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This paper demonstrates how Drosophila gene name recognition and anaphoric
linking of gene names and their products can be achieved using existing informa-
tion in FlyBase and the Sequence Ontology. Extending an extant approach to
gene name recognition we achieved a F-score of 0.8559, and we report a prelimi-
nary experiment using a baseline anaphora resolution algorithm. We also present
guidelines for annotation of gene mentions in texts and outline how the resulting
system is used to aid FlyBase curation.

1. Introduction

Curated databases are critical in the biomedical sciences as a method
of systematizing and making accessible the rapidly expanding scientific
literature1,2. However, curation is expensive because it requires consider-
able manual effort on the part of domain experts. In this paper, we describe
the development of an adaptive textual information extraction (IE) system
using bootstrapping machine learning techniques, designed to function as
part of an interactive system to aid curation by supporting thematically-
guided navigation of the article being curated in terms of the entities of
interest.

Most IE systems for biomedical and other domains have been developed
either using supervised machine learning techniques requiring large quan-
tities of annotated data3 or by manually encoding domain specific rules4.
Here we describe how we have replicated and extended the approach of
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Morgan et al.5 using FlyBasea and the Sequence Ontology6b to bootstrap
an initial unsupervised system with state-of-the-art performance.

The link to extant public-domain resources, such as FlyBase and the
Sequence Ontology, both supports the initial automatic adaptation of the
system and also provides essential functionality. The association of gene
names with FlyBase gene identifiers is a useful extension of classic named
entity recognition in the context of FlyBase curation. However, the means
by which this link is obtained and by which the initial Drosophila gene
name recognizer is bootstrapped also relies critically on the availability of
such extant resources which, while not developed to support creation of
IE systems, contain valuable information which can be exploited to adapt
IE technology to the domain. Similarly, the Sequence Ontology encapsu-
lates general genomic knowledge concerning genes, their components, their
products, and their products’ subclasses and components which can be ex-
ploited effectively in the Drosophila literature to compute the anaphoric
link, whether coreferential or associative, between gene mentions and men-
tions of proteins, RNA and other gene products.

2. Drosophila Gene Name Recognition

In the biomedical domain, there is a paucity of annotated text and none
which is focused entirely on the Drosophila literature. We extend recent
approaches to bootstrapping systems for name recognition, partly by ne-
cessity, but also because annotation is expensive and does not constitute a
viable long-term approach to the development of IE systems.

2.1. Reproducing the Morgan et al. experiment

FlyBase provides a dictionary of all Drosophila genes and their synonyms
that appear in the extant curated literature together with links to the liter-
ature indicating where a specific name is used to refer to a particular gene.
Morgan et al.5 exploited this information to create annotated material to
train a gene name recognizer. In brief, abstracts were tokenized and then
genes names linked to specific abstracts in FlyBase were tagged applying
longest-extent pattern matching. The process resulted in a large but noisy
corpus which was in turn used to train a hidden Markov model (HMM)
recognizer.

awww.flybase.net
bhttp://song.sourceforge.net/
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We replicated this experiment with an enlarged dataset and different
software. We built a list of all articles mentioned in the FlyBase bibliogra-
phy for which the database also recorded at least one gene as having been
mentioned within it. We then retrieved all the abstracts of those articles
using the NCBI Entrez Programming Utilities7. This gave a total of 16609
abstracts (9.5% more than Morgan et al.). The abstracts were tokenized us-
ing the RASP toolkit8c. Then, following Morgan et al., in each abstract we
annotated all the gene name mentions licensed by the associated FlyBase
gene name list.

The 16609 abstracts contained approximately 7800 distinct gene names
representing 5243 distinct genes out of a total of over 44000K names
recorded in FlyBased. Many gene names and synonyms do not appear
in the training material. As Morgan et al. note, there are gene synonyms
that are common English words, such as to and by, resulting in precision
errors in the training data. Sometimes genes mentioned in abstracts are not
in the respective FlyBase gene lists of those articles (as only some relevant
sections of the article are curated), resulting in recall errors.

The recognizer used in our experiments is the open source toolkit Ling-
Pipee. The named entity recognition module is a 1st-order HMM model
using Witten-Bell smoothing. For each token t[n] and possible label l[n],
the following joint probability is computed, conditioned on the previous
two tokens and the previous label:

P (t[n], l[n]|l[n− 1], t[n− 1], t[n− 2]) (1)

Unknown tokens are analyzed using a morphologically-based classifier,
which we modified slightly to adapt it to the domain. The approach is
highly lexical and conservative compared to others (e.g. Crim et al.9)
which deploy more abstract and general features to achieve greater domain-
independence. Lingpipe achieves high precision by only generalizing to un-
seen names in lexical contexts which are clearly indicative of gene names in
the training data.

We tested the performance of the trained recognizer on the test data
used in Morgan et al.5. The data consists of 86 abstracts doubly-annotated

chttp://www.cogs.susx.ac.uk/lab/nlp/rasp/
dExact figures depend on how much normalization (e.g. homogenizing punctuation,
Greek letters, capitalization and whitespace) one applies to the names before counting
them.
ehttp://www.alias-i.com/lingpipe/
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by a biologist curator (Colosimo) and a computational linguist (Morgan).
The performance of LingPipe on each annotation (Recall/Precision/F-
score) was 0.8086/0.7485/0.7774 and 0.8423/0.8483/0.8453, respectively.
To calculate these figures we used the evaluation script used for the
BioNLP2004f shared task. Morgan et al., evaluating on the the first set
of annotations, reported 0.71/0.78/0.75. Our performance appears better,
especially in terms of recall.

2.2. NER Annotation guidelines

There is a large difference in performance (0.0679 in F-score) between the
two annotations of the dataset due to difficulties in applying the anno-
tation scheme. According to the guidelines used in Morgan et al.5, gene
names are tagged not only when they refer to genes, but also when they
are part of mentions of proteins or transcripts, as in the zygotic Toll pro-
tein. Only Drosophila genes are tagged, excluding reporter genes, genes
that are not part of the natural Drosophila genome, families, particular al-
leles or protein complexes. However, Drosophila genes can be synonymous
with foreign genes (e.g. Hsp90), family names are often synonymous with
specific names (e.g. CSP), and foreign and reporter genes are often not
flagged as such in text. Additionally, mutant genes, which are not part of
the natural genome, are usually referred to using the name of the original
gene, leading to inconsistencies in annotation in cases like dunce mutations
or eye PKCI700D mutant.g

We developed revised guidelines, partially based on those developed for
ACE10. We did not exclude foreign genes, reporter genes and families, as
they are often of interest to curators and users of FlyBase. Like Morgan
et al., gene names (<gn>) are tagged not only when they refer to genes
but also when they are found in pre-nominal modifier positions. Following
ACE, we annotate the surrounding noun phrase (NP). The NP is tagged
either as a gene-mention (<gm>) or as other-mention (<om>), depending
on whether it refers to a gene or not (see 1) and 2) in Figure 1). In cases
of alleles, mutants or protein complexes, the gene name is tagged and the
remaining tokens of the NP are tagged other-mention (see 5) in Figure 1).

fhttp://research.nii.ac.jp/ collier/workshops/JNLPBA04st.htm
gOverall the biologist Colosimo’s annotations are more accurate given the annotation
guidelines used. He avoids tagging reporter genes synonymous with specific ones (e.g.
Gal4), mutants, or gene families (e.g. Hedgehog Hh), resulting in fewer genes tagged
(909) than by Morgan (989).
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(1) <gm>the <gn>dunce</gn> gene</gm>
(2) <om>the <gn>dunce</gn> mutations</om>
(3) <gm>the human <gn>IL-2</gn> gene</gm>
(4) <om>the unrearranged <gn>TcR delta</gn> gene expression</om>
(5) <om><gn>eye</gn> PKCI700D mutant</om>

Figure 1. Annotated examples

As also reported by Dingare et al.11, the data used in the BioNLP3 and
BioCreative12 evaluations contained many cases in which modifiers of gene
names and nouns modified by gene names were variably annotated. Using
the guidelines suggested in this paper, the annotation of such cases becomes
clearer. In 3) and 4) in Figure 1, the guidelines are applied to cases with
inconsistent annotation reported by Dingare et al.11. 2) was inconsistently
annotated by Colosimo and Morgan. Annotation of NPs is also relevant
to recovery of anaphoric links (see § 3) and aids annotation of gene names
within coordinated NPs.

LingPipe’s performance using our guidelines to resolve differ-
ences between Morgan and Colosimo was Recall/Precision/F-score
0.8081/0.8493/0.8282. Further results below will be reported on both our
re-annotation (called “merged”) and the gold standard used in Morgan et
al. (called “morgan”).

2.3. Inspecting errors and improving performance

We tried to identify the main sources of errors and ameliorate them taking
account of the specific HMM model utilized. Our first step was to perform
an individual evaluation on seen and unseen tokens. This evaluation didn’t
take into account multi-token genes, because there were many cases where
the one boundary of such multi-token cases was incorrect. Therefore, our
system was not penalized for partially recognized genes and received/lost
a point for each gene token recognized/missed. This token-wise definition
of Recall/Precision is used only when reporting results on seen or unseen
tokens. In all other cases, the standard definitions are used.

Evaluating on seen tokens on the “merged” dataset, we achieved
0.8272/0.9022/0.8631 Recall/Precision/F-score, which suggests that there
are many gene names that are missed, even though they exist in the training
data. For example, the gene gurken appears 97 times in the training data,
of which 90 times it is tagged correctly as a gene on the basis of FlyBase
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links. However, the few false negatives in the training data cause LingPipe
to fail to tag gurken as a gene name during testing. We experimented with
a non-conservative version of Morgan et al.’s procedure in which all gene
names recorded in FlyBase were annotated as such in all of the training
data. However, this resulted in many false positives in the training data
and overall worse performance.

In general, gene names appearing in the abstracts are mentioned in Fly-
Base gene lists. So, we post-processed the training data by reannotating
tokens as genes when this token was annotated as a gene in the overall train-
ing data more than a certain percentage of the time. By doing this though,
we risk changing common English words correctly tagged as ordinary words
to genes, since some genes have common English words as synonyms.
With the percentage set at 80% we obtained Recall/Precision/F-scores of
0.8567/0.8551/0.8559 on the “merged” dataset and of 0.8614/0.7565/0.8056
on “morgan”.

On unseen tokens, compared to Morgan et al. our performance is signifi-
cantly higher (F-scores of 0.619 on “merged” and 0.5365 on “morgan” com-
pared to their 0.33). However, LingPipe is rather conservative in classifying
unseen tokens as genes (Recall/Precision was 0.4642/0.9285 on “merged”).

As with the seen tokens, we tried to improve recall, as it is important
for curation to have a system that is able to recognize unseen gene names.
For each token classified, we estimated the entropy of the distribution of
Equation 1 computed by LingPipe, which gave us an indication of how
(un)certain the classifier was of its decision. We observed that many of the
recall errors occurred in cases in which the HMM model classified a token
with entropy close to 1, i.e. with high uncertainty. We post-processed the
output of the classifier by re-annotating as genes unseen tokens that were
classified as ordinary words with entropy higher than a specified threshold.
As before, the lower this threshold was set, the higher the recall at the
expense of precision. By setting this threshold at 0.6 and evaluating on
the “merged” dataset, we improved the performance on unseen tokens to
0.7058 F-score. However, this resulted in more partially recognized genes,
which slightly reduced the performance when evaluating using the stan-
dard definition of the metrics (from 0.8559 to 0.8545). Also, only 49 out
of 16779 tokens in the test set were not seen in the training data. In order
to demonstrate the value of this method, we performed an experiment us-
ing only 20% of the available training data, which resulted in 1040 unseen
tokens in the test set. In this case, using the uncertainty of the classi-
fier in the way described earlier, the performance on unseen tokens rose
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from 0.4424 to 0.6111 in F-score, while the overall performance using the
standard definition of F-score rose from 0.5847 to 0.6487, evaluating on
“merged”.

2.4. Reference resolution

Our recognizer identifies strings that are names of genes. Reference resolu-
tion requires determining the FlyBase identifier of a gene name. Frequently,
Drosophila gene names are not unique identifiers. For ambiguity resolution,
a quite effective and simple strategy (around 89% accuracy) is to associate
names with the entities that those names most frequently denote using Fly-
Base’s lists of gene names occurring in articles. For orthographic variants,
FlyBase’s gene synonym lists are a good resource for calculating commonly
occurring types of variation (e.g. prefix by D. or Dm.) which can be applied
to previously unseen name strings. Some exploration of variants of these
strategies is undertaken in Ma13.

3. Biomedical anaphora resolution

In FlyBase curation, the “gene” is an organizing concept around which
other information is recorded. In order to extract all the information about
a gene in a text it is necessary to identify all textual entities (like pronouns,
definite descriptions and proper names) that are anaphorically linked to
that gene or coreferential with it. These entities may refer to proteins,
RNA, alleles, mutants and other gene “products” rather than the gene
itself, and may therefore be associative rather than coreferential anaphoric
links. Here we report work on resolving anaphoric definite descriptions
(DDs; phrases beginning with the definite article the e.g. the faf gene) and
proper nouns (PNs), since in biomedical texts there are fewer cases where
pronouns are used.

The first step towards resolving anaphora is selecting the anaphoric
expressions to be resolved and their possible antecedents. We first parse
the text using RASP, then select all noun phrases (NPs) in the text and
filter them to find the ones referring to relevant entities using information
from the gene name recognizer and the Sequence Ontology (SO).

3.1. Biotype information: semantic tagging

If a NP is headed by a gene name according to the recognizer (i.e. its
rightmost element is a gene name), then it refers to a gene. Otherwise, we
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use information in the SO to search for the biotype of the head noun which
stands in one of the four following possible relations to a gene: “part-of”,
“type-of”, “subproduct” or “is-a”.

SO relates entities by the following relations: derives from, member of,
part of, is a, among othersh. For instance, we extract the unique path of
concepts and relations which leads from gene to protein, shown in Figure 2:

Figure 2. SO path from gene to protein.

Besides the facts directly expressed in this path, we also assume the
following:

(1) whatever is-a transcript is also part-of a gene
(2) whatever is part-of a transcript is also part-of a gene
(3) mRNA is part-of a gene
(4) whatever is part-of a mRNA is also part-of a gene
(5) CDS is part-of a gene
(6) polypeptide is a sub-product (derived-from) of a gene
(7) whatever is part-of a polypeptide is also a sub-product of a gene
(8) protein is a sub-product of a gene

We then use these assumptions to add new derivable facts to the original
path. For example, an exon is a part of a transcript according to SO,
therefore, by the 2nd assumption, we add the fact that an exon is a part of
a gene. We also extract information about gene types that is included in the
ontology as an entry called “gene class”. Using the derived information, we
would tag the third exon with “part-of-gene”. NPs that remain untagged
after this search are tagged as “other-bio” if any head modifier is a gene
name. These biotyped NPs are then considered for anaphora resolution.

hThe member-of relation is considered a type of the part-of relation, so we do not make
this distinction and consider both as part-of relations.
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3.2. Anaphora resolution

Our baseline unsupervised system for anaphora resolution that we present
here makes use of lexical, syntactic, semantic and positional information
to identify the antecedent of an anaphoric expression. The lexical informa-
tion consists of the words themselves. The syntactic information consists of
NP detection and the distinction between head and premodifiers (extracted
from RASP output). The distance (in words) between the anaphoric ex-
pression and its possible antecedent is taken into account as positional in-
formation. The semantic information comes from the gene recognizer and
the SO-based tagging described above. Thus, the system is bootstrapped
from a variety of extant resources without any domain-specific tuning.

As anaphoric expressions to be resolved we take all PNs and DDs among
the filtered NPs. To link anaphoric expressions to their antecedents we look
at three aspects of the corresponding NPs: the head noun, the premodifiers
of the head noun, and the biotype.

The pseudo-code to find the antecedent for the DDs and PNs is given
below:

• Input: a set A with all the anaphoric expressions (DDs and PNs);
a set C with all the possible antecedents (all NPs with biotype
information)

• For each anaphoric expression Ai:

– Let antecedent 1 be the closest preceding NP Cj such that
head(Cj)=head(Ai) and biotype(Cj)=biotype(Ai)

– Let antecedent 2 be the closest preceding NP Cj such that
head(Cj)"= head(Ai) and biotype(Cj)"= biotype(Ai), but
head(Cj)=premodifier(Ai), or
premodifier(Cj)=head(Ai), or
premodifier(Cj)=premodifier(Ai)

– Take the closest candidate as antecedent, if 1 and/or 2 are
found; if none is found, the DD/PN is treated as non-anaphoric

• Output: The resolved anaphoric expressions in A are linked to their
antecedents.

For example, in the passage “Dosage compensation, which ensures that
the expression of X-linked genes(Cj) is equal in males and females ... the
hypertranscription of the X-chromosomal genes(Aj) in males”, the candi-
date Cj meets the conditions for antecedent 1 to be linked to the anaphoric
expression Aj . In “... the role of the roX genes(Ck) in this process ... which
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MSL proteins interact with the roX RNAs(Ak)”, Ck meets the conditions
for antecedent 2 to Ak.

3.3. Experimental Results - Related Work

We have annotated two articles from PubMed central containing 334 sen-
tences and 7641 tokens in total. 334 anaphoric expressions (90 DDs and
244 PNs) with the relevant biotypes were found and their antecedents were
manually annotated when they were functioning anaphorically. When we
tested the anaphora resolution algorithm on this annotated data using
the manually corrected syntactic and biotype information, the algorithm
achieves Recall/Precision/F-score of 0.62/0.64/0.63. However, on the same
text using automatic parsing and biotype tagging, performance drops to
0.37/0.43/0.40, primarily because of errors in identifying NPs and extract-
ing their head nouns.

Most previous work on anaphora resolution in (biomedical) texts
has used supervised machine learning techniques and different knowledge
sources for biotype classification. For instance, Yang et al.14 assigns bio-
types using a named entity recognizer trained on the GENIA corpus to-
gether with other features as part of a supervised approach; Castano et
al.15 uses the UMLS (Unified Medical Language System)i to type DDs in
MEDLINE abstracts and describes an unsupervised approach. The SO
is more focussed on the functional genomics domain and therefore more
appropriate for FlyBase curation.

4. Conclusions and Future Work

The two modules described are integrated into an interactive environment
for FlyBase curators to help them in the task of literature curation. The
environment allows navigation by anaphorically-linked entities and links
the current paper with information derived from FlyBase and the SO.

The gene recognizer achieves state-of-the-art performance via boot-
strapping but may be further improved by training on full articles with
a greater variety of lexical contexts and by the use of additional feature
types. Anaphora resolution requires improvement. We plan to use the
baseline system to generate noisy training data for a statistical anaphora
resolution module. Both components will be incrementally improved using

ihttp://www.nlm.nih.gov/research/umls/
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active training with curators correcting a small number of highlighted low
confidence cases in each presented article.
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