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We address the problem of learning a predictive model for growth inhibition from
the NCI DTP human tumor cell line screening data. Extending the classical Quan-

titative Structure Activity Relationship paradigm, we investigate whether includ-
ing gene expression data leads to a statistically significant improvement of predic-
tion quality. Our analysis shows that the straightforward approach of including
individual gene expression as features does not necessarily improve, but on the con-
trary, may degrade performance significantly. When gene expression information
is aggregated, for instance by features representing the correlation with reference
cell lines, performance can be improved significantly. Further improvements may
be expected if the learning task is structured by grouping features and instances.

1. Introduction

Pharmacogenomics is concerned with linking drug response with genomic

as well as transcriptomic and proteomic data. Whereas many studies deal

with genomic variation and single nucleotide polymorphisms (SNPs), we

aim at extending the classical Quantitative Structure Activity Relationship

(QSAR) paradigm by transcriptomic information. That is, we use not only

the structural properties of the compounds for predicting pharmacological

activity (as in classical QSAR), but also data about the biological environ-

ment, such as gene expression measurements of the involved cell lines. In

this way we hope to improve the predictive accuracy of the induced models.

The study is based on the NCI DTP human tumor cell line screening

database1. This database consists, by and large, of three parts: the first

part contains measurements of the growth inhibition of human tumor cell
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lines caused by chemical compounds. The second part contains gene ex-

pression measurements for those cell lines. We do not use the (potentially

useful) third part of the database containing data on so-called molecular

targets. The NCI database has been the subject of a lot of interest in

the past few years. So far, work has focused mainly on descriptive min-

ing (variants of clustering, co-clustering/biclustering, and linking clustering

results with other information)2,3,4,5,6,7,8 and predictive mining for individ-

ual compounds or small, selected subsets of compounds9. In this paper,

we develop a model that not only connects these different types of data,

but also can be used to make predictions for new, yet unseen cases. We

present the results of experiments in learning predictive models on all cell

lines (their gene expression) and all compounds. The envisaged usage of

the induced model is: given data on a new compound and a new cell line,

predict the growth inhibition of that compound on the cell line. The goal

of this study is not to achieve a particularly low error, but to test the null

hypothesis that the inclusion of gene expression does not change the error

of the predictive models.

This paper is organized as follows: In Section 2, we present the materials

and methods. Section 3 describes the experimental set-up and data flow in

detail. In Section 4, experimental results are presented both quantitatively

and qualitatively, before Section 5 concludes and gives an outlook on future

work.

2. Materials and Methods

2.1. Materials

The NCI DTP has tested tens of thousands of chemical compounds for

growth inhibition on human tumor cell lines. Structure information about

the compounds is available in a standard file format. For each cell line

in the database, gene expression data from Affymetrix chips9 and cDNA

chips10 is given. The overall dataset is constantly updated by the NCI and

complemented by additional information.

For each chemical compound and tumor cell line, the database specifies

an indicator of the growth inhibition of the compound on the cell line, the

GI50 value. The GI50 is based on the concept of test through control (T/C,

see figure 1(a)). Consider the growth of a tumor cell line until a certain

point in time in an untreated control. The measured intensity changes from

C0 to C. In contrast, the measured intensity in a treated cell line changes

from T0 to only T . Given the measured intensities C0, C, T and T0, we can
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Figure 1. Left side (a): definition of T/C in general, right side (b): definition of GI50
from five measurements

calculate the growth (increase in measured intensity) relative to the control

as T/C = (T −T0)/(C−C0). If the T/C takes the value 0, then the growth

of the tumor cell line has stopped completely. If it takes the value 1, the

treatment did not make any difference compared to the untreated cell line.

Thus, one (or in relative terms, 100%), implies low activity, and zero (or

0%) implies high activitya.

Now, in general, the GI50 value is defined as the concentration of a com-

pound for which the growth is reduced to 50% compared to the untreated

control, that is for which the T/C is 50%. Since it would be too costly and

time-consuming to determine this point exactly, it is usually determined

by interpolation. For the given dataset, the first step in this process is

the measurement of the T/C value for five concentrations, from the lowest

concentration 10−8 M to the highest concentration 10−4 M (see Fig. 1(b)).

Then, we connect all pairs of neighboring points of measurement by straight

lines. Next, we determine the point where one of these lines intersects the

horizontal line at T/C = 50%. The value on the x-axis (the concentration)

of this point is then defined as the GI50.

Unfortunately, there are many complications in this process. First, the

procedure might not be successful, because the connected lines might be

all below or above T/C = 50%. In this case, the procedure usually extrap-

olates to a range outside the interval between 10−8 M and 10−4 M. If the

intersection is close to the interval boundaries, then the value is taken as it

is. Otherwise, the extrapolation is considered too unreliable, in which case

the value is rounded to, e.g., 10−4 exactly. Therefore, the rounded values in

the dataset are indicators of unreliable extrapolations. For the purpose of

this paper, we dropped rounded values altogether, since we might otherwise

aThe explanation is slightly simplified for ease of presentation.
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not predict growth inhibition, but rather other, more coarse effects such as

solubility. Since some compounds were tested with one cell line at various

concentrations we selected the GI50 value most distant from the upper and

closest to the lower concentration border.

2.2. Methods

The main tools for the analysis of the data are the graph mining system

FreeTreeMiner12 and the regression rule learning system Cubist11. Due to

space constraints we can not give a detailed description of the two systems

and refer to the references for details.

Most learning systems expect the input data in an attribute-value rep-

resentation, i.e. a table. Thus, we need a preprocessing step to extract

features from the compound’s structure. In our study we use frequently

occurring substructures to characterize each molecule. Each attribute rep-

resents a substructure; it is set to 1, if the molecule contains the substruc-

ture and 0 otherwise. Of course, it is way to expensive to use all possibly

occurring substructures. Instead, we use a graph mining tool to identify

those substructures that occur frequently in the database.

In its most general form, graph mining is concerned with finding fre-

quently occurring subgraphs in a database of graphs. More formally, for a

database D of graphs let f(s, D) denote the number of graphs containing

the subgraph s. Then the goal of a graph mining system is to generate

the set of all (connected) subgraphs that occur more often than a prede-

fined threshold t: S = {s|f(s, D) ≥ t}. As we represent a compound as a

molecular graph, we can apply any general graph mining tool for the fea-

ture generation step. For our study we use FreeTreeMiner12 to extract all

acyclic subgraphs from the molecule database, whose relative frequency is

greater than 3%b. The restriction on acyclic substructures is made mainly

for efficiency purposes. However, unpublished experiments on standard

SAR datasets shows no significant difference in performance between var-

ious graph mining approaches13. In the experiments we find that 5015

acyclic graphs occur in more than 3% of the database’s compounds. Thus,

we represent each compound by a list of Boolean values, where each value

specifies whether the corresponding substructure occurs in the compound.

bPreliminary experiments indicate that a smaller threshold hardly makes a difference as
we use only the most significant substructures (see below) and those tend to remain the
same if one decreases the threshold.
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Of course, many of the generated attributes might not contain any sig-

nificant information about the GI50 value. Thus, we perform a second step

to identify the meaningful attributes. We calculate a Wilcoxon rank sum

statistic for each substructure with regard to the GI50 value and keep only

those attributes that exceed a minimum significance level. By adjusting the

significance threshold one can easily control the number of attributes in the

dataset for performance tuning and overfitting avoidance. To calculate the

statistic, we split the list of all compounds in two parts: those compounds

which contain the substructure and those which do not.

We sort both lists according to the GI50 value for each cell line and com-

pute the Wilcoxon rank sum statistic between the two lists. The resulting

p-value is an indicator on how certain one can be that the compounds con-

taining a particular substructure exhibit a different distribution of GI50

values than those compounds that do not contain the substructure. We

calculate those p-values for each attribute and each cell line and use the

minimum p-value over all cell lines as the overall p-value of the substruc-

ture. Thus, we assume a substructure is significant if it is significant for

at least one cell line. We then sort the substructures according to these

aggregate p-values to obtain the desired ranking of the generated features.

We chose the commercial tool Cubist for inducing a model that predicts

the GI50 from the preprocessed data. Cubist generates regression rules with

tests for attribute values in the body (antecedent) and linear models in the

head (consequent). Table 2 contains typical rules generated by Cubist.

Cubist implicitly selects features (for inclusion in the rule body or head),

but is not designed to detect feature interactions. It is known to perform

well in terms of predictive accuracy and to scale nicely to large datasets.

3. Experimental Set-Up and Data Flow

The goal of our experiments is to show that the inclusion of biological

information makes a measurable difference in the predictive accuracy of the

models. Note that it is hard to prove that including biological information

is not useful at all, since we can only make statements about the particular

approach we are following here. The results indicate that one can improve

predictive accuracy if the problem representation is chosen carefully. The

null hypothesis we want to put to the test in the following is that the

inclusion of biological information does not improve performance at all.

We follow the hold-out procedure for evaluating the performance of

the learned models: Two thirds of the examples are used for training the
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Figure 2. Input data for our approach. On the left, the table CellLines contains gene
expression information for thousands of genes and around 60 cell lines. The Compounds
table in the center gives 3D structure information for more than 37,000 chemical com-
pounds. On the right, table GI50 contains the negative logarithm of the GI50 for com-
binations of compounds and cell lines.

model and one third is set aside to evaluate it. Since the dataset is very

large, there is no need to perform the more time-consuming cross-validation

procedure. Fig. 2 shows the input data for our approach. We are given a

(target) table of − log GI50 values for combinations of molecules and cell

lines. Thus, we have to deal with a multi-relational learning problem. The

näıve approach would be to join the three tables and then predict the

GI50 from the chemical and biological information. However, joining the

full three tables would result in a table of approximately 40 GB of data,

which makes this approach impractical. Therefore, we perform feature

selection to reduce the dimensionality of the gene expression and molecular

structure table before joining the tablesc. Since we still join the tables,

we accept a high degree of redundancy in the data as gene expression and

compound information is duplicated many times in memory. This, however,

only affects memory consumption and not predictive accuracy.

As explained above, we choose those substructures whose Wilcoxon p-

values on the GI50 values exceeds a certain threshold. Feature selection

of the gene expression data is done in a class-blind manner. For the first

batch of experiments, we simply sort the genes according to their variance

over the cell lines, and add the expression values in this order as features

to the data. Thus, inclusion of genes can be parameterized in exactly the

same way as the inclusion of substructures. For instance, we might run

experiments with the first 100 genes and the first 500 substructures.

cFeature selection is necessary anyway, given the high dimensionality and the fact that
the performance of most machine learning algorithms tends to degrade with increasing
numbers of features.
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Figure 3. Data flow in the second batch of experiments (see also appendix A)

For the second batch of experiments, we do not use individual gene ex-

pression values as attributes. Instead, each attribute represents a reference

cell line. For prediction, the new unseen cell line is compared to each refer-

ence cell line by calculating a correlation coefficient. This coefficient is then

used as feature value. We conduct two experiments: In the first full-fledged

variant, we use all 21 training cell lines as reference cell lines, and compute

the Pearson correlation coefficient with these cell lines as features. In the

second reduced variant, we use only 7 selected, representative cell lines from

the training set as reference features. The reference cell lines are chosen to

represent all 7 tissues: A549/ATCC for lung, SW-620 for colon, OVCAR-8 for

ovary, SF-295 for central nervous system, MOLT-4 for blood, SK-MEL-28 for

skin and UO-31 for kidney. The overall data flow for the second batch of

experiments is shown in Fig. 3. A complete description of the data flow in

both batches of experiments is given in appendix A.

4. Experimental Results

Given the above experimental set-up, we first state the results quantita-

tively (see table 1) and then qualitatively, that is, we present parts of the

best model found (see table 2).

We test the influence of biological information describing the respective
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cell lines – represented in different forms – on prediction accuracy for vari-

ous sets of substructures. The results are shown in table 1. As outlined in

section 2.2 the sets of 100, 500 and 1000 substructures are selected according

to their significance. As also outlined the biological information is provided

in three different representations: Either as single genes, selected from the

Scherf dataset10 according to the variance over all cell lines (“single genes”),

or as Pearson correlation coefficients with all training cell lines (“cell lines”)

or, further condensed, as correlation with only one cell line per originat-

ing tissue (“tissue”). We also obtain reference results from substructure

occurrence information without any biological information (“none”). We

would now like to accept or reject the null hypothesis that the addition of

biological data reduces the prediction error. To do so we perform a paired

t-test on the test set example predictions. The table denotes the t-statistic

and the corresponding p-value.

The results indicate that the null hypothesis can not be accepted or

rejected regardless of the chosen set-up. Instead, the improvement or dete-

rioration of predictive accuracy depends very much on dataset size and the

representation of the biological information. First of all, even if one does

not include any biological information, the performance depends on the

number of substructure attributes: it is best for 500 substructures (error:

0.5701), slightly worse for 100 substructures (0.5744) and clearly worse for

1000 substructures (0.5897). This indicates that overfitting is an important

issue for the set-up with 1000 substructures. Consequently, adding biolog-

ical information in this case only increases the prediction error further to

0.5969 and 0.6054.

With 100 and 500 substructure features, adding biological information

as correlation coefficients generally reduces the error. However, overfitting

is an issue as well: using 7 representative cell lines performs better than

using all 21 training cell lines in both cases, in the latter case even by a

large margin (0.5694 vs. 0.5596). If one uses single genes as features, the

performance depends very strongly on the number of features. There is an

improvement for 500 genes (0.5637), but significant deterioration for 100

or 1000 gene attributes. Apparently, overfitting is again an issue. Overall,

using selected reference cell lines to represent biological information seems

to yield the best results.

A few of the model’s prediction rules produced by the learner are given

in table 2. Rule 2 covers 2322 examples and states that for a substance

where the substructures c(:c(:c(:c(:c))))(:c(:c(:c(:n(:c))))) and

c(:c(:c(:c(-O))))(:c(-C(-C(-C(-C))))(:c)) (in SMARTS format, see
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Table 1. Quantitative results from applying Cubist to the NCI data. We present
results for varying numbers of compound features (100, 500, 1000): In each case the
first row gives the reference result without the use of biological information. The
remaining row show results for varying representations of the biological information.
The third column states the mean absolute error. The fourth column gives the value
of the t statistic from a paired t-test on the test instances, followed by the associated
p-value. The sixth column states whether the outcome is a significant win or loss when
compared to the reference result without biological information. The final column
shows the runtime of Cubist on a Pentium IV CPU with 2.8 GHz.

# Sub- Mean sign.
struc- Biological Abs. t- p-value Win/ CPU
tures Information Error Stat Loss Time

100 none 0.5744 - - 79.1 s

100 cell lines 0.5741 -1.83 p ≈ 0.034 + 162.1 s

100 tissue 0.5735 -7.32 p < 0.001 + 116.5 s

500 none 0.5701 - - 597.5 s

500 single genes (100) 0.6319 78.49 p < 0.001 - 1048.2 s

500 single genes (500) 0.5637 -34.41 p < 0.001 + 4059.9 s

500 single genes (1000) 0.5826 33.83 p < 0.001 - 10040.0 s

500 cell lines 0.5694 -5.91 p < 0.001 + 760.4 s

500 tissue 0.5596 -51.13 p < 0.001 + 674.2 s

1000 none 0.5897 - - 1186.2 s

1000 cell lines 0.5969 25.45 p < 0.001 - 1334.7 s

1000 tissue 0.6054 40.03 p < 0.001 - 1157.6 s

http://www.daylight.com/dayhtml/doc/theory/theory.smarts.html

for a description) are present the GI50 value for a cell line is 4.6566 plus

0.29 times the correlation of this cell line with cell line SK-MEL-28 plus 0.17

times the correlation with cell line UO-31. Rule 9 works similarly for 7325

examples. The GI50 value for a substance/cell line combination can be pre-

dicted as 4.8483 plus 0.19 times the correlation with cell line SK-MEL-28 if

the substance contains the substructures c(:c(:c(:c(:c(:c(:c))))))-

(:c(:c(:n(:c(:c(:c)))))) while the substructures c(-C(-C))-

(:c(-C(-C)(=O))(:c)) and c(:c(:c(-O)))(:c(:c(-C(-C))(:c))) are

missing. Rules can also uncover more complex contributions from the

biological features. For instance, in rule 23 (covering 4911 examples) in

the presence of the two substructures, C(-C(-C)(-C))(-C(-C)(-O(-C)))

and C(-C(-C(-C)))(-O(-C(-C(-C)))), the GI50 prediction depends on

the correlations with cell lines UO-31 (-0.43 times), SK-MEL-28 (0.38 times),

OVCAR-8 (0.35 times), SW-620 (0.4 times) and MOLT4 (0.23 times), which

makes use of five of the seven biological features present in the data.

The rules presented here clearly show that the use of appropriately rep-

resented biological information can enhance prediction power and complete

structure-based information.
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Table 2. Sample rules from Cubist. The rules are part of the model for 500 substruc-
tures and 7 selected tissues. On the left-hand side of the rules (the antecedent), we
have tests for the occurrence or non-occurrence of substructures (in SMARTS format).
On the right-hand side, we have linear models on variables representing the correlation
with the reference cell lines.

Rule 2: [2322 cases, mean 4.8189, range 3.456 to 10, est err 0.4961]
if

c(:c(:c(:c(:c))))(:c(:c(:c(:n(:c))))) = 1
c(:c(:c(:c(-O))))(:c(-C(-C(-C(-C))))(:c)) = 1

then
GI50 = 4.6566 + 0.29 SK-MEL-28 + 0.17 UO-31

Rule 9: [7325 cases, mean 4.9445, range 2.903 to 10, est err 0.5976]
if

c(-C(-C))(:c(-C(-C)(=O))(:c)) = 0
c(:c(:c(:c(:c(:c(:c))))))(:c(:c(:n(:c(:c(:c)))))) = 1
c(:c(:c(-O)))(:c(:c(-C(-C))(:c))) = 0

then
GI50 = 4.8483 + 0.19 SK-MEL-28

Rule 23: [4911 cases, mean 6.2986, range -1.02 to 13, est err 1.3271]
if

C(-C(-C)(-C))(-C(-C)(-O(-C))) = 1
C(-C(-C(-C)))(-O(-C(-C(-C)))) = 1

then
GI50 = 5.9707 - 0.43 UO-31 + 0.38 SK-MEL-28 + 0.35 OVCAR-8 + 0.4 SW-620

+ 0.23 MOLT-4

5. Conclusion and Outlook

In this paper, we investigated whether the inclusion of gene expression data

can improve a predictive model for growth inhibition learned from the NCI

DTP human tumor cell line screening data. Experiments showed that sim-

ply relying on individual gene expressions does not necessarily improve,

but might degrade performance in predictive modeling of growth inhibi-

tion. To show statistically significant improvements over using chemical

information alone, a suitable representation of the biological information

has to be found.

In future work, we plan to take advantage of the rich structure in the

various parts of the input data. For instance, there are classes of substances

sharing the same mechanism of action or physico-chemical properties or

groups of genes (functional modules) that belong together. Our approach

did not yet address these interrelationships. The goal should be to find these

groups automatically in the data: Learning mechanisms should be able to

recognize and handle subgroups in sets of attributes as well as examples

and ultimately use them for prediction.
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Appendix A: Data Flow in the Study

For the first batch of experiments (individual genes as features), the parameters to obtain
varying numbers of features are NrFreeTrees and NrGenes:

(1) Sampling

(a) (
√

2−1) ·100% of the cell lines are randomly sampled (without replacement)
for testing, the rest is used for training.

(b) (
√

2 − 1) · 100% of the compounds are randomly sampled (without replace-
ment) for testing, the rest is for training.

(2) Find frequent substructures in training compounds: apply FreeTreeMiner to
find frequently occurring substructures in the molecular graphs of the training
compounds.

(3) Rank and select significant frequent substructures

(a) Rank the frequent substructures according to the minimum p-value over all
the training cell lines they were tested on. Note that not all compounds
were tested on all cell lines.

(b) Select the first NrFreeTrees from the sorted list of substructures.

(4) Reformulate compounds in terms of substructures

(a) Reformulate the training compounds in terms of the selected substructures.
A substructural feature is set to one if the substructure is contained in the
molecular graph, and set to zero otherwise.

(b) Analogously, reformulate the test compounds in terms of the selected sub-
structures.

(5) Rank and select genes

(a) Rank all genes according to their highest variance on the training cell lines.

(b) Select the first NrGenes from the list of genes.

(6) Project on selected genes

(a) Project the training cell lines onto the selected genes. In other words, we
keep only the NrGenes genes with the highest variance to describe the cell
lines.

(b) Project the test cell lines onto the selected genes.

(7) Join the training compounds, the training cell lines, and the GI50 values to
obtain the training set. Note that not all compounds were tested on all cell
lines. Therefore, the join involves a look-up in the GI50s table for each pair of
a compound and a cell line.

(8) Join the test compounds, the test cell lines, and the GI50 values to obtain the
test set. This is the same procedure as for the training set. In this way, the
training set contains approximately two thirds of the instances, and the test set
approximately one third. Also notice that in this way no compound or cell line
in the test set is used for training.

(9) Train Cubist on the training set and test it on the test set.

The data flow in the second batch of experiments (correlations with reference cell lines
as features) differs slightly from the one before (see also Fig. 3), in steps 5 to 9. The
only parameter is the number of substructures (NrFreeTrees):
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(5) Correlate training cell lines: compute a matrix with the Pearson correlation
coefficient between all pairs of cell lines in the training cell lines. Thus, the
correlation between a cell line and another is used as a feature to describe the
former.

(6) Correlate test cell lines with training cell lines: a matrix containing the Pearson
correlation coefficient between each test cell line and each training cell line is
computed. The correlation of a test cell line with a training cell line is used to
describe the former.

(7) Join the training compounds, the training cell line correlations, and the GI50
values to obtain the training set.

(8) Join the test compounds, the test cell line correlations, and the GI50 values to
obtain the test set.

(9) Train Cubist on the training set and test it on the test set.
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