
obscured by the recovery of spurious interactions when the number of observations
is small,3,4 although a few methods have been developed to address this problem.4

Joint learning from multiple types of data can alleviate the problem further.
Joint learning in the context of transcriptional regulation has primarily devel-

oped around two somewhat related approaches. In one approach, various types of
data are used to identifysets of genesthat interact together in the cell (pathways),
share common roles (processes), or are regulated in concert (modules). Recent note-
worthy examples include Segal et al.5 and Bar-Joseph et al.6 In the other approach,
various types of data are used to supplement gene expression data when learning reg-
ulatory network models directly. This latter approach was developed by Hartemink
et al. and applied in the context of supplemental data describing transcription factor
binding location.7 More recently, Imoto et al. proposed a similar method that applies



in the context of supplemental data describing interactions that are restricted to be
binary and symmetric,8 such as the presence of a protein-protein interaction.9

Hartemink et al.7 had two significant limitations that we overcome here. First,
because Bayesian networks must be directed acyclic graphs, the resultant models
were previously incapable of representing feedback and other dynamic processes. In
contrast, here we use a dynamic Bayesian network (DBN) framework to learn regu-
latory network models from time series data. DBNs are a class of Bayesian network
models that permit cyclic structures like regulatory feedback loops; DBNs have been
advocated for use in a biological context,10 and have been used before to analyze
time series data in contexts from transcription inE. coli11 to brain electrophysiology
in songbirds.12

Second, because computational efficiency is a serious concern, the location data
were previously treated as infallible: models that failed to include an edge where the
location data suggested one should be were eliminated from considerationa priori.
In formal terms, the prior probability for such networks was forced to zero. While
this enabled computationally efficient search, it is inconsistent with the notion that
genomic data are generally quite noisy. In contrast, here we present a new informa-
tive prior over network structures that is capable of incorporating the location data
using a smooth probabilistic model: location data provides evidence as to whether a
regulatory relationship exists, and now the more significant the location data (lower
the p-value), the more likely the edge is to be included. As a consequence, this
prior is subtler and more robust; nevertheless, it is designed to be factorable in the
context of a DBN, enabling computationally efficient local search. In fact, we can
learn a DBN model using the new structure prior in the same amount of time as
before. Moreover, unlike in Imoto et al.,8 our prior is suited to handle the kinds of
asymmetric interactions that exist between regulators and their targets.

2 Modeling framework

A Bayesian network encodes a probability distribution over a set of random vari-
ablesX = {X1, . . . , XN}. The encoding of this probability distribution consists
of two components: a network structureS and a set of parametersΘ. The network
structureS describes the qualitative nature of the dependencies between the random
variables in the form of a directed acyclic graph; the vertices of the graph repre-
sent the random variables inX and the directed edges represent the dependencies
between those variables. In particular, each variableXi is assumed to be indepen-
dent of its non-descendants given its set of parents, denotedPa(Xi). Under such a
Markov assumption, the joint probability distribution can be written:

P(x) =
N∏

i=1

P(xi | pa(Xi)) (1)



where lowercase variables denote values of the corresponding uppercase random
variables. The set of parametersΘ describes the quantitative nature of the depen-
dencies between the random variables by characterizing the individual probability
distributions in this product.

2.1 Dynamic Bayesian networks

A dynamic Bayesian network13 extends the notion of a Bayesian network to model
the stochastic evolution of a set of random variables over time; the structure of a
DBN thus describes the qualitative nature of the dependencies that exist between
variables in a temporal process. We useXi[t] to denote the random variableXi

at time t and the setX[t] is defined analogously. The evolution of the temporal
process is assumed to occur over discrete time points indexed by the variablet ∈
{1, . . . , T}. Under such an assumption, we now haveT × N interacting random
variables where previously we hadN . To simplify the situation, we make two further
assumptions. First, we assume that each variable can only depend on variables that
temporally precede it. This fairly innocuous assumption allows us to model natural
phenomena like feedback loops, but still guarantee that the underlying graph will
be acyclic. Second, we assume that the process is a stationary first-order Markov
process, which means thatP(X[t] |X[t − 1], . . . ,X[1], t) = P(X[t] |X[t − 1]).
This assumption is somewhat less innocuous, and we discuss relaxations later. Given
these two assumptions, the resultant joint probability distribution can be written:

P(x[1], . . . ,x[T ]) =
N∏

i=1

[
P(xi[1])

T∏
t=2

P(xi[t] | pa(Xi[t]))

]
(2)

where we note that the first-order Markov assumption means the variables in the set
Pa(Xi[t]) are a subset ofX[t−1]. The underlying acyclic graph withT×N vertices
can now be compactly represented by a graph withN vertices that is permitted to
have cycles (see Figure 1 for an example).

2.2 Learning the structure of a dynamic Bayesian network

The goal when learning the structure of a dynamic Bayesian network is to identify
the network structureS that is most probable given some observed dataD; in the
context of a DBN, the dataD typically consists of theT observations of theN
variables. The notion of the most probable network structure is made formal by the
Bayesian scoring metric (BSM), which is simply the log posterior probability ofS
givenD:14

BSM(S : D) = logP(S|D) = logP(D|S) + logP(S) + c (3)

where the constantc is the same for all structures and can be safely ignored. In a
fully Bayesian treatment, the calculation of the log likelihood,logP(D|S), involves
marginalizing over the distribution of possible parametersΘ, which is analytically



tractable when the variables in the network are discrete,14 as we assume here. Be-
cause the expression in (2) is factorable as a product over the variables, the resultant
closed-form expression for the log marginal likelihood can be written as a sum of
terms where each term corresponds to one variable. Thus, a local change to the
network structure—adding or deleting a single edge—affects only one term in this
sum.

An especially common choice for the log prior over structures,logP(S), is to
assume that it is uninformative: every structure is equally likely; in this case, the
prior term can be safely ignored since it is the same for all structures. In the rare
instance where an informative prior is chosen, it is typically hand-constructed by
domain experts.14 In the next section, we develop a new approach for constructing
an informative prior over regulatory network structures automatically from location
data.

3 Informative structure priors

Transcription factor binding location data provides (noisy) evidence as to the ex-
istence of a regulatory relationship between a transcription factor and genes in the
genome. This evidence is reported as ap-value, and the probability of an edge being
present in the true regulatory network is inversely related to thisp-value: the smaller
thep-value, the more likely the edge is to exist in the true structure. A more precise
formulation of this relationship is provided below.

3.1 Probability of an edge being present

We first need to derive a function to mapp-values to corresponding probabilities
of edges being present in structureS. Let us define thep-value for the loca-
tion data corresponding to edgeEi in terms of a random variablePi defined on
the interval[0, 1]. In this interval,Pi has been previously assumed to be expo-
nentially distributed16 if the edgeEi is present inS, and uniformly distributed if
the edgeEi is absent fromS (by the definition of ap-value). Formally, we have
Pλ(Pi = p | Ei ∈ S) = λe−λp/(1− e−λ), whereλ is the parameter controlling the
scale of the truncated exponential distribution, andP(Pi = p | Ei /∈ S) = 1.

Let us useβ to denoteP(Ei ∈ S), the probability that edgeEi is present
before observing the correspondingp-value. Using Bayes rule, we can show that the
probability that edgeEi is present after observing the correspondingp-value is:

Pλ(Ei ∈ S | Pi = p) =
λe−λpβ

λe−λpβ + (1− e−λ)(1− β)
(4)

As the parameterλ increases, the mass of this distribution becomes more concen-
trated at smaller values ofPi; conversely, asλ decreases, the distribution spreads out
and flattens. The role of the parameterλ can be more clearly understood by con-
sidering the valuep∗ obtained by solving the equationPλ(Ei ∈ S | Pi = p∗) =



Pλ(Ei /∈ S | Pi = p∗), which yields:

p∗ =
−1
λ

log
[
(1− e−λ)(1− β)

λβ

]
(5)

For any fixed value ofλ, an edgeEi is more likely to be present than absent if the
correspondingp-value is below this critical valuep∗ (and vice versa). As we increase
the value ofλ, the value ofp∗ decreases and we become more stringent about how
low a p-value must be before we consider it as prior evidence for edge presence.
Conversely, asλ decreases,p∗ increases and we become less stringent; indeed, in
the limit asλ → 0, we can show thatPλ(Ei ∈ S | Pi = p) → β independent of
p, revealing that if we have no confidence in the location data, the probability that
edgeEi is present is the same valueβ both before and after seeing the corresponding
p-value, as expected. Thus,λ acts as a tunable parameter indicating the degree of
confidence in the evidence provided by the location data; this allows us to model
our belief about the noise level inherent in the location data and correspondingly, the
amount of weight its evidence should be given.

3.2 Bayesian marginalization over parameterλ

One approach to suitably weighing the evidence of the location data would be to
somehow select a single value forλ, either by guessing or by some other heuristic
like finding the value ofλ that corresponds to a certain “magic” value forp∗ like
0.001. Instead, we adopt a more robust Bayesian approach that avoids the selection
of a single value and instead marginalizes overλ. For convenience, we assume that
λ is uniformly distributed over the interval[λL, λH ] and then integrateλ out of (4)
to yield:

P(Ei ∈ S | Pi = p) =
1

λH − λL

∫ λH

λL

λe−λpβ

λe−λpβ + (1− e−λ)(1− β)
dλ (6)

Although (6) cannot be solved analytically, it can be solved numerically for fixed
Pi = p. Since we have a finite set ofp-values for a given set of location data, we
precompute this integral for eachp-value and store the results in a table for later use.
The computational overhead associated with marginalizing overλ is thus constant.
The net effect of marginalization is an edge probability distribution that is a smoother
function of the reportedp-values than without marginalization (the tail is much heav-
ier; for a visual depiction, please see the figure in the supplemental material).

3.3 Prior probability of a structure

We express the complete log prior probability over structures using the following
edge-wise decomposition:

logP(S) =
∑

Ej∈S

logP(Ej ∈ S | Pj = p) +
∑

Ek /∈S

logP(Ek /∈ S | Pk = p)) (7)



Figure 1. Simplified schematic of a first-order Markov DBN model of the cell cycle. On the left, variables
X1 throughX4 are shown both at timet andt + 1; variableφ represents the cell cycle phase; dashed
edges are stipulated to be present whereas solid edges are recovered by the learning algorithm. On the
right, a compact representation of the same DBN model in which the cycle betweenX4, X3, andX2 is
apparent.

where the term corresponding to the normalizing constant has been dropped since it
is the same for all structures. Analogous to the likelihood calculations, the calcula-
tions of the prior under this formulation are computationally efficient: a local change
to the network structure affects only one term in this sum. As a result, we need not
recompute the entire prior with each local change.

Note that in the absence of location data pertaining to a particular edge, we
simply use the probabilityP(Ei ∈ S) ≡ β for that edge. Our informative prior is
thus a natural generalization of traditional priors: in the absence of any location data
whatsoever, the prior probability of a network structure is exponential in the number
of edges in the graph, with edges favored if we chooseβ > 0.5 and edges penalized
if we chooseβ < 0.5. In the special case whereβ = 0.5, the prior over structures is
uniform.

4 Learning dynamic models of the cell cycle

We assume above that the stochastic process regulating the expression of genes
throughout the cell cycle is stationary. This poses a bit of a problem since we may
have a different underlying genetic regulatory network during each phase of the cell
cycle. To overcome this problem, we employ an additional variableφ that can be
used by the model to explain how each variable’s regulators depend on the cell cy-
cle phase. The phase variableφ is multinomial and has as many states as there are
phases in the cell cycle, allowing us to model a different stationary process within
each phase. If we can label each of the time points with the appropriate phase, the
inference problem reduces to learning network structure with complete data. We
prefer this option to the alternative of learning a hidden phase variable because in
our context, the quantity of expression data that is available is quite limited; besides,
the state ofφ changes smoothly and predictably so labeling each time point with the
appropriate phase is fairly straightforward. A simplified schematic of such a DBN
model of the cell cycle is depicted in Figure 1.

Because space is quite limited here, we provide only a brief description of the
basic structure of each of our experiments (for further details, please see the supple-
mental material). The experimental gene expression data are discretized into three



states using interval discretization;4 the simulated data are discretized into two states
because the generating model is Boolean. The discretized data in each case are used
to compute the log likelihood component of theBSM. The log prior component
is computed from the location datap-values using (6) and (7). The parameterλ is
marginalized over a wide range of values, settingλL = 1 to avoid problems near
zero (λL = 1 corresponds top∗ = 0.459) andλH = 10000 to avoid problems near
infinity (λH = 10000 corresponds top∗ = 0.001). We setβ = 0.5 so that edges
for which we have no location data are equally likely to be present or absent in the
graph; as a consequence, without location data, edge presence in the graph depends
on expression data alone. We use simulated annealing as a heuristic search method
to identify network structures with high scores because learning optimal Bayesian
networks is known to be NP-hard.14 The output of our DBN inference algorithm
is the network structure with the highestBSM score among all those visited by the
heuristic search during its execution.

4.1 Results using simulated data

We use simulated data from a synthetic cell cycle model to evaluate the accuracy
of our algorithm and determine the relative utility of different quantities of avail-
able gene expression data. The synthetic cell cycle model involves100 genes and a
completely different regulatory network operates in each of the three phases of the
cycle. The100 genes include synthetic transcription factors, only some of which
are involved in the cell cycle, and only some of which have simulated location data
available. The target genes of the transcription factors are sometimes activated and
sometimes repressed; some are under cell cycle control, but many are not. In addi-
tion, we include a number of additional genes whose expression is random and not
regulated by genes in the model. The simulated gene expression data is generated
using the (stochastic) Boolean Glass gene model.17 Noisy p-values for the simu-
lated location data associated with a subset of the regulators are generated with noise
models of varying intensity.

We repeatedly conduct the following three experiments: score network struc-
tures with expression data alone, ignoring the log prior componentlogP(S) in (3);
score network structures with location data alone, using the prior component of the
score as given by (7) and ignoring the log likelihood componentlogP(D|S) in (3);
and score network structures with both expression and location data. We use these
experiments to evaluate the effects of location data with different noise characteris-
tics, expression data of varying quantity, and different choices forβ.

Each of our experiments is conducted on five independently-generated synthetic
data sets and results are averaged over those five data sets. Most of the results are
presented in the supplemental material, but Figure 2 offers a representative result.
The vertical axis measures the (average) total number of errors: the sum of false pos-
itives and false negatives in the learned network; the total number of errors relative
to the synthetic network in our experiment can range from0 to 10000. As expected,



Figure 2. Total number of errors while learning a synthetic cell cycle network using (noisy simulated)
expression and location data, separately and with both types of data together. The graph shows the effect
of increasing the number of cell cycles worth of expression data, both with and without location data. The
dashed horizontal line represents learning using location data alone.

the total number of errors drops sharply as the amount of available expression data
increases. The figure demonstrates that our joint learning algorithm consistently re-
duces the total number of false positives and false negatives learned when compared
to the error rate obtained using either expression or location data alone. Also, ob-
serve that the availability of location data means that we require typically only half
as much expression data to achieve the same error rate as would be achieved with
expression data alone, suggesting that the availability of location data can be used to
compensate for small quantities of expression data.

4.2 Results using experimental data

We next apply our joint learning algorithm to uncover networks describing the reg-
ulation of transcription during the cell cycle in yeast. We use publicly available cell
cycle gene expression data18 and transcription factor binding location data.19 The
gene expression data consist of69 time points collected over8 cell cycles. Since
these belong to different phases, the resultant number of time points in each phase
is quite small. As a consequence, we choose to use only three states for the phase
variable, by splitting the shortest phaseG2 in half and lumping the halves with the
adjacent phases. Thus, the three states of our phase variable correspond roughly to
G1, S + G2, andG2 + M . To generate a phase label for each time point, we select
characteristic genes known to be regulated during specific phases.18 Guided by the
expression of these characteristic genes, we can assign a phase label to each time
point. This is done separately for each of the four synchronization protocols in the
dataset (alpha, cdc15, cdc28, and elu).

We select a set of25 genes, of which10 are known transcription factors for



Table 1. Comparison of the highest scoring networks found in four different experiments with the gold
standard network. As discussed in the text, the gold standard contains edges from only the10 variables
for which both location and expression data is available.

Experiment TP TN FP FN
Expression data only 7 181 20 32
Location data only 25 184 17 14
Expression and location data (old prior) 23 187 19 11
Expression and location data (new prior) 28 189 12 11

which we have available location data. The only important cell cycle transcription
factor with location data missing from this set is FKH2; we are not able to use it in
our analysis because expression data is missing for many of the time points. The
remaining15 genes in our set are selected on the basis of their known regulation by
one or more of these10 transcription factors. We apply our DBN inference algo-
rithm on this set of25 variables. Just as with the simulated data, we learn network
structures using expression data alone, using location data alone, and jointly from
both expression and location data. In the latter case, we evaluate both our old prior,7

as before with a hard cutoff ofp = 0.001, and our new informative prior.
As an evaluation criterion (which is more difficult in this context than in the

synthetic network context), we create a “gold standard” network consisting of the
set of edges that are known to exist from one of the10 transcription factors with
both expression and location data to any one of the other24 genes in our set; we
do not count edges from the other15 genes when comparing with our gold standard
since it would be difficult to determine whether recovered edges are true or false
positives, and whether omitted edges are true or false negatives. The gold standard
comes from a compiled list of evidence in the literature and from the Saccharomyces
Genome Database (http://www.yeastgenome.org), but we have tried to ensure that it
depends on neither the specific expression data nor the specific location data used in
these experiments. Note also that the gold standard is likely not the true underlying
regulatory network, but rather is the best we can do given the current understanding
of the yeast cell cycle (a bronze standard?).

With these caveats in place, Table 1 shows the total number of positives and
negatives that are true and false for the networks found in the four experiments,
with respect to the gold standard network. We see that the location data by itself
does noticeably better than the expression data, suggesting that this particular set of
location data is quite insightful and/or that this particular set of expression data is
quite limited in its quantity and quality. Despite the relatively poor performance of
the expression data when considered in isolation, when we use our new informative
prior to include evidence from the expression data along with the location data, the
number of false positives and the number of false negatives are both reduced; in
contrast, the old prior reduces the number of false negatives and increases the number
of true negatives, but also increases the number of false positives and reduces the
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Figure 3. Partial regulatory network recovered using expression data from Spellman et al. and location
data from Lee et al. Shaded elliptical nodes are transcription factors for which location data is available.
Unshaded circular nodes are genes for which no location data is available. Solid edges represent interac-
tions that have been independently verified in the literature. Dashed edges represent interactions that have
not been verified; either the edge is incorrect or the evidence from the literature is inconclusive. Observe
the cyclic regulation of transcription factors across phases of the cell cycle.

number of true positives. In contrast, the new prior uniformly outperforms all the
other three methods.

From Table 1, we see that combining expression and location data with our new
informative prior results in three fewer false negatives as compared to location data
alone. These three are the binding of FKH1 to ACE2 (p-value= 0.0058), SWI4 to
CLN2 (p-value= 0.005), and ACE2 to SIC1 (p-value= 0.0095). These edges are
detected because while the evidence of the location data in isolation is just below
threshold for inclusion, during the joint learning it is reinforced with evidence from
expression data. Among the supposed false positives, we observe that both location
and expression data provide evidence for the regulation of cyclin PCL2 by the tran-
scription factor SWI6 although there is no known evidence of this interaction in the
literature. Another interesting case is the regulation of transcription factor FKH1
by the transcription factor MBP1: although this interaction is detected by expression
data alone, it is not detected when both location and expression data are used because
the correspondingp-value of0.93 is so high that the quantity of expression data is
insufficient to overcome the location data evidence against inclusion of the edge.

Figure 3 shows part of the regulatory network recovered using our complete
joint learning algorithm. The partial network consists of the10 transcription factors
with location and expression data, along with7 of the other15 genes selected at
random; we do not show the full network to keep the figure as uncluttered as pos-
sible (for the full network, please see the supplemental material). The transcription



factors are arranged according to the phase of the cell cycle in which they are maxi-
mally expressed. The figure shows that the important cell cycle transcription factors
regulate each other in a cyclic fashion as has previously been observed.19 The fig-
ure also shows that our model sometimes detects interactions between genes whose
expression is correlated (e.g., CTS1, EGT2, and SIC1). Although these genes are
not known to exhibit direct regulatory relationships, they are related in the sense that
they are co-regulated by ACE2 and SWI5.

5 Conclusion and future work

In this paper, we demonstrate the benefits of recovering dynamic models of tran-
scriptional regulatory networks by jointly learning from both gene expression data
and transcription factor binding location data. Our method uses a new, factorable in-
formative prior over network structures to incorporate location data into the learning
process. Because location data provides direct evidence regarding the presence of an
edge in a regulatory network, it fits well into the framework of our informative prior,
and DBNs more generally. With this joint learning framework in place, we show that
supplementing expression data with location data is useful both in increasing the ac-
curacy of recovered networks, and in reducing the quantity of expression data needed
to achieve an accuracy comparable to that of expression data alone. Since expression
data is fairly expensive to generate, it is promising that the relative utility of the data
can be further enhanced by combining it with other types of data. Different sources
of data will have different noise characteristics and so may be able to reduce the
overall error present in the learned network structure. We expect such joint learning
techniques will become increasingly relevant in computational biology, especially as
data of greater quality and diversity become available.

From a computational perspective, our method should scale well to networks of
hundreds of interacting variables, as we have demonstrated here and elsewhere.20

The primary limitation is not computational but statistical, and not so much with
respect to the number of variables but with respect to the number of parents for each
variable. As this number increases, larger and larger quantities of data are needed
to learn an accurate DBN model.4 On a related note, while nothing precludes us
computationally from modeling a higher-order Markov process, we are constrained
statistically by the limited quantity of available time-series expression data.

Note that although the interactions in our graphs can be oriented unambiguously
(because time cannot flow backwards), that does not necessarily imply that the in-
teractions are causal since we cannot account for cellular interactions that have not
been measured. This can lead to latent variable problems in which we may learn
spurious interactions between observed variables: a set of variables may appear to
be correlated simply because we cannot observe their latent common cause. One of
the main hopes of this line of research is that more direct causal information from
alternative assays like transcription factor binding location data and protein-protein
interaction data will ameliorate this problem if we can include them in the analysis



framework in a principled way.
A number of directions remain in developing sophisticated joint learning meth-

ods for elucidating dynamic networks like the cell cycle. Most critically, we would
like to incorporate a wider range of other sources of data like protein expression
data, protein-protein interaction data, and DNA sequence data. Protein expression
data can be added straightforwardly, but is not yet widely available. Nariai et al.9

have developed a method for learning when to merge co-expressed regulators into
complexes based on protein-protein interaction data that might be amenable to fur-
ther generalization. Greater connection with the module approaches of Segal et al.5

would also be fruitful.

Supplemental material is available fromhttp://www.cs.duke.edu/∼amink/.
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