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Mass spectrometry (MS) based proteomics is a rapidly advancing field that has
great promise for both understanding biological systems as well as advancing
the identification and treatment of disease. Breakthroughs in science and
medicine due to proteomics, however, are coupled with our ability to overcome
significant challenges in the field. These challenges are multi-scalar, spanning
the range from the statistics of molecules and molecular signals, to the
phenomenological characterization of disease. The papers presented in this
section are a representative snapshot of these challenges that span scale and
scientific disciplines.

The multi-scalar challenges are hinted at in figure 1, which depicts a typical
MS-based proteomics analysis that is performed in many laboratories. Proteins
are first extracted from cells and then may be cut at defined locations in the
sequence by adding enzymes called peptidases to the protein extract. The
solution of peptides is then partially separated by the use of liquid
chromatography. The partially separated peptides are shown in the
chromatogram in the top panel of figure 1. Each peak in the chromatogram
consists of multiple peptides. A peak is then analyzed by the mass spectrometer
attached at the end of the chromatography system. The co-eluting peptides are
then introduced into the gas phase and, as shown in the middle panel of figure
1, separated by their mass-to-charge ratios in the mass spectrometer. Ideally, the
peptides have been completely separated from each other at this stage. The
analysis may stop at this stage, or peaks from the initial mass spectrum may be
isolated, and those peptides can be subject to a second round of analysis where
the isolated peptides are vibrationally excited by collision with an inert gas. The
peptides then fragment at labile bonds and a subsequent mass spectrum is
obtained of the fragments of the peptide, shown in the bottom panel of figure 1.
Because the peptides tend to fragment into recognizable patterns, the identity of
the peptide can frequently be determined from this mass spectrum.



Figure 1. (Top). Peptides are partially separated from each other using liquid chromatography,
resulting in a chromatogram in which each peak consists of one or more peptides. (Middle) The
peptides co-eluting in a peak from the chromatography system are further separated in the mass
spectrometer by their mass-to-charge ratio. The peak intensities reflect the number of molecules
that have been isolated. A peptide in the MS spectrum can be isolated and selected for further
analysis in which the peptide is collisionally-activated by an inert gas. (Bottom) The peptide may
then fragment apart and the resulting mass-to-charge and abundances of the fragments are
measured by a subsequent round of mass spectrometry

Currently, many of the instruments use proprietary software for
transforming raw spectra into sets of peak locations and intensities. This results
in difficulties when gauging the accuracy of the resulting peak intensities and
locations; ultimately this limits the interpretations that lead to biological results
improvements can be made in the existing methods. Many aspects of this multi-
scalar problem can be studied independently, but many more are dependent on



the approaches taken earlier in data processing.  In this regard, surveying the
depth and scope of computational proteomics is key to understanding the
information content of each proteomic experiment.  We start more detailed
discussions with an example to a critical step in computation proteomics in
which Lange et al.b use open source wavelet approach to peak picking, the
process of transforming the raw spectra into the familiar impulse plots used to
display intensity and mass-to-charge location information.

Comparative Proteomics

Following quantification from raw mass spectra, a wide number of approaches
may be employed to interpret them. In comparative proteomics, a first step is
the normalization of the data to enable comparison between experiments and
determination of differential abundance levels of the proteins in a specific
proteome. In this area, Wang, et al.b  introduce a rank-inspired probability
method for normalizing ion peaks between samples. The ultimate goal is to
increase the reliability of the quantitation process so that differential expression
of proteins can be measured under various growth conditions.

Another challenge in comparative proteomics is aligning the spectra so that
the correct peaks can be compared and the ratio of the normalized intensities
determined. A problem that has been encountered with shotgun proteomics
experiments in applying this method, however, is that the alignment of the
spectra in both elution time and mass-to-charge values is difficult due to the
number data points. A typical shotgun experiment in which the cell lysate is
digested with trypsin and then separated using liquid chromotagraphy may
generate 70,000 data points or more. An alternative method is to label the
samples using isotopes that are normally in low abundance in nature. Samples
can then be mixed and the alignment step essentially is obviated because
isotopic labeling has only a small affect on the elution properties of the peptides
and proteins [1].  Further improvements may be made by reducing the
complexity of the peptide mixture and isotopically labeling peptides using
isotope-encoded affinity tags (ICAT) [2].  Recent advances in isotope labeling
technology have enabled the comparison of differential protein expression for up
to four samples[3]. Michailidis and Andrewsb present a statistical framework
for the analysis of variance of multiple isotopically-labeled proteins and formal
hypothesis testing as to whether the proteins are differentially expressed.
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Network Inference

If the differential expression can be done in a reliable and informative
manner as Michailidis and Andrewsb present, then it would be conceptually
possible, with proper experimental design, to infer networks of protein
regulation from the mass spectrometry results. One of the persistent questions
regarding the use of graphical models to infer networks from RNA or protein
expression data is how to optimally design experiments in order to achieve the
greatest resolution of the network. Typically this argument is cast in terms of
whether one should study cell populations under different treatment or
environmental conditions, or whether one should use time series data. The
former are attractive because each data series represents an independent
observation, while in the latter the observation of expression of each protein is
correlated in time and thus is not an independent observation. On the other
hand, time-series experiments that focus on a specific sub-network are easier to
design. This trade off is considered in detail by Page and Ongb.

Regulatory networks are not the only networks of interest. Rapid advances
are currently being made in the determination of protein interaction networks [4-
9]. A typical approach in these assays is to use affinity purification techniques
to pull-down a preselected bait protein and the prey proteins that interact,
directly or indirectly, with the bait protein. This information can be used to
construct a protein interaction network in which all discovered interactions are
laid out. However, a protein-protein interaction network is not as informative as
actually determining the protein complexes or machines that carry out the
biological function in the cell. Determining these complexes from the pull-down
data is computationally challenging because multiple-complexes may be present
in any given pull-down data set. Chu et al.b propose a solution to this problem
that combines a kernel method to identify potential complexes, a latent feature
model to address the number of complexes, and Bayesian statistics that can
ultimately be used to bring in informative prior knowledge

Peptide Identification

Network analyses and any other analyses that seek to determine biological
knowledge from proteomics experiments rely on the initial correct identification
of peptides. The automation of peptide identifications using computers took a
step forward in the late1980s and early 1990s in work by several groups that
laid a foundation for the next several years[10-12]. In 1994-1995, the SEQUEST
method was developed and published [13]. SEQUEST was the first example of
high-throughput processing of proteomic data and has since become one of the



standards of the field. Although the code was developed in a relatively short
time, the wide spread use of the tool is a testimonial to its utility.

Now that proteomics is being widely used in industry and research labs,
however, there is a pressing need to solve the many of the peptide identification
challenges that remain. Currently, only 25% or fewer of peptide spectra are
identified with a peptide. There are many reasons for this. First, many
fragmentation pathways are poorly understood and the current set of patterns that
are searched for is limited. Second, most peptide identification tools only
consider parent ions that have charges of +3 or less. Incomplete digestion of
peptides by peptidases, such as trypsin, is likely to result in an abundance of
higher charge state ions leading to a decrease of spectra that are currently
identifiable. In addition, tools such as SEQUEST search genome sequence
databases for peptides that are likely to result in a spectrum similar to the
experimental spectrum under consideration.

In SEQUEST and most peptide identification tools, a fragmentation pattern
is used in one way or another to determine this similarity. Typically, the
peptide sequence is used as a template to generate the pattern, and the pattern or
model spectrum is compared to the actual spectrum. The accurate development
of these patterns is the topic of the work by Arnold, et al.b,  in which they
employ a neural network to learn peptide fragmentation patterns from a training
database of peptide spectra. This work is significant because it is believed that
non-classical fragmentation patterns are largely missed in the identification
process. Wang et al.b take a different approach in which they use a minimal
fragmentation model in a simple scoring function and then analyze the score and
properties of the candidate peptides using a support vector machine (SVM). This
approach extends the use of SVMs in peptide identification [14, 15] to not only
choose spectra that have been correctly matched to a peptide, but to also choose
the best candidate peptide from a sequence database for a given spectrum.

Alternate Spectra Assignment Algorithms

Although more and more genome sequences are becoming available, by far the
majority of genomes have not been sequenced nor are they likely to be
sequenced in the next 5-10 years. The alternative to searching a sequence
database is to determine the peptide sequence de novo from the spectrum[11, 16,
17], or to use optimization to evolve a peptide sequence to match a spectrum
[18].  De novo methods are attractive because the idealized problem, that of
essentially spelling out a peptide from a set of mass peaks, intuitively
corresponds to a problem that can be solved using graph theory. The devil, as
usual, lies in the details. Real spectra are noisy and missing peaks from key
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fragments are the rule rather than the exception. Graph theory analyses often
result in a series of graphs, not all of which are compatible. Liu, et al. extend
recent advances in this area by the application of tree decomposition to the
problem that allows for compatible graphs to be found more readily and in faster
time.

Post-Translation Modifications

Of the 75% or so of spectra that go unassigned with a peptide in a general
database search, many of these are thought to be post-translationally modified
peptides. The identification of these peptides is extremely important because the
post-translational modifications (PTM) are one of the key mechanisms by which
cells respond to external stimuli, resulting in the up and down regulation of
genes. Yan et al.b describe a point-process model that has the advantage used in
dynamic programming models [19] in which the mass offsets for the PTMs are
determined automatically, and is deployed in a fast cross-correlation framework.

Final Thoughts

Ultimately, a major motivation for investments into the development of
proteomics is to develop advanced methods of disease diagnosis, understanding
of disease processes, and remedies. Early detection of disease is important
because the clinical outcome is much more favorable, in general, if the disease
can be treated in an early stage. As a result, there is much interest in
improvements at every level that can yield MS-detectable biomarkers that signal
the presence of the disease long before more overt symptoms occur that signal
advanced stages of disease.  An example of this need and approach is Pratapa et
al.b present a hierarchical data analysis scheme for the identification of protein
biomarkers that are indicative of lung cancer. Using data from mass
spectrometric analyses of diseased and normal tissues, they compare a SVM
classification with that of a Bayesian sparse logistic regression. They find
known biomarkers as well as identify several more candidate biomarkers that
may prove to be clinically useful.

The incredible diversity of problems and solutions is well sampled by the
efforts of this session authors.  Mass spectrometry-based proteomics is likely to
offer a central role well into the future for understanding protein function and
complex biological systems.
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