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The comparison of structural subsites in proteins is increasingly relevant to the
prediction of their biological function. To address this problem, we present the
Match Augmentation algorithm (MA). Given a structural motif of interest, such
as a functional site, MA searches a target protein structure for a match: the set
of atoms with the greatest geometric and chemical similarity. MA is extremely
efficient because it exploits the fact that the amino acids in a structural motif
are not equally important to function. Using motif residues ranked on functional
significance via the Evolutionary Trace (ET), MA prioritizes its search by initially
forming matches with functionally significant residues, then, guided by ET, it
augments this partial match stepwise until the whole motif is found. With this
hierarchical strategy, MA runs considerably faster than other methods, and almost
always identifies matches in homologs known to have cognate functional sites.
Second, in order to interpret matches, we further introduce a statistical method
using nonparametric density estimation of the frequency distribution of structural
matches. Our results show that the hierarchy of functional importance within
structural motifs speeds up the search within targets, and points to a new method
to score their statistical significance.

1. Introduction

Determining the function of proteins remains a primary goal of biology1.

Tools such as PSI-BLAST2, EMATRIX3, and PROSITE4 help predict func-

tion using sequence similarity. But with the increasing availability5 of pro-

tein structures, other techniques have been developed to predict function

via geometric comparison of functional subsites, such as JESS6, PINTS7,

webFEATURE8, and Geometric Hashing9. Starting from the basic ob-

servation that biological motifs are hierarchical in nature, this paper con-

tributes a hybrid technique combining evolutionary information10,11 with

protein geometry and chemical labels to efficiently identify proteins with

local structural similarity to a motif of interest.

Contributions and Outline We wish to annotate protein structures with

structural motifs that are functionally relevant. This problem naturally de-

composes into the problem of motif design, and the problem of motif search.

The Evolutionary Trace12,11,13 (ET) was developed to identify functionally

relevant motifs, and the topic of this paper is two novel algorithms for mo-
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tif search and statistical interpretation of matches. Match Augmentation

(MA) takes ET-based motifs, composed of subsets of three-dimensional

(3D) protein structures ranked by evolutionary significance via ET and

labeled by amino acid identity. MA hierarchically searches target struc-

tures of whole proteins, labeled with amino acids, for a match. Section 2.4

demonstrates that heuristic prioritization based on evolutionary rankings

allows MA to identify cognate active sites in homologous proteins, with a

60 fold speed-up.

Much like sequence comparisons, MA may identify similar structures by

chance alone. Hence, we ask if matches of cognate active sites have signif-

icantly greater structural similarity than what is expected by chance. In

the second part of this paper, we apply Nonparametric Density Estimation

(NDE) to attach statistical significance to a match, much like the BLAST

p-value2. In Section 3.2, while current motifs are not yet optimal, and

the test set is not complex, our results nevertheless verify that statistically

significant matches are correlated with identifying cognate active sites.

2. Match Augmentation (MA)

Several methods exist for comparing protein structure, such as SSAP14,

DALI15, tools for graph theoretical comparison16, and Geometric Hashing9,

which was adapted to alignment by atom position17, by backbone C-

alpha18, multiple structural alignment19, and alignment of hinge-bending

and flexible protein models18. More specifically, the problem of search-

ing for motifs within protein structures, has also been approached using

Geometric Hashing to find catalytic triads20, using JESS6, PINTS7, and

webFEATURE8. All structural comparison techniques share a dependence

on heuristics, because the complexity of the structural pattern matching

problem is at least NP-hard21. Heuristics are essential because biological

input is too large for exhaustive approaches.

Our algorithm, MA, is unique because it uses the evolutionary signifi-

cance of an amino acid in combination with structural and chemical data,

stored as amino acid labels, to produce added performance with a novel

combination of hashing and backtracking.

2.1. Definition of Hierarchical Motifs

Structure comparison is fundamentally hard21, but heuristics using evolu-

tionary data may improve performance. One source of such data is the

Evolutionary Trace, which identifies functionally significant residues via

Multiple Sequence Alignment (MSA) of homologous proteins22,11. For each

residue, ET produces evolutionary significance ranks, which quantify the
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relative importance of individual residues to the function of the protein,

and a list of functionally-compatible amino acid alternates, where muta-

tion of a residue to its alternates is tolerated during evolution. MA can

also accept rank information from other sources.

Ranks facilitate a prioritized attitude towards geometric and chemical

comparison. Between high ranked motif points and corresponding target

points, geometric and chemical similarity intuitively suggests greater func-

tional similarity than correspondences involving low ranked motif points.

Therefore, we seek correspondences for high ranking motif points before low

ranking motif points, in a prioritized manner. Prioritization is the center

point of our algorithmic design.

Our motifs S = {s1, . . . , sm} are sets of m points in space whose co-

ordinates are taken from backbone and sidechain atoms of high ranking

residues around a ligand binding site, or other functional structure. Each

point si in the motif, or motif point, has an associated rank p(si) and a set

of alternate amino acid labels l(si) = {a1, a2, ...} taken respectively from

the significance rank and alternate sidechains generated by ET. Typically,

our motifs are between 4 and 9 motif points.

2.2. The Problem

We seek a correspondence between S and the target T , often hundreds of

atoms encoded as n target points : T = {t1, . . . tn}, where each ti is taken

from atom coordinates, and labeled l(ti) for the amino acid ti belongs to.

The correspondence is a match M , a bijection between {sMi
. . . sMi

} ∈ S

and {tMi
. . . tMi

} ∈ T of the form M = {(sM1
, tM1

) . . . (sMm
, tMm

)}, with

Euclidean distance between points a and b defined as ||a − b|| and:

Criterion1 ∀i, sMi
and tMi

are biologically compatible: l(tMi
)∈ l(sMi

).
Criterion2 LRMSD alignment, via rigid transformation A of S, causes
∀i, ||A(sMi

) − tMi
|| < ε, our threshold for geometric similarity.

MA identifies the match with smallest LRMSD among all matches that have

paired all sMi
to distinct tMi

. Matches of subsets of S to T are rejected.

2.3. Description of the Algorithm

Following our prioritized data, we designed MA in a prioritized fashion,

where correspondences with higher ranked points are identified first. MA

is composed of two parts: Seed Matching and Augmentation. The purpose

of Seed Matching is to identify a match for the seed S ′ = {s1, s2, s3}, the

three highest ranked motif points. The k lowest LRMSD seed matches are

passed to Augmentation to be iteratively expanded into matches for the

remaining motif points, in descending rank order. Augmentation outputs
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the match with smallest LRMSD. We use k = 30 and ε = 3.0Å.

Seed Matching We must find k sets of 3 target points T ′ = {tA, tB , tC}

which are compatible with S ′ = {s1, s2, s3}, respectively, with similar inter-

point distances as S′. Interpret T as a geometric graph, where target

points are vertices. Suppose ti,tj are compatible with s1,s2. Then if −2ε ≤

||ti−tj ||−||s1−s2|| ≤ 2ε, we define a green edge between ti and tj . Similarly,

red and blue edges are defined between target points compatible with s1,s3

and s2,s3 respectively, where again inter-point distances are within 2ε.

Edges are found by range search on a geometric data structure. When

we find an edge, if it forms a triangle of all three colors, we have a seed

match with compatible labels and similar inter-point distances. When we

identify a triangle, LRMSD with S ′ is calculated and if all points are aligned

within ε, the new seed match is stored. The k lowest LRMSD seed matches

are passed to Augmentation. Targets of size n have at most
(

n
3

)

= O(n3)

matching triangles, but this worst case would be a geometrically regular set

of identical triangles, which never occurs in natural proteins. Performance

on biological data is commonly O(n2).

Augmentation Augmentation is an application of depth first search.

Given a seed match, we must find correspondences for unmatched motif

points within the target. Considering the LRMSD alignment of the seed

matches, we plot the position of the highest ranked unmatched motif point

si as if it were rigidly aligned with the rest of the seed. In the spherical

vicinity V of this position, we identify all ti ∈ T compatible with si. For

each ti, we calculate the LRMSD alignment A of the seed with (si, ti). If

||A(si) − ti|| < ε, the seed match, with (si, ti), becomes a partial match.

V often contains several ti compatible with si. We test all ti, storing

accepted partial matches on a stack. After all ti are tested, we pop the first

partial match off the stack, and begin testing with the next unmatched

motif point si+1. This is essentially depth first search (DFS), implemented

with a stack. When no unmatched si remain, or no compatible ti within

V can be aligned to satisfy ||A(si) − ti|| < ε, LRMSD is calculated for the

entire match, and the match is stored. Final output is the match of all si

to distinct ti with lowest LRMSD.

Performance is dependent on the number of motif points m, and cr,

the number of compatible ti found in V , giving runtime O(m2(cm−3
r )). cr

is bounded because repulsive Van der Waals forces limit the number of

atoms found in V . The quadratic factor is the aggregate cost of LRMSD

calculations, and the exponential is the cost of DFS with cr possibilities

per iteration. With m usually 4-9 points, MA is extremely efficient.
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2.4. Experimental Results

To demonstrate the accuracy of MA, we searched for motifs within struc-

tures of evolutionarily related proteins. We use targets identified by se-

quence similarity because each residue in the motif has a cognate residue

in the target: we know what match to expect beforehand. Using functional

analogs may seem more relevant for functional annotation, but successfully

matching analogs would only demonstrate how well our motifs represent

function. Our focus is on methodology, and because analogs lack easily

identifiable cognate residues, their use would sacrifice precise verifiability.

Data Set Our primary data (Figure 1) is 12 families of enzymes with

known active sites. Each family is composed of a set of homologous se-

quences identified by BLAST, some of which have known structures in the

Protein Data Bank23 (PDB). Of the structures found, each family is as-

signed a major structure; the rest are minor. ET is applied on each family

of sequences, and the significance ranks and labels generated are mapped

onto the major structure for each family. Between 4 and 9 of the most

functionally significant residues surrounding the active site on the major

protein are selected, and their alpha carbons become the points in the mo-

tif. Specifics on amino acid selection and functional sites used for each motif

can be found at http://www.cs.rice.edu/~brianyc/papers/PSB2005/.

Alpha carbons (Cα) were used in our motifs as preliminary data. Rather

than debate the adequacy of Cα atoms to represent function, we seek only

to document the correctness of our techniques. Future publications will

comparatively document issues of motif design on a larger scale.

{16pk, 1vpe, 1php} {1bqk, 8paz, 1aaj, 1aan, 1ag6, 1b3i, 1baw, 1bxa, 1bxv,
1paz, 1pza, 1pzb, 1pzc, 1zia, 1zib, 2plt, 2rac, 3paz, 1aac} {1amk, 1tpe} {1aky,
5ukd, 1qf9, 1uke, 1zin, 1zio, 1zip, 2ak2, 2ukd, 3ukd, 4ukd, 1ak2} {1a6m, 1ymc,
1dwr, 1dws, 1dwt, 1m6c, 1mbs, 1mno, 1mwd, 1myg, 1pmb, 1wla, 1ymb, 1azi}

{1a3k, 1slt, 1sla, 1slc, 1qmj} {1finA, 1hcl, 1hck, 1b38} {1ukrA, 1xyn, 1xnb,
1yna} {3lzt, 2ihl, 2lz2, 1jhlA, 1ghlA, 1fbiX, 1lz3, 1hhl, 1jug, 2eql, 1gd6A,
1f6rA, 1hfx} {7a3hA, 1g01A,1egzA} {1juk, 1j5tA, 1i4nA} {1f8eA, 1nn2,
1nsbA}

Figure 1. Families (bracketed) used in experimentation. Bolded proteins are major.

Experimental Protocol We search for each motif in the minor structures

of the same family. These are homologous proteins (HPs). ET uses MSAs,

so a functional residue in one sequence correlates with cognate residues of

related function, at the same position, in all sequences of the family. Thus

we can verify MA: if we find a cognate match where the target points are
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cognate to the motif points, we have a correct match, residue by residue.

For comparison, we also searched for each motif in the minor proteins of

the other families. These proteins are not homologous (NHPs).

Results In 69 out of the 73 motif-HP pairs (95.4%), MA matches 100%

of the source motif with cognate residues in the target. Of the remaining

four cases, two of the target structures (1m6c and 1mno) were experimental

structures that had a point mutation which changed the label of residue

68 (in both cases) from a valine to an asparagine in order to over-stabilize

oxygen binding in myoglobin (1a6m). As a result, the labels of the points

corresponding to residue 68 in both 1m6c and 1mno were incompatible,

and, correctly, the points were not matched. While this was not intended,

it demonstrates the ability of our algorithm to eliminate potential matches

with incorrect labels. In the other two cases, a match existed with lower

LRMSD than the cognate match. These occurred between major protein

1amk with target 1tpe, and 1f8eA with 1nsbA. In each case the cognate

match had a higher LRMSD (approx. .5Å) than the match MA identified.

This is no fault of MA. Instead, it suggests that 1amk and 1f8eA are sub-

optimal motifs, which bear accidental similarity to functionally unrelated

structures: Ideally, motifs should have structural similarity only with pro-

teins with functional similarity. True failures of MA would be the opposite:

We would return a match with LRMSD higher than the cognate match,

showing that the cognate match was overlooked. This never occurs. From

our experiments, we found that MA is accurate and efficient on biological

data, identifying cognate residue correspondences, except when the motif

bears incidental structural similarity to unrelated residues.

Matches between motifs and HPs tended to have lower LRMSDs than

between the same motif and NHPs. This is apparent in Figure 2, which

plots LRMSD for all matches found. 9 out of 12 motifs considered had

matches of HPs (Blue, Fig. 2) with LRMSD lower than most matches of

NHPs (Red, Fig. 2). Two of the motifs breaking this trend were 1amk and

1f8eA, motifs which had incidental similarity with functionally unrelated

residues, suggesting again that these motifs are not specific representatives

of function. The remaining motif, 1finA, was defined on a flexible active site,

so cognate active sites, flexible themselves, had less geometric similarity.

Performance We compared performance to our implementation of Geo-

metric Hashing (GH), as described by Rosen24, because the source code

is not available. All published heuristics compatible with our data were

implemented. GH has been applied many times17,18,20,19, but cannot be

prioritized as is the case with MA. GH identified identical HP matches and
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Figure 2. Experimental Results: 12 motifs and 73 targets plotted by LRMSD

similar NHP matches, but on our motifs of 4 to 9 motif points, and targets

with 123 to 398 target points, MA was about 60 times faster. Average

execution time was 6.195 seconds for GH, and only 0.103 seconds for MA

using identical thresholds. Without loss of accuracy, Seed Matching nar-

rows the search to matches of the highest ranking motif points, whereas GH

considers all points equally. Evolutionary prioritization seems to strongly

improve performance. Experiments were run on Athlon 1900+ CPUs. GH

and MA memory footprints varied between 5 and 20 megabytes, depending

on input.

3. Statistical Analysis of Geometric Similarity

Structural similarity is important to functional annotation only if a strong

correlation exists between identifiably significant structural similarity and

functional similarity. However, as seen in Figure 2, algorithms like MA

and GH can identify matches in NHPs with unrelated functions, so the

existence of a match alone does not guarantee functional similarity. LRMSD

can be a differentiating factor. If matches of HPs represent statistically

significant structural similarity over what is expected by random chance,

we could differentiate on LRMSD, as long as we can evaluate the statistical

significance of the LRMSD of a match.

BLAST2 first calculated the statistical significance of sequence matches

with a combinatorial model of the space of similar sequences. Determining
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the statistical significance of structural matches has also been attempted.

Modeling was applied for the PINTS database7 to estimate the probability

of a structural match given a particular LRMSD. An artificial distribution

was parameterized by motif size and amino acid composition in order to fit

a given data set, and the p-value is calculated relative to that distribution.

Another approach was taken in the algorithm JESS6, using comparative

analysis to generate a significance score relative to a specific population

of known motifs. Both methods have some disadvantages. The artificial

models of PINTS are not parameterized by the geometry of motifs, and, all

else equal, produce identical distributions for motifs of different geometry.

JESS, on the other hand, is dependent on a set of known motifs; should

this set change, all significance scores would have to be revised.

3.1. A Method for Characterizing Geometric Similarity

We begin by defining the statistical significance of geometric similarity. A

match of motif S to target T with LRMSD r is statistically significant if

the p-value, the probability of finding a target T ′ within a space of proteins

Z, where the best match identified has LRMSD r′ < r, is very low.

Determining the p-value is difficult because it requires the frequency

distribution DS of match LRMSD between a given motif S and all possible

targets: all protein structures. But we have little knowledge of the space

of protein structures; many proteins defy current techniques for structure

determination. Rather than hypothesizing about unknown proteins, we use

a set of known structures Z, and accept that our p-value reflects only this

concrete set. Specifically, any Z can have biases in the structural similarity

of its members to some motif. This doesn’t make the selection of Z poor,

because the primary purpose of our technique is to reflect that bias in the

p-value calculated. We use the Protein Data Bank23 as Z: the set {PDB}.

DS is essentially a histogram of how many proteins match S at any

LRMSD. Once DS is determined it can be interpreted as a distribution

density function, which can be integrated to find the probability P (r) of

finding a match within {PDB} with LRMSD less than a given r:

P (r) =

∫ r

0

DS (1)

One basic assumption of PINTS7 and JESS6 was that explicit calcula-

tion of DS is computationally infeasible; that running algorithms like MA

with a given motif and every target would take too long. We tried this

approach first, finding a match between S and each member of {PDB}.

This brute force approach generated DS in 3 hours for some motifs, or up
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to 631 for others. While this is acceptable for some applications, others,

such as motif design, require frequent updates, for which this is too long.

Scanning is embarrassingly parallel, but we provide a simpler solution first.

We used random sampling of the {PDB} to avoid considering every tar-

get. DS was estimated using Nonparametric Density Estimation25 (NDE).

The distribution DS estimated from the sample needs to be smoothed,

to neutralize spikes caused by the practice of submitting numerous simi-

lar structures to the PDB, and to interpolate between our sample points.

Kernel Density Smoothing25 was applied with a gaussian kernel to smooth

the data. To avoid undersmoothing or oversmoothing, optimal bin-width

determined by S-J estimation26 was deemed best27.

3.2. Experimental Results

Nonparametric Density Estimation We begin by demonstrating the

effectiveness of sampling. We use a snapshot of the PDB from 8.17.2003.

PDB files with multiple chains were divided into individual files, generating

55,305 structures. A handful of unparseable files were removed, and certain

degeneracies were fixed, such as negatively indexed residues.

Figure 3. Quality of sampling fit

{PDB} was scanned using MA, with each motif Si from Section 2.4. Brute

force generated a reference distribution DSi
. To verify sampling stability,

each DSi
was sampled at 5%, 5,000 times. For all Si, 95% of sampled curves

fell within confidence bands tight around DSi
. The confidence band, Figure

3, graphing frequency to LRMSD for D3lzt, is typical of how tightly DSi

is approximated. Kolmogorov-Smirnoff28 tests confirmed a lack of statisti-

cally significant differences between sampled distributions and DSi
. Non-

redundant PDB subsets produced no significant differences from {PDB}.
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Random sampling directly improves performance. Brute force compu-

tation time was 12:48 (hrs:mins) on average, while sampling took 0:38 on

average. The best case fell from 2:40 to 0:08 and the worst case from 631:41

to 31:30. Sampling cuts runtime by almost exactly 95%. Sampling does

efficiently estimate DSi
without statistically significant loss of accuracy.

Revisiting Earlier Results After generating DS for all motifs from the

previous section, in Figure 4, we calculated p-values for each LRMSD from

Figure 2. The majority of p-values generated for HPs were between 1%

and 0.01%. In contrast, most p-values generated for NHPs are above 10%.

Notable exceptions are the p-values for matches of motifs 1amk and 1f8eA,

which had accidental similarity to functionally unrelated structures. These

had p-values above 10%. This verifies on a PDB-scale that 1amk and 1f8eA

poorly represent functional sites: they have geometric and chemical sim-

ilarity to 10% of all PDB proteins. The motif defined on 1finA, which

had a flexible active site, also lacks statistical significance in its matches,

because the geometry of functional residues may change relative to the mo-

tif. Matches of HPs represent identifiably significant structural similarity,

except where the motif itself poorly represents protein function.

Figure 4. p-values of LRMSDs from Figure 2 (log scale)

Discussion NDE avoids inflexibility, characteristic of parametric

approaches7, because it is not limited to a parametric model. While gen-

erally considered less powerful in other applications, NDE is appropriate

here given breadth and complexity of protein structure space. Sampling,

combined with NDE, greatly accelerates the process of calculating p-values.

On our data set of evolutionarily related proteins, our results show a
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correlation of statistically significant structural similarity to evolutionary

relatedness between proteins, as long as the motifs properly represent func-

tion. This correlation indicates that statistically significant geometric and

chemical similarity can be markers of cognate active sites.

4. Summary and Future Work

MA efficiently identifies homologs via rigid structural comparison. On our

data set, 95.4% of active sites cognate to a given motif were correctly iden-

tified, and the remainder were not found because of the difficulty of repre-

senting some active sites with motifs. By optimizing on evolutionary data,

MA is about 60 times faster than standard GH.

NDE via sampling calculates the statistical significance of matches iden-

tified. Testing indicates that we can drastically cut the number of calcula-

tions necessary to estimate DS without significant loss of accuracy. Further-

more, our results mesh with previous observations: matches between motifs

and HPs were statistically significant, except for motifs which poorly rep-

resent protein function. Statistically significant LRMSD is correlated with

the detection of cognate active sites.

This paper presents a fast method for identifying matches which permits

an efficient statistical analysis of our data. Our future studies will develop

methods for motif design, and test the sensitivity and specificity of these

methods for functional annotation.
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