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As we are moving into the post genome-sequencing era, various high-throughput 
experimental techniques have been developed to characterize biological systems at the 
genome scale. Discovering new biological knowledge from high-throughput biological 
data is a major challenge for bioinformatics today. To address this challenge, we developed 
a Bayesian statistical method together with Boltzmann machine and simulated annealing 
for protein function prediction in the yeast Saccharomyces cerevisiae through integrating 
various high-throughput biological data, including protein binary interactions, protein 
complexes and microarray gene expression profiles. In our approach, we quantified the 
relationship between functional similarity and high-throughput data. Based on our method, 
1802 out of 2280 unannotated proteins in the yeast were assigned functions systematically. 
The related computer package is available upon request. 

1. Introduction  

An immediate challenge of the post-genomic era is to assign biological 
functions to all the proteins encoded by the genome. For example, only one-
third of all 6200 predicted genes in yeast Saccharomyces cerevisiae (Baker’s 
yeast) were functionally characterized when the complete sequence of yeast 
genome became available1. At present, 4044 yeast genes have been annotated 
out of 6324 genes. Despite all the efforts, only 50-60% of genes have been 
annotated in most organisms with complete genomes. This leaves bioinformatics 
with the opportunity and challenge of predicting functions for unannotated 
proteins by developing effective and automated methods.  

With ever-increasing flow of biological data generated by high-throughput 
methods, such as yeast two-hybrid systems2, protein complexes identification by 
mass spectrometry3,4 and microarray gene expression profiles5, some 
computational approaches have been developed to use these data for gene 
function prediction. Cluster analysis of the gene-expression profiles is a 
common approach for predicting functions based on the assumption that genes 
with similar functions are likely to be co-expressed6. Using protein-protein 
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interaction data to assign function for novel proteins is another approach. 
Proteins often interact with one another in an interaction network to achieve a 
common objective. It is therefore possible to infer the functions of proteins 
based on the functions of their interaction partners, also known as “guilt by 
association”7. Schwikowski et al.7 applied a neighbor-counting method in 
predicting the function. They assigned function to an unknown protein based on 
the frequencies of its neighbors having certain functions. The method was 
improved by Hishigaki et al.8 who used χ2 statistics. Both these approaches give 
equal significance to all the functions contributed by the protein neighbors in the 
interaction network. Other function prediction methods using high-throughput 
data include machine-learning approach9 and Markov random fields10,11. 
MAGIC (Multisource Association of Genes by Integration of Clusters) 
approach to combine heterogeneous data for function assignment has been 
applied in yeast by Troyanskaya et al12. 

One major challenge for protein function prediction is that the errors (noises) 
in the high-throughput data have not been handled well and the rich information 
contained in high-throughput data has not been fully utilized given the 
complexity and the quality of high-throughput data13. A possible solution for 
this problem is Bayesian probabilistic model14, which could lead to a coherent 
function prediction and reduce the effect of noise  by combining information 
from diverse data sources within a common probabilistic framework and 
naturally weighs each information source according to the conditional 
probability relationship among information sources. Another major limitation of 
current function prediction methods based on “majority rule” assignment7 is that 
the global properties of interaction network are underutilized since current 
methods often do not take into account the links among proteins of unknown 
functions. Vazquez et al.15 recently proposed a global method to assign protein 
functions based on protein interaction network by minimizing the number of 
protein interactions among different functional categories. 

To further overcome these limitations, we developed a computational 
framework for systematic protein function annotation at the genome scale. Our 
current study focuses on yeast Saccharomyces cerevisiae, where rich high 
throughput data are available. Compared with current methods, our method is 
distinctive in the following aspects: (1) Unannotated proteins can be assigned to 
various function categories of GO biological processes with probabilities. This 
is in contrast to many other prediction methods where proteins were predicted as 
yes or no without confidence assessment to a limited number of function 
categories (e.g., MIPS16, which is less detailed than GO). (2) We quantitatively 
measured functional dependencies underlying each type of high-throughput 
data, including protein binary interactions, protein complexes, and microarray 
gene expression profiles) and coded them into “functional linkage graphs” 
(interaction network), where each node represents one protein and Bayesian 
probabilities were calculated to represent the function similarity using the 
weight of each edge between two proteins. (3) We developed a novel global 



  

function prediction method based on Boltzmann machine for function prediction 
with integration of functional linkage evidences from different types of high-
throughput data. We may predict the function of an unannotated gene, even if 
none of its neighbors in the network has known function. Our method is robust 
for combining and propagating information systematically across the entire 
network based on the global optimization of the network configuration. 
 

2. Data sources  

 
All the high-throughput data were coded into an interaction network, which can 
be viewed as a weighted non-directed graph Gp (D) = (Vp, Ep) with the vertex 
set Vp = {di | di ∈ D} and the edge set Ep = {(di, dj ) | for di, dj ∈ D and i ≠ j}.  
Each vertex represents one protein and each edge represents one measured 
connection between the two linked proteins from any high-throughput data. 
 
Protein-protein binary interaction data 
The protein-protein interaction data from high-throughput yeast two-hybrid 
interaction experiments were from Uetz et al.17 and Ito et al.18, together with 
5075 unique interactions among 3567 proteins. We combined the yeast two-
hybrid data with the protein-protein interaction data in the MIPS database 
(http://mips.gsf.de/proj/yeast/CYGD/db/). In total, 6516 unique binary 
interactions among 3989 proteins were used in this study.   
 
Protein complexes 
The protein complex data were obtained from Gavin et al.3 and Ho et al4. In the 
protein complexes, although it is unclear which proteins are in physical contact, 
the protein complex data contain rich information about functional relationship 
among involved proteins. For simplicity, we assigned binary interactions 
between any two proteins participating in a complex. Thus in general, if there 
are n proteins in a protein complex, we add n*(n-1)/2 binary interactions. This 
yields 49,313 edges to the interaction network. 
 
Microarray gene expression data 
The gene-express profiles of microarray data were from Gasch et al.19, which 
included 174 experimental conditions for all the genes in yeast. A Pearson 
correlation coefficient was calculated for each possible ORF pairs to quantify 
the correlation between the gene pairs.  
 
3. Methods 
 
3.1 Measurement of protein function similarity 
A particular gene product can be characterized with different types of function, 
including molecular function at the biochemical level (e.g. cyclase or kinase, 



   

whose annotation is often more related to sequence similarity and protein 
structure) and the biological process at the cellular level (e.g. pyrimidine 
metabolism or signal transduction, which is often revealed in the high-
throughput data of protein interaction and gene expression profiles).  In our 
study, function annotation of protein is defined by GO (Gene Ontology) 
biological process20. The GO biological process ontology is available at 
http://www.geneontology.org. It has a hierarchical structure with multiple 
inheritance.  After acquiring the biological process functional annotation for the 
known proteins along with their GO Identification (ID), we generated a 
numerical GO INDEX, which represents the hierarchical structure of the 
classification. The more detailed level of the GO INDEX, the more specific 
function a protein belongs to. The maximum level of GO INDEX is 12. The 
following shows an example of GO INDEX hierarchy, with the numbers on the 
left giving GO INDICES and the numbers in the brackets indicating GO IDs: 
2                     cellular process   (GO:0009987) 
2-1                     cell communication    (GO:0007154) 
2-1-8                   signal transduction       (GO:0007165) 
2-1-8-1                    cell surface receptor linked signal transduction   (GO:0007166) 
2-1-8-1- 4                     G-protein coupled receptor protein signaling pathway  (GO:0030454)  
2-1-8-4- 4-12                  signal transduction during conjugation with cellular fusion (GO:0000750) 

 
In the SGD data (http://www.yeastgenome.org/), 4044 yeast proteins have 

been assigned one or more GO biological process IDs. We calculated protein 
function similarity by comparing the level of similarity that the two proteins 
share in terms of their GO INDICES. For example, if both ORF1 and ORF2 
have annotated functions, assuming that ORF1 has a function represented by 
GO INDEX 2-1-8-1 and ORF2 has a function represented by GO INDEX 2-1-8. 
When compared with each other for the level of matching GO INDEX, they 
match with each other through 2-1-8, i.e., INDEX level 1 (2), INDEX level 2 
(2-1) and INDEX level 3 (2-1-8).  
 
3.2 Calculation of Bayesian probabilities 
We calculated probabilities for two genes to share the same function based on 
different types of high-throughput data, i.e., microarray data, protein binary 
interaction data and protein complex data. With the assumption that H = {M, B, 
C} denotes the interaction events in different types of high-throughput data, 
where M represents two genes correlated in gene expression profiles with 
Pearson correlation coefficient r in microarray data, B represents a protein 
binary interaction and C represents a protein complex interaction, the posterior 
probability that two proteins have the same function, p(S|H), is computed using 
the Bayes’ formulas: 

                      p(S|H) =
)(

)()|(
HP

SPSHP                                      (1) 

where S represents the event that two genes/proteins have the same function at a 
given level of GO INDEX. The probability p(S) is the relative frequency of 

http://www.geneontology.org/


  

genes/proteins whose functions are the same at the given level of GO INDEX 
by chance. p(H|S) is the conditional (a priori) probability that two 
genes/proteins to have the event H given that they have the same function at a 
given level of GO INDEX. The probability p(H) is the frequency of H in the 
entire data set, e.g., the frequency of gene expression correlated with coefficient 
r over all gene pairs in yeast, which is calculated from the genome-wide gene 
expression profiles (H = M) or the relative frequency of two proteins having a 
known binary interaction over all possible pairs in yeast, which is estimated 
from the known protein interaction data set (H = B). The probabilities p(H|S),  
and p(S) are computed based on a set of proteins whose functions have been 
annotated in GO biological process.  

To quantify the gene function relationship between the correlated gene 
expression pairs, we calculated the probabilities of such gene expression 
correlated pairs sharing the same function at each GO INDEX level, based on 
our early study21. Results show a higher probability of sharing the same function 
for broad functional categories (the high-order GO INDEX levels) or highly 
correlated genes in expression profiles (Figure 1A). Figure 1B shows the 
presence of information in highly correlated gene-expression pairs for their gene 
functional relationship in comparison to random pairs. In Figure 1, we only 
show the curves of GO INDEX 1, 2, 3 and 4.  The other higher GO INDEX 
levels (from 5 to 10) have the same trend.  Based on Figures 1, we decided to 
consider pairs with gene expression profile correlation coefficient ≥ 0.7 for 
function predictions, as other pairs have little information for function 
prediction.  The estimated probabilities of sharing the same function 
corresponding to gene pairs with r ≥ 0.7 were smoothed by using a monotone 
regression function (the pool-adjacent-violators algorithm22) for function 
prediction of unannotated proteins.   

 
Figure 1. A: Probabilities of pairs sharing the same level of GO indices against Pearson correlation 
coefficient of microarray gene expression profiles. B: Normalized ratio for the percentage of gene 
pairs sharing the same level of GO indices (p(S|M)), against the percentage of random pairs sharing 
the same function (p(S)) versus Pearson correlation coefficient of microarray gene expression 
profiles.  
 



   

The analysis result of the protein-protein interaction data is shown in Figure 
2. The plots for protein binary interaction and complex interaction data, show a 
drop of probabilities of sharing the same function with an increase in the GO 
INDEX level, as seen in Figure 2A. A higher probability to share less specific, 
broader functional categories as represented by lower GO INDEX levels is 
observed. Comparison of our results with similar analysis on random pairs, 
shows a normalized ratio of protein-protein interaction pairs against the random 
pairs for sharing the same GO INDEX level (as seen in Figure 2B). Since the 
value is highly above 1, particularly for more specific function categories, there 
clearly exists a relationship between the protein-protein interaction data and 
function similarity. Such relationship can be utilized to make function 
predictions.   

 
Figure 2. Functional relationship in yeast protein-protein interaction data. The horizontal axis in both 
plots shows the GO INDEX levels that two proteins share. (A) The probability of interacting proteins 
sharing the same levels of GO INDEX. (B) The normalized ratio of (A) compared with random pairs. 
 
3.3 Protein function prediction 
3.3.1 Local prediction 
In the local prediction of an unannotated protein using its immediate neighbors 
in the network graph, we follow the idea of “guilt by association”7, i.e., if an 
interaction partner of an unannotated protein x has a known function, x may 
share the same function, with a probability underlying the high-throughput data 
between x and its partner. We identify the possible interactors for x in each 
high-throughput data type (protein binary interaction, protein complex 
interaction and microarray gene expression with correlation coefficient r ≥ 0.7). 
We assign functions to the unannotated proteins on the basis of common 
functions identified among the annotated interaction partners using the 
probabilities described in section 3.2. Furthermore, we assume that the 
information contents for protein function prediction from different sources of 
high-throughput data or different interaction partners are independent based on 
the early suggestion that the information from different high-throughput data are 
conditionally uncorrelated23,24. A protein can belong to one or more functional 
classes, depending upon its interaction partners and their functions. For 
example, protein x is an unannotated protein with several interaction partners 
having known functions. With the assumption that Fi, i = 1, 2, …, n, represents 



  

a collection of all the functions that the interaction partners have,  a likelihood 
score  function for protein x to have function Fi,  G(Fi, x), is calculated as: 
            G(Fi , x) =  1- (1- P’(Sl|M))*(1- P’(Sl|B))*(1- P’(Sl|C))                        (2) 
where Sl represents the event that two proteins have the same function, Fi, 
whose GO INDEX has l levels, l = 1, 2, …, 12.  P’(Sl| M), P’(Sl|B) and P’(Sl|C) 
are the probabilities of interaction pairs to have the same function for gene 
expression correlation coefficient ≥ 0.7 (M), protein binary interaction (B) and 
protein complex interaction (C), respectively.  In each type of high-throughput 
data, one unannotated protein might have multiple interaction partners with 
function Fi. Suppose that there are nM, nB, and nC interaction partners with 
function Fi in the three types of high throughput data, respectively. The 
combined probabilities P’(Sl|M), P’(Sl|B), and P’(Sl|C) in equation (2) are 
calculated as: 
      P’(Sl|M) = 1 - ∏ [1-Pj(Sl|M)],    j = 1, 2, ….nM .                                           (3) 
      P’(Sl|B) = 1 - ∏ [1-Pj(Sl|B)],      j = 1, 2, ….nB .                                           (4) 
      P’(Sl|C) = 1 - ∏ [1-Pj(Sl|C)],     j = 1, 2, ….nC .                                            (5) 
Pj(Sl|M), Pj(Sl|B), and Pj(Sl|C) were estimated probabilities retrieved from the 
probability curves calculated in section 3.2 for a single pair of genes/proteins. 
We also defined the likelihood score G(Fi , x) as Reliability Score for each 
function, Fi. The final predictions are sorted based on the Reliability Score for 
each predicted GO INDEX. The Reliability Score represents the probability for 
the unannotated protein to have a function Fi, assuming that all the evidences 
from the high-throughput data are independent and only applicable to immediate 
neighbors in the network. 

 
3.3.2  Global Prediction 
The major limitation of the local prediction method is that it only uses the 
information of immediate neighbors in a graph to predict a protein’s function.  
In some cases, the uncharacterized proteins may not have any interacting partner 
with known function annotation and its function cannot be predicted based on 
the local prediction method. In addition, the global properties of the graph are 
underutilized since this analysis does not include the links among proteins of 
unknown function.  In Figure 3 proteins 1, 2, 3 and 4 are annotated and proteins 
5, 6, 7 and 8 have unknown functions. If we only use the local prediction 
method, the functions of proteins 3 and 4 can be predicted but the functions of 
proteins while 1 and 2 cannot since all the neighbors of proteins 1 and 2 are 
unannotated proteins. Moreover, the contributions of function assignment for 
protein 4 is not only from the neighbor proteins 7 and 8 whose functions are 
already known, but also from protein 1 when its functions is predicted through 
the following information propagation: proteins 5 and 6  protein 3  protein 
2  protein 1. Hence, the functional annotation of uncharacterized proteins 
should not only be decided by their direct neighbors but also controlled by the 
global configuration of the interaction network. Based on such global 
optimization strategies, we developed a new approach for predicting protein 



   

function. We used the Boltzmann machine to characterize the global stochastic 
behaviors of the network. A protein can be assigned to multiple functional 
classes, each with a certain probability. 

 
Figure 3: Illustration of protein function prediction from interaction network.  Protein 1, 2, 3 and 4 
are unannotated proteins.  Protein 5, 6, 7 and 8 are annotated proteins with known functions. 
 

In Boltzmann machine (BM), we consider a physical system with a set of 
states, α, each of which has an energy, Hα. In thermal equilibrium, given a 
temperature T, each of the possible states α occurs with probability: 

                                                   Pα=
/1

BH K Te
R

α−                                              (6) 

where the normalizing factor R = / BH K Te α

α

−∑ and KB is the Boltzmann’s 

constant.  This is called the Boltzmann-Gibbs distribution. It is derived based on 
the general assumptions about microscopic dynamics, and it can be applied to a 
stochastic network. In an undirected graphical model with binary-valued nodes, 
each node (protein) i in the network has only one state value Z (1 or 0). In our 
case, Z = 1 means that corresponding node (protein/gene) either has a known 
function, or it is ready for a function prediction. Now we consider the system 
going through a dynamic process from non-equilibrium to equilibrium, which 
corresponds the optimization process for the function prediction. For the state at 
time t (optimization integration step t), node i has the probability for Zt ,i to be 1, 
P(Zt , i  = 1| Z t-1, j≠i ) and the probability is given as a sigmoid-function of the 
inputs from all the other nodes at time t-1: 

                         P(Zt , i  = 1| Z t-1, j≠i ) = 
1,

1

1 ij t j ij i
W Z

e
β − ≠≠

− ∑+
                              (7) 

where β is a parameter reversely proportional to the annealing temperature and 
Wij is the weight of the edge connecting proteins i and j in the interaction graph. 
Wij is calculated by combining the evidence from gene expression correlation 
coefficient ≥ 0.7 (M), protein binary interaction (B) and protein complex 
interaction (C): 

∑∑
==

−−−−==
12

1

12

1
)))|(1))(|(1))(|(1(1()|,(

k
kkk

k
jkjij CSPBSPMSPjiFGW δδ                (8) 

where Sk represents the event that two proteins i and j have the same function 
(Fk ) at the GO INDEX level k , k = 1, 2, …, 12. G(Fk, i| j) is the reliability score 



  

for proteins i and j sharing the same function Fk. P(Sk|M), P(Sk|B) and P(SkC) 
were estimated probabilities retrieved from the probability curves calculated in 
section 3.2.  δj is the modifying weight:  

                                (9) 
To achieve the global optimization, we conducted simulated annealing 

technique as the following process. First we set the initial state of all 
unannotated proteins (nodes) randomly to be 0 or 1. The state of any annotated 
protein is always 1. If an unannotated protein is assigned with the state 1, its 
function will be predicted based on its immediate neighbors with known 
functions using the local prediction method. Next starting with a high 
temperature, pick a node i and compute its value Pi according to equation (6), 
then update its state, till all the nodes in the network reach equilibrium.  With 
gradually cooling down, the system might settle in a global optimization of 
network configuration if the sum of weights associated to all the unannotated 
proteins reaches the maximum value.  
 
4. Results 
 
We have implemented local and global methods to predict functions for 
unannotated proteins. We used sensitivity and specificity to measure the 
performance of our methods using ten-fold cross validation. We labeled all 4044 
annotated proteins with known GO INDICES into folds 1 to 10. Each time, we 
pick one fold as the test dataset and the other nine folds as training data to 
calculate prior probabilities. We estimate the sensitivity to determine the success 
rate of the method and specificity to assess the confidence in the predictions. For 
a given set of proteins K, let ni be the number of the known functions for protein 
Pi. Let mi be the number of functions predicted for the protein Pi by the method. 
Let ki be the number of predicted functions that are correct (the same as the 
known function). Thus sensitivity (SN) and specificity (SP) are defined as: 

   
i
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Figure 4: Sensitivity-specificity plot on the test set for the three prediction methods.  
Figure 4 shows the sensitivity versus specificity of the methods with Reliability 
score cutoff from 0.1 to 0.9. It showed that the global prediction has a 
significantly better sensitivity-specificity plot than the local prediction. In our 
method, the highest specificity can only reach 70%. Some false positives 
generated in our method might be caused by the independence assumption of 
different sources of high-throughput data. Such assumption could be 
oversimplified due to biases inherent in data. For example, protein binary 
interactions are likely to be correlated in gene expression profiles. On the other 
hand, the predicted functions from our method could be true but they have not 
been determined by experiments yet, thus, they are not included in GO 
annotation. 
 

Reliability Score  
INDEX ≥ 0.9 ≥ 0.8 ≥ 0.7 ≥ 0.6 ≥ 0.5 ≥ 0.4 ≥ 0.3 ≥ 0.2 ≥ 0.1 

1 897 964 1045 1116 1185 1264 1331 1530 1707 
2 847 922 978 1052 1130 1217 1315 1519 1707 
3 710 801 883 955 1018 1102 1236 1491 1693 
4 627 714 789 870 949 1052 1151 1433 1673 
5 605 691 761 836 918 1016 1120 1405 1659 
6 271 378 472 447 622 707 849 1128 1495 
7 104 173 248 316 395 483 595 722 1159 
8 14 31 48 68 103 147 194 299 680 
9 0 1 2 3 4 4 11 20 105 
10 0 0 0 0 0 0 0 0 6 

 
Table 1. Number of unannotated genes with function predictions with respect to prediction 
confidence probabilities and index levels. 
 

Using all the 4044 annotated proteins with known GO INDICES as the 
training set, we are able to assign functions to 1802 out of the 2280 unannotated 
proteins in yeast at different level of functions (different levels of GO 
INDICES).  The detail prediction results can be queried at 
http://digbio.missouri.edu/~ychen/ProFunPred. The number of unannotated 
genes with function predictions with respect to the specificity and GO INDEX 
levels can be found in Table 1. Using our method, we not only assign general 
functional categories to unannotated protein but also assign very specific 
functions to some unannotated proteins. 104 unannotated proteins were assigned 
functions with reliability score >= 0.9 and GO INDEX level >= 7. Moreover, 
using our global prediction method we can assign functions for the proteins 
whose interacting partners are all unannotated proteins with unknown function. 
For example, all interacting partners of YBR100W have unknown functions. 
Using global function prediction, YBR100W was assigned function as “nucleic 
acid metabolism” (reliability score 0.8) and “response to DNA damage” 
(reliability score 0.8).  
 

http://digbio.missouri.edu/~ychen/ProFunPred


  

5. Discussion 
 
Systematic and automated prediction of protein function using high-throughput 
data represents a major challenge in the post genomic era. To address this 
challenge, we developed a systematic method to assign function in an automated 
fashion using integrated computational analysis of yeast high-throughput data 
including binary interaction, protein complexes and gene expression microarray 
data, together with the GO biological process functional annotation. We applied 
Boltzmann machine for the global protein function annotation by combining and 
propagating information across the entire network. Our method is robust to 
obtain global optimization using simulated annealing. With six different sets of 
randomly selected starting points, we obtained exactly the same result as shown 
in Table 1.  

Future work includes exploring better optimization methods and statistical 
models. To solve the optimization problem in Boltzmann machine, in contrast to 
the simulated annealing technique, a Bayesian learning of posterior distributions 
over parameters25 provides a more elaborate and systematic estimation of 
maximum likelihood. In addition, supervised learning methods such as 
Conditional Random Fields26 can also be  alternative schemes to model this 
stochastic learning process. Furthermore, we will develop more elaborate 
model-based integrations to address the dependencies among different high-
throughput data for protein function prediction. 
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