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Genetic association studies can be made more cost-effective by exploiting linkage

disequilibrium patterns between nearby single-nucleotide polymorphisms (SNPs). The

International HapMap Project now offers a dense SNP map across the human genome

in four population samples. One question is how well tag SNPs chosen from a resource

like HapMap can capture common variation in independent disease samples. To

address the issue of tag SNP transferability, we genotyped 2,783 SNPs across 61 genes

(with a total span of 6 Mb) involved in DNA repair in 466 individuals from multiple

populations. We picked tag SNPs in samples with European ancestry from the Centre

d’Etude du Polymorphisme Humain, and evaluated coverage of common variation in

the other samples. Our comparative analysis shows that common variation in non-

African samples can be captured robustly with only marginal loss in terms of the

maximum r
2
. We also evaluated the transferability of specified multi-marker haplotypes

as predictors for untyped SNPs, and demonstrate that they provide equivalent coverage

compared to single-marker tests (pairwise tags) while requiring fewer SNPs for

genotyping. The efficacy of a tagging-based approach in studying genotype-phenotype

correlations in complex traits is strongly supported by our empirical results.

1. Introduction

A significant fraction of the risk of developing common diseases such as cancer

is due to genetic variation. Knowledge of the genetic basis of these complex

traits may lead to new insights into disease pathogenesis, the identification of

novel drug targets, and ultimately contribute to human health.

Family-based linkage analysis has been very successful in localizing causal

variants for monogenic, Mendelian diseases. However, success has been rather

limited for common diseases, where multiple loci are likely to act in concert and

contribute only probabilistically [1]. Testing genetic variants for association

between cases and appropriate controls offers a more powerful approach to detect

putative causal variants, but require large sample sizes to achieve adequate power

[2].



Complete ascertainment of genetic variation by resequencing is the only

comprehensive approach to test all variants (both common and rare) directly for

association. For the foreseeable future, routine resequencing in thousands of

individuals will not be practical. But high-throughput technology to type large

numbers of SNPs in thousands of people is rapidly improving, making it

possible to probe the vast majority of human heterozygosity due to common

variations. In addition, public databases of SNP variation have swelled to 10

million variants. The International HapMap Project provides genome-wide data

in 269 individuals from four different population groups [3], and supports the

selection of informative markers (“tag SNPs”) by exploiting redundancies

among nearby polymorphisms due to linkage disequilibrium (LD) [4]. Tagging

approaches may substantially improve the cost-effectiveness of association

studies by delivering greater power and better genotyping efficiency through the

selection of tag SNPs and definition of statistical tests based on the empirical

LD patterns in HapMap (and similar resources such as [5]).

An important outstanding question is whether tag SNPs picked from

HapMap will be transferable across independent disease samples, and how this

varies for different testing strategies (especially methods based on haplotypes).

The precise LD patterns are likely to differ between population groups, given the

many forces that determine the patterns of genetic variation. Thus, empirical

evidence is required to study the efficiency and coverage of tag SNPs across

different populations, and to validate LD-based tagging approaches in general.

The work described here builds upon early studies that have begun to address

this issue [6-8].

We report a large data set of genes involved in DNA repair within which we

have performed dense genotyping in multiple population samples. By picking

tag SNPs in one population sample, we can perform a blind assessment as to

how well these tag SNPs—and allelic tests for association based on

them—capture the variation in any of the other population samples.

2. Methods and Materials

2.1. DNA samples

We have collected genotype data from seven population samples. The CEPH

(Centre d’Etude du Polymorphisme Humain) samples are a subset (20 trios, 60

individuals in total) of the 30 trios used in HapMap (designated as CEU

samples) [3]. The African American (AA, n = 70), Native Hawaiian (NH, n =

67), Latino (LA, n = 70), Japanese (JA, n = 70) and White (WH, n  = 70)

samples were selected from the Multiethnic Cohort (MEC) conducted in Hawaii



and California (mainly Los Angeles) [9]. The Chinese samples (CH, n  = 59)

were selected from an ongoing study in Shanghai and from the Singapore

Chinese Health Study [10].

2.2. Genotyped SNPs

SNPs for genotyping were selected from dbSNP in 61 DNA repair genes (Table

1) with a total span of 5.7 Mb. This resulted in a working set of 2,783

successfully genotyped SNPs from all samples with an average marker density

of 1 SNP every ~2 kb. Criteria for successful conversion are: Hardy-Weinberg P

> 0.01 (for five of the six ethnic groups), genotyping percentage >75%, no more

than one discordant blinded replicate (9 total) or Mendel inconsistency in parent-

offspring trios (CEPH only).

As expected, we observe more common SNPs in AA than in the other

samples, reflecting greater genetic diversity (heterozygosity) in African-derived

populations.

The data sets were phased using the program EMPHASE (written by Nick

Patterson) to give 140 unrelated chromosomes (haplotypes) for AA, LA, JA,

WH; 134 for NH; 118 for CH and 80 for CEPH. EMPHASE is based on the

expectation-maximization algorithm [11].

Table 1. List of selected DNA repair genes and number of
successfully genotyped SNPs in all population samples.

Locus # SNPs Locus # SNPs Locus # SNPs

APE1 30 Ku80 58 POLE 74
ATM 57 LIG1 55 POLI 34
ATR 33 LIG3 25 POLK 32
Artemis 45 LIG4 28 RAD50 42
BLM 71 MGMT 114 RAD51 20
BRCA1 32 MLH1 41 RAD52 45
BRCA2 59 MLH3 26 RPA1 68
CHEK1 44 MRE11 47 RPA2 33
CHEK2 39 MSH2 38 RPA3 73
CSA 52 MSH3 133 TP53 19
CSB 69 MSH6 25 XPA 40
DNA-PK 43 NEIL1 13 XPB 41
ERCC1 26 NEIL2 46 XPC 55
FANCA 64 OGG1 39 XPD 28
FANCC 50 PARP1 66 XPF 55
FANCD2 38 PCNA 27 XPG 61
FANCE 34 PMS1 49 XRCC1 42
FANCF 17 PMS2 29 XRCC2 38
FANCG 22 POLB 31 XRCC3 39
FEN1 19 POLD 43 XRCC4 83
Ku70 22

Total 2,783



2.3. Selection of tag SNPs

Many different methods have been proposed for selecting tag SNPs [12-16].

Pairwise methods offer straightforward analysis, but fail to exploit long-range

haplotype structure. We have developed a tagging approach—called

Tagger—that combines the simplicity of pairwise methods with the potential

efficiency gains of multi-marker approaches [17].

In this study, we focus specifically on common variants with a frequency of

! 5%, given the limited ascertainment of less common SNPs in this data set.

We picked tags from the CEPH samples as the reference panel so that all

observed common variants are captured with r
2
 !  0.8. Use of this threshold has

become common practice in the field [15].

Tagging was performed in two modes: (a) by a greedy pairwise approach, in

which every common allele is captured by a single tag at the prescribed r
2

threshold [15], and (b) by aggressively searching for specific multi-marker

(haplotype) tests to improve tagging efficiency. We achieve the latter by first

picking pairwise tags, and then iteratively dropping tags, one by one, and

replacing them with a specific multi-marker predictor (using any of the

remaining tag SNPs). That predictor is accepted only if it can capture the alleles

originally captured by the discarded tag at the required r
2
; otherwise, that

provisionally dropped tag is considered indispensable and kept. This multi-

marker approach essentially finds an identical set of 1 d.f. tests of association,

only now using certain specific haplotypes as effective surrogates for single tag

SNPs, thereby requiring fewer tag SNPs for genotyping. To minimize risk of

overfitting, tag SNPs within a specified multi-marker test are forced to be in

strong LD (defined as LOD > 3) with one another and with the predicted allele.

Tagger thus outputs (1) a list of tag SNPs, and (2) a list of allelic tests,

both central for the evaluation of tag SNP transferability.

Tagger is available in the stand-alone application Haploview [18] and as a

web server at    http://www.broad.mit.edu/mpg/tagger/   .

2.4. Evaluation of tag SNPs

Given the lists of tag SNPs, we evaluated the coverage of the common variants

in the population samples (other than CEPH) by computing the maximum r
2

between the common variants observed in those samples and the specified allelic

tests. For pairwise tagging, these tests simply correspond to the genotypes of

every tag SNP (as single-marker tests). For multi-marker tagging, tests were

specified during tag SNPs selection from the reference panel. (Importantly, in

the evaluation of tag SNPs, we do not allow ourselves to derive better allelic

tests by looking at LD patterns in the population sample under evaluation.)



3. Results

3.1. Selection of tag SNPs

To mimic how investigators will be using the HapMap resource, we used the

CEPH samples as the reference panel for picking tag SNPs. For all 61 loci, we

required all common variants (!5%) observed in the reference panel to be

captured at r
2
 ! 0.8.

We picked a total of 718 tag SNPs by pairwise tagging, and 631 tag SNPs

when we allowed Tagger to form multi-marker predictors in place of single-

marker tests (Table 2). For both tagging approaches, the mean r
2
 for all common

alleles (in the reference panel) was 0.97, and the minimum r
2
 was 0.86 (these are

averages over all 61 loci).

Table 2. Tag SNPs picked from CEPH as the reference panel. The
mean and minimal r

2
 are averages over all 61 loci studied.

Method
Number of
tag SNPs

Mean r
2

Minimum r
2

Pairwise tagging 718 0.97 0.86

Multi-marker tagging
(specified haplotype tests)

631 0.97 0.86

This suggests that a nontrivial boost in genotyping efficiency can be

achieved by multi-marker tagging, exploiting the underlying haplotype

structure, in contrast to pairwise tagging which relies solely on single-marker

relationships between SNPs.

We note that the efficiency gain between pairwise and multi-marker tagging

observed here (~12%) is significantly lower than that typically obtained in

broader genomic regions such as the data from the HapMap-ENCODE project

[17]. It is not uncommon for distant (> 100 kb) markers to be in strong LD and

to form haplotypes that proxy for other SNPs. Since this study was performed

on multiple genes (with an average span of 94 kb), overall efficiency was

reduced compared to tagging in large contiguous regions of the genome.

3.2. Evaluation of tag SNPs

Having picked tag SNPs and defined statistical tests from the CEPH reference

panel, we evaluated the performance of pairwise tagging in terms of the r
2
 at

which common variants are captured in each of the other six population samples

(AA, HA, LA, JA, CH and WH). For every locus, we computed the percentage



of common SNPs captured at r
2
 ! 0.2, 0.5 and 0.8 as well as the mean r

2
 and

minimum r
2
. We present these metrics as averages over all 61 loci (Table 3).

Table 3. Coverage of common (!5%) SNPs in six population samples
by pairwise tag SNPs picked in CEPH as the reference panel. Values

are averages over all 61 loci studied.

Percentage of common SNPs
captured at r

2
 !

Population
sample

Number of
common (!5%)

SNPs 0.2 0.5 0.8

Mean
r

2
Minimum

r
2

AA 2347 88.8% 69.3% 50.4% 0.68 0.06
HA 2196 97.2% 92.7% 85.3% 0.90 0.45
LA 2273 97.9% 93.9% 80.5% 0.88 0.40
JA 2028 95.9% 92.4% 82.3% 0.88 0.33
CH 2030 97.0% 91.7% 79.2% 0.87 0.37
WH 2191 98.6% 95.8% 87.3% 0.92 0.51

Most importantly, coverage of common alleles in the HA, LA, JA, CH and

WH samples appears to be robust. In the WH samples (which is most “similar”

from a population-genetic standpoint), we observe a marginal drop in mean r
2

from 0.96 (in the CEPH reference panel) to 0.92. Between 80% and 87% of

common variants are captured at r
2
 ! 0.8 in the non-African samples, and the

overwhelming majority (> 92%) are captured at r
2 
!  0.5. Of course, not all

alleles are captured equally well: a small fraction (3-4%) of the common alleles

in the non-African samples are not captured at all (r
2
 < 0.2) by any of the allelic

tests.

Not surprisingly, fewer common variants are captured in the AA samples:

only 50% of the common alleles are captured with r
2 
!  0.8; and the mean r

2

dropped down to 0.68. This can be attributed to the significantly lower extent of

LD in African populations [19]. We emphasize that in practice, however,

investigators will likely pick tag SNPs from a reference panel that is more

representative (such as the HapMap samples of Yoruba from Ibadan, Nigeria).

Due to greater genetic diversity and less LD, more tag SNPs will be required for

capturing common variation in African-derived samples.

We next evaluated the performance of the multi-marker predictors on the

basis of the 631 tag SNPs picked by Tagger. Again, we computed the

percentage of common alleles captured at r
2
 ! 0.2, 0.5 and 0.8 as well as the

mean r
2
 and minimum r

2
 (Table 4). The coverage with our haplotype-based

approach is roughly equivalent to that of pairwise tagging but require fewer tag

SNPs. Thus, the multi-marker approach in Tagger is not only more efficient

than a pairwise tagging method, but the specified haplotype predictors capture



common variation in the other (non-African) population samples almost as well

as the single-marker tests (Table 3).

Table 4. Coverage of common (!5%) SNPs in six population samples
by tag SNPs picked and specified multi-marker tests defined in

CEPH as the reference panel. Values are averages over all 61 loci
studied.

Percentage of common SNPs
captured at r

2
 !

Population
sample

Number of
common (!5%)

SNPs 0.2 0.5 0.8

Mean
r

2
Minimum

r
2

AA 2347 88.8% 66.6% 46.7% 0.66 0.06
HA 2196 97.3% 92.3% 83.7% 0.89 0.45
LA 2273 97.8% 92.8% 78.8% 0.86 0.38
JA 2028 95.3% 90.9% 79.1% 0.86 0.32
CH 2030 96.9% 90.5% 76.7% 0.85 0.35
WH 2191 98.6% 95.6% 87.0% 0.91 0.51

4. Discussion

Using empirical genotype data in genes of medical relevance, we find that (a)

tag SNPs picked in the CEPH samples provide good coverage of common

variants in the non-African population samples studied here; and (b) specified

haplotype tests can improve overall tagging efficiency with minimal loss of

coverage.

Even though the fine details of LD patterns are known to differ between

population samples, these results demonstrate that tag SNPs chosen from the

CEPH reference panel (used in HapMap) are able to effectively capture the

majority of common alleles in other (non-African) samples in a cost-effective

manner.

Although this work focuses only on a limited set of parameters, we believe

that the results presented here are fairly representative of the practical decisions

that investigators face in the design of tag SNP sets.

Our tagging approach, like that of others, is explicitly not based on

haplotype “blocks,” hotspots of recombination, or other features of empirical

data. We agree with commentators who have noted that while blocks may be a

convenient descriptor of genotype data, a block-by-block approach ignores the

sometimes substantial correlations between blocks, and as not all SNPs are

contained within blocks, block-based selection of tag SNPs is likely to give

inadequate coverage [20].

While many different approaches exist for selecting tag SNPs from a

reference panel and for performing tests, these concepts are sufficiently



intertwined and should be considered as a unit. Tag SNPs may perform well

under the particular analytical strategy for which they were designed, but not

under another. We do not address in this study the tradeoff between the amount

of required genotyping and statistical power to detect an association in an actual

disease study. We have addressed these issues elsewhere [17].  
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