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Determining the relative contributions of mutation and selection to evolutionary change
is a matter of great practical and theoretical significance.  In this paper, we examine
relative contributions of codon mutation rates and amino acid exchangeability on the
frequencies of each type of amino acid difference in alignments of distantly related
proteins, alignments of closely related proteins, and among human SNPs, using a model
that incorporates prior estimates of mutation and exchangeability parameters. For the
operational exchangeability of amino acids in proteins, we use EX, a measure of protein-
level effects from a recent statistical meta-analysis of nearly 10,000 experimental amino
acid exchanges.  EX is both free of mutational effects and more powerful than commonly
used “biochemical distance” measures (1).  For distant protein relationships, mutational
effects (genetic code, transition/transversion bias) and operational exchangeability (EX)
account for roughly equal portions of variance in off-diagonal values, the complete model
accounting for R2 = 0.35 of the variance.  For human/chimpanzee alignments
representing closely related proteins relationships, mutational effects (including CpG
bias) account for 0.52 of the variance; adding EX to the model increases this to 0.67.  For
natural variation in human proteins, the variance explained by mutational effects alone,
and by mutational effects and operational exchangeability are, respectively, 0.66 and 0.70
for SNPs in HGVBase, and 0.56 and 0.60 for disease-causing missense variants in
HGMD. Thus, exchangeability has a stronger relative effect for distant protein evolution
than for the cases of closely related proteins or of population variation.  A more detailed
model for the hominid data suggests that 1) there is a threshold in EX below which
substitutions are highly unlikely to be accepted, corresponding to roughly 30 % relative
protein activity; 2) selection against missense mutants is a slightly convex function of
protein activity, not changing much as long as protein activity is low; and 3) the
probability of disease-causing effects decreases nearly linearly with EX.

1. Introduction
The evolution of molecular sequences, including the change of one

amino acid for another, appears to reflect a two-step process of mutation and
fixation, in which first, a mutation introduces a new allele into a population, and
second, the allele rises to fixation by some combination of drift and selection.  In
the case of population variation, such as missense SNPs, the fixation process has
not gone to completion.  In either case, the observation of an inter-specific
difference, or an intra-specific variant, reflects these two primary factors,
mutation and natural selection.  For missense changes, or missense variants, the
mutational factor is the rate of mutation from one DNA codon to another, while
the primary selective factor is the operational exchangeability of the amino acids
in their protein context.  Other potentially relevant fitness consequences of such



a change are differences in the metabolic costs of amino acids, or in translation
efficiencies of codons, but here such effects are assumed to be secondary to the
effect of an exchange on the operation of a protein.

The goal of this work is to make a preliminary estimate of the relative
contributions of mutational and selective factors to observed amino acid changes
in protein evolution, as well as to observed amino acid variation in the human
population (i.e., missense SNPs).  These effects can be confounded easily.
Therefore, to be effective, any effort to untangle the relative contributions of
mutation and selection must rely on some predictive model that incorporates
prior knowledge of parameter values.  Mutation parameters are available from
the comparative analysis of pseudogene divergence (2).

Although measures of amino acid similarity or distance have existed
for a long time (3), the concept of a measure of the exchangeability of amino
acids in a protein context is problematic.  In the past, analyses that call for such
a measure (4-6) have relied on so-called “biochemical distances” (7, 8) .
However, these are not pure measures of amino acid exchangeability, but
attempts to fit observed propensities of evolution using a small number of
biochemical parameters, as is clear from the original work of Grantham (7).
With respect to the present problem of untangling mutational and selective
effects, one cannot use an exchangeability measure that is based on observed
propensities of evolution, because this would confound precisely the effects that
must be treated separately.  Therefore, the analysis here uses EX, a measure of
relative effect on protein activity (derived from a statistical meta-analysis of
nearly 10,000 experimental amino acid exchanges) that is free of mutational
effects and which, in tests of power, out-performs “biochemical distance”
measures (1).

We first analyze amino acid differences in variation and evolution
using a formal ad hoc statistical model in which mutational biases and amino
acid exchangeability act as factors.  This approach allows us to assess the
relative contributions of mutational effects and fitness effects in accounting for
patterns of amino acid sequence differences in data sets representing close and
distant inter-specific divergence, and in data sets representing intra-specific
variation in humans (i.e., missense SNPs), including disease-associated variants
in HGMD, as well as the general population sample in HGVBase.  Then, we
analyze a more specific set of models that includes the CpG mutational effect,
applied to the data on human intra-specific variation, as well as to data from
human/chimp divergence.

2. Methods

2.1. Sources and treatment of data on divergence and variation. The
BLOSUM series of matrices used to represent distant protein divergence
were taken from the supplementary material to (9), which provides five
digits of precision in log-of-odds ratios (sij).  Close divergences are
represented by the set of human-chimpanzee alignments of over 7000



coding regions from Clark, et al. (10), using mouse as the out-group to
polarize substitutions, and including only those codons in which all three
sequences are known, polarization is non-ambiguous, and the gene
alignment includes the start codon.  The resulting set of data comprises
821,180 codons, representing roughly 5% of hominid genome. These
dataset will be referred to as HomoPan dataset. Human polymorphism data
came from two databases, the “Proven” subset of SNPs from HGVBase
(11) and the disease-associated missense variants from HGMD (12). Both
HGVBase and HGMD frequencies were divided by frequencies of source
amino acid in human coding regions inferred from a codon usage database
(13). Combined samples sizes are 1628 and 15373 for HGVBase and
HGMD, respectively.

2.2. Prior estimates of parameters of the prediction model. Estimates
of mutation parameters for hominids are taken from (2). To represent the
frequencies of CpG sites in hominid genes, including CpG sites that
straddle adjacent codons, we computed the frequency distribution of
pentamers consisting of a codon with the 5’ and 3’ flanking nucleotides,
from the complete set of coding sequences in the human RefSeq standard
(14), omitting any entries with non-canonical start or stop codons, or with
nucleotide ambiguities. The exchangeability of amino acids is
parameterized in terms of the EX measure of Yampolsky and Stoltzfus (1).
Since this measure is not well known, we describe it briefly.  EX is based
on a statistical meta-analysis of published data on the effects of 9671 amino
acid changes in experimental studies carried out on 12 different proteins.
Data on mutant protein activity from a subset of the studies provides the
basis for a model of the frequency distribution of effects on protein activity;
this model is then used to assign scores on a common scale for all of the
exchanges.  Taken literally, an EXij value of 0.42 means that, on average, a
variant protein with a residue j replacing the wild-type residue i has 42 % of
the activity of the original protein.  The mean value of EX is 0.28.  EX out-
performs Grantham’s distances and Miyata’s distances in an unbiased test
of the ability to predict effects of experimental exchanges, and in a test that
incorporates a measure of amino acid distance into the mutation-acceptance
model of (15) implemented in the PAML package (5).

2.3. Statistical analysis. The mutational effects that are considered are
the effect of the genetic code in imposing a minimum number of mutational
steps (“minimum mutational distance”) of 1, 2, or 3 (16), which we refer to
here as “singlet”, “doublet” and “triplet” exchanges; the effect of a
transition/transversion bias; and for hominid data, the effect of a CpG
context. Transition/transversion and CpG biases are considered only within
singlet exchanges. “Transition” factor is assigned to a level of 1 for any
singlet exchange that can occur by a transition, and a level of 0 otherwise.
The “CpG” factor was a continuous factor represented by the combined
frequency of all CpG containing codons and cGNNn and nNNCg pentamers



(codons with flanking neighbors) among the codons of a given source
amino acid that can mutate in a single step to each codon of the destination
amino acid. For pairs of amino acids that cannot mutate into each other by a
mutation at a CpG site such frequency is 0.

Since the overwhelming majority of hominid data are singlet
differences, we performed two types of analyses. First, we included the genetic
code effect, treating lack of observations of doublet and triplet exchanges as
zero frequencies. Second, we considered only singlet exchanges, considering
only transition/transversion and CpG effects among such exchanges.

Thus, the statistical analysis includes two groups of factors, mutational
effects and exchangeability (EX), and four sets of response variables,
representing frequencies of amino acid differences in distantly related proteins
(BLOSUM30 through 100), in closely related proteins (human-chimpanzee
alignment data), among human missense SNPs (HGVBase data) and among
disease-associated human missense SNPs (HGMD data).

GLM models including these factors and their interactions were
evaluated using JMP statistical package (17). For each test, the first model
includes only the genetic code effect, then we add transition/transversion bias
and (for human data) CpG bias, and finally, EX and its interactions. R2 values
associated with each model are the measure of relative contribution of each
factor to the variance in the response variable.

For the case of hominid data (human-chimp divergence, and human
missense variation), we also consider a more sophisticated model that takes into
account the relevant target size for each individual mutational path, considering
enhanced rates of transition and transversion at CpG sites. The target size is
simply the relative frequency of codons that participate in a particular
mutational path from one amino acid to another, e.g., for the Val-to-Leu change
there is some subset of GTN Val codons that are preceded by a C, and thus are
subject to an enhanced rate of mutation from GTN to CTN, specifically the
transversion rate at CpG sites.

For each of three types of human data a simple model predicting
substitution frequencies has been constructed. For human-chimpanzee
substitutions we assume that differences are proportional to rates of change,
which are in turn described by an origin-fixation process with a rate equal to the
rate of mutational origin multiplied by the probability of fixation (18). Then the
occurrence of some type of difference is proportional to

Pfix µ (T11 + T12t + T21cv + T22ct), (1)
where Pfix is the unscaled mean probability of a given type of mutant being
fixed; µ  is the mutation rate for non-CpG transversions; t  is
transition/transversion bias; ct and c v are the biases in transitions and
transversions, respectively, at CpG sites; and T11 ,T12, T21 and T22, respectively,
are the target sizes representing the sums over the frequencies of codons that,
when subjected to each kind of mutation (non-CpG transversions, non-CpG
transitions, CpG transversions and CpG transitions) produce the amino acid



exchange of interest.  The values of mutational biases used were: t =2.4; ct =
23.0, and cv = 7.0 (2).  A logistic function was used to describe relationship
between Pfix and EX:

Pfix = k/(1+ exp(-a(EX-b)). (2)
This constrains the function to be between 0 and 1, and to increase, but

allows it to take nearly any shape. The meaning of parameters a  and b  is
steepness of the curve and location of the inflection point, respectively. The
meaning of k is simply the number of generations since the common ancestor
(twice that number for both lineages combined). This analysis has been done for
substitution frequencies in human and chimpanzee lineages separately and for
both lineages combined.

An essentially identical model has been used to fit HGMD data, only
instead of the probability of being accepted, the HGMD model has the
probability of having severe effects, assumed to be related to EX through a
logistic function, this time a decreasing one:

Ps = k - k/(1+ exp(-a(EX-b)). (3)
The parameter k here is a scaling factor reflecting how well the human

populations have been screened for deleterious variants. A slightly different
model was utilized for HGVBase data. First, we assume that majority of known
human SNPs are recessive deleterious mutations segregating at mutation-

selection balance, i.e., their frequencies are at √(µ/s), where s is selection
against the mutant variant (18). Second, we assume that the probability of
finding a variant is proportional to its frequency. This representation of
ascertainment bias is reasonable when most SNPs do not have any clinically
important effects and are discovered in population genetics or genomic screens.
This seems to be the case for SNPs in HGVBase (11). Then, the probability of
observing a change is proportional to

€ 

k µ
s (T11 +  T12 t +  T21 cv +  T22 ct ) (4)

It is reasonable to assume that selection against mutant variants with
relative activity equal to that of the wild type is 0, so the function describing the
relationship between s and EX must contain (0,1) point. Thus, logistic function
cannot be used. Instead, a power function has been used:

s = b (1 – EXa). (5)
The quantity in Equation 1 was fitted to the observed frequencies of

substitutions in human and chimpanzee lineages and to HGMD frequencies,
substituting Equations 2 and 3 for Pfix and Ps, respectively. Quantity (4),
substituting (5) for s, was fitted to observed frequencies in HGVBase.  For
HGMD and HGVBase data, target size was recalculated for the entire genome,
assuming that sampled 821180 codons in human/chimpanzee alignment
represent 5% of the entire length of coding regions and 25% of Clark at al
alignments. All fitting was done in the non-linear fit platform in JMP (17) using
the least-squares model. Profile likelihood confidence intervals were calculated



iteratively when possible; when there was no convergence, approximate
standard errors were calculated by the derivative cross-product inverse matrix
method (17).

3. Results
Contributions of mutational biases, amino acid exchangeability and

their interactions to the explained portion (R2) of variance among amino acid
substitution rates are shown in Figure 1. Adding EX to the model more than
doubles R2 for distant protein substitutions represented by BLOSUM log-of-
odds values (fig. 1A), raising it from around 0.15 to about 0.35.  Note that the
variance of off-diagonal values explained by this model increases monotonically
from BLOSUM30 to BLOSUM100 (an issue addressed further below). EX
alone explains much smaller portion of the variance of substitution frequencies:
0.036, 0.002 and 0.076 for HGVBase, HGMD and HomoPan frequencies,
respectively and 0.12-0.20 for BLOSUM. It is worth mentioning that EX is a lot
more successful in predicting the ratio between HGMD and HGVBase
frequencies ((1)), explaining nearly 50% of the variance. This is because the
contributions of mutational biases (presumably identical in both datasets) cancel
out, leaving the exchangeability effect intact.  Table 1 provides ANCOVA
results for BLOSUM62 (the matrix most commonly used for protein
alignments).
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Table 1. ANCOVA of the effects of mutation biases and EX on log-of-odds score of
BLOSUM62, with and without interactions. Abbreviations as on Fig. 1A. P values < 0.015 in bold.

Response: BLOSUM62 Without interactions With interactions

Source df F P df F P

MutSteps 2 19.1 1.0E-08 2 1.4 0.24

trans 1 4.2 0.04 1 2.1 0.15

EX 1 90.0 3.0E-19 1 57.6 3.0E-13

EX*MutSteps 2 8.1 0.0004
EX*trans 1 0.7 0.39

Error 369 366

Transition/transversion bias contributes strongly to the power of the
model when applied to close (hominid) divergence data and human variation
data (fig. 1B), unlike the case for distant divergence data.  Most of the increases
in R2 values are due to the transition/transversion factor, while the CpG factor
adds very little (data not reported). Adding EX and its interactions with
mutational biases to the model improves the ability of the model to predict SNP
frequencies surprisingly little, although the effect of EX is highly significant
(Table 2). There is, however, a large increase in predicting power of the model
attributable to EX when the response variable is frequency of
human/chimpanzee substitutions, particularly when single-nucleotide
substitutions alone are considered.

Although incorporating the interactions between mutational biases and
EX to the models adds little to the explained variance, some of these interactions
are significant and of interest (Tables 1 and 2). In particular, it is striking that
well known genetic code component of BLOSUM scores statistically is made up
entirely of the interaction with amino acid exchangeability. The nature of this
interaction is the presence of a strong EX effect among single nucleotide
substitutions, a weaker effect among double-nucleotide substitutions and lack of
such effect among triple-nucleotide substitutions. Interaction between EX and
transition/transversion bias is ubiquitous and highly significant in hominid data
(Table 2). The nature of this interaction is that there is a covariance between
observed frequency of substitutions and EX for substitutions that can occur
through a transition, but is absent or much weaker in the group of substitutions
that can only occur through a transversion.

Results of fitting non-linear models to hominid data are shown on
Figure 2.  The probability of fixation as a function of EX appears to have a
critical range of mutant protein activity in which the drop of Pfix occurs quickly
(Fig. 2A).  This inflection point is located around EX = 0.3. Fig. 2A shows the
fit to combined substitution frequencies in both human and chimpanzee
lineages; parameters of the model fitted to these lineages separately are not
significantly different from each other or from the combined date fit. The curve



for the chimpanzee is slightly less steep and inflection point is shifted slightly
towards higher EX values, possibly indicating stronger stabilizing selection in
chimpanzee lineage than in human one. The third parameter of the fitted model,
K, has the meaning of the number of generations since the common ancestor.
The best fit for this parameter is, assuming baseline mutation rate of 5*10-9,
250,000 for humans and 300,000 for chimpanzee. Assuming 5*106 my since the
common ancestor, this corresponds to generation times of 20 years for humans
and 17 years for chimpanzees, a remarkably meaningful estimate.

Table 2. ANCOVAs of the effects of mutation biases and EX (continuous variable) on
frequencies of single-nucleotide amino acid substitutions in hominid data, with and without
interactions. Abbreviations as on Fig. 1C.

Source Without interactions With interactions

Response: HGMD df F P df F P

trans 1 46.1 2.7E-10 1 23.1 4.0E-06

CpG 1 2.2 0.14 1 2.0 0.16

trans*CpG 1 8.0 0.0053 1 0.023 0.88

EX 1 19.9 1.7E-05 1 3.6 0.058

EX*trans 1 7.6 0.007

EX*CpG 1 0.79 0.37

EX*trans*CpG 1 0.44 0.50

Error 145 142

Response: HGVBase Df F P df F P

trans 1 74.6 9.5E-15 1 0.44 0.51

CpG 1 1.9 0.17 1 0.0034 0.95

trans*CpG 1 0.4 0.52 1 2.3 0.13

EX 1 18.5 3.1E-05 1 3.3 0.072

EX*trans 1 4.7 0.032

EX*CpG 1 0.2 0.64

EX*trans*CpG 1 3.2 0.076

Error 145 142

Response: HomoPan df F P df F P

trans 1 66.1 1.7E-13 1 6.3 0.014

CpG 1 0.16 0.69 1 0.02 0.89

trans*CpG 1 0.004 0.95 1 1.6 0.20

EX 1 44.1 5.8E-10 1 8.1 .0052

EX*trans 1 30.8 1.4E-07

EX*CpG 1 0.03 0.87
EX*trans*CpG 1 1.2 0.28

Error 145 142



Figure 2. Probability of evolutionary acceptance (Pfix), mean selection coefficient (s) and
probability of having clinically severe effects (Ps) as functions of relative mutant protein activity.
Dashed lines, 95 % confidence intervals.

The shape of the relationship between selection coefficient and EX
estimated from HGVBase frequencies under the assumption of mutation
selection balance is slightly convex (fig. 2B). 95% confidence intervals are quite
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large, so this result needs to be taken with caution. The value of b reported on
fig. 2B is an arbitrary value calculated for the scaling factor k = 0.1. The
relationship between b and k is such it is a possible to estimate k from very
broad limits on b. For b = 1 (all loss of function mutations lethal, clearly the
upper limit of b) k = 0.15. For b =0.01 (probably a gross underestimate of
selection against loss of function mutations) k = 0.015. In other words, the set of
“proven” SNPs in HGVBase constitutes somewhere between 1.5 and 15% of all
non-synonymous SNPs in existence.

The results of fitting the model to HGMD frequencies are shown in
Figure 2C. Again, as for HGVBase data, the confidence intervals are quite high,
but one can conclude that Ps decreases more or less linearly from over 0.5 for
mutations with the lowest protein activities to about 0.2 for the ones with
relative activity 0.5 of the wild type or more. Mean Ps (averaged across all
amino acid substitutions types) is 0.52 (standard dev. 0.14).

4. Discussion
Mutational biases and amino acid exchangeability have roughly equal

effects on frequencies of amino acid substitutions among distantly related
proteins, while on a smaller evolutionary scale, mutational biases add a
relatively higher portion to the amount of variance explained by the model. The
effect of amino acid exchangeability is seldom a pure effect, acting most often
through interactions with mutational biases.  Specifically, exchangeability
matters for singlet exchanges more than for doublet and triplet exchanges, and
for transitions more than for transversions. The first of these two interactions is
easy to explain.  While singlet differences may often reflect a single origin-
fixation event, doublets and triplets probably only do so rarely, resulting instead
from multiple changes such that the exchangeability of the original source and
final destination amino acids is largely irrelevant.

This interaction is observed in all BLOSUM matrices except
BLOSUM30 and is illustrated by Figure 3 showing regression coefficients of the
effect of EX on off-diagonal BLOSUM values. Regression of the EX effect on
singlet pairs of amino acids monotonically and significantly increases when the
BLOSUM level is increased from 30 to 100; this increase is less significant for
doublet exchanges and is reversed (though insignificantly) for triplet exchanges.

There is, therefore, also an interaction between the strength of the effect
of EX on off-diagonal BLOSUM elements and the level of BLOSUM clustering,
with the effect being strongest in the BLOSUM matrix that represents all
degrees of relationship among aligned sequences (BLOSUM100), and the
weakest in the matrix based only on sequences that are 30 % similar or less
(BLOSUM30; (9)). Presumably, the reason for this is that a difference in closely
related proteins (these being more strongly emphasized in BLOSUM100 than in
BLOSUM30) is a difference in a nearly identical protein context, thus the
pattern of occurrence of differences in closely related proteins is restricted to
amino acids that are compatible with the same contexts, whereas for distantly
related proteins, the context has been degraded so that it is no longer so well



shared, but instead each protein is exploring a different region of the possibility-
space for the family, so that there are essentially more degrees of freedom in the
pattern of divergence.

It is much more difficult to explain why exchangeability has a greater
effect on singlet differences that arise via transitions than on those that can only
arise via transversions. If this result were found only in a single dataset, we
would be inclined to treat it as an artifact of smaller sample size of
transversions.  But this effect is present in all three hominid datasets, including
the very large human-chimpanzee alignments dataset. At present, we don’t have
a biological explanation for this observation.

More detailed models connecting observed frequencies of amino acid
substitutions with mutational biases and amino acid exchangeability can yield
information about the shape of relationship between mutant protein activity and
how human medicine (HGMD data) or stabilizing selection (HGVBase and
HomoPan data) perceive the strength of the deleterious effect such mutations. Of
the three datasets analyzed, only the HomoPan dataset has enough data to yield
both reasonably high R2 of the fitted model and tangible narrow confidence
intervals around the best fit. Fitting an evolutionary model to this dataset results
in the conclusion that there is a relatively sharp transition from mutations with
low probability of fixation to those with a high probability, and that the critical
value of mutant protein activity is approximately 30% of the wild type activity.
Note that the fitted logistic function was not forced to be close to 0 when EX is
low or close to 1 when EX is high.

Figure 3. Regression coefficients (slopes) of the regression of BLOSUM sij values on EX
for singlet, doublet, and triplet exchanges. BLOSUM clusterization levels of 30, 45, 62, 80 and 100
% identity cut-off are used.

For the model fitted to HGVBase data, the main assumption is that all
substitutions are recessive deleterious alleles at mutation-selection balance.
Clearly, since some portion of known SNPs (unknown and probably over-
represented) are entirely neutral (or epistatically deleterious) alleles segregating
at much higher frequencies, and others almost certainly have some co-dominant
deleterious effects and therefore segregate at much lower frequencies, the results
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of the fit based on mutation-selection balance is almost certainly biased and it is
impossible to estimate whether these two violations of the assumptions tend to
compensate for each other. Therefore, it is not surprising that, of the three
models, the mutation-selection balance model fitted to HGVBase data has the
lowest R2 values and the broadest confidence intervals.

The model fitted to HGMD data is free from the assumptions about
allele frequencies, since each substitution at a given site is reported at HGMD
only once. Just as in the case of hominid model, the logistic function shown on
fig. 2C was not forced to be close to 1 when EX is small or to be close to 0 when
EX is large. Although it is hard to make conclusions about the exact shape of the
function relating Ps to EX, there is clearly a strong effect.
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