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We propose a two-step normalization procedure for high-throughput mass spec-
trometry (MS) data, which is a necessary step in biomarker clustering or clas-
sification. First, a global normalization step is used to remove sources of sys-
tematic variation between MS profiles due to, for instance, varying amounts of
sample degradation over time. A probability model is then used to investigate
the intensity-dependent missing events and provides possible substitutions for the
missing values. We illustrate the performance of the method with a LC-MS data
set of synthetic protein mixtures.

1. Introduction

High-throughput mass spectrometry (MS) technology offers a powerful
means of analyzing biological samples. The ability of MS to identify and
precisely quantify thousands of proteins from complex samples is expected

3. However, MS systems are sub-

to broadly affect biology and medicine
ject to considerable noise and variability that is not fully characterized or
accounted for. Thus, it is important and necessary to properly conduct
data-preprocessing steps such as signal filtering, peak detection, alignment
in time (and mass charge ratio), and amplitude normalization before reli-
able conclusions can be made from the datal.

In this paper, we focus on the normalization step, and propose a proba-
bility model for intensity-dependent missing events in MS-based data sets.
In MS experiments, the instrument may have trouble detecting the weak sig-
nals of low-abundance peptides. Even if the instrument detects the signal,
the peak intensities may be too low to be distinguished from background
noise during data processing. Therefore, the lower the ion abundance, the
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more likely the peptide will be “missing” in the MS output data. Ignor-
ing such non-random missing pattern may introduce significant bias into
subsequent analyses. In this paper, we propose a novel probability model
to describe the missing behavior, which accounts for this type of intensity-
dependent missing events.

The rest of the paper is organized as follows: Section 2 provides a brief
description of a data example illustrating the problem. Section 3 introduces
a global normalization step, which adjusts systematic trends. The missing
model, which represents our major contribution, is described in Section 4.
Section 5 applies the proposed methods to an example data set and Section
6 is the conclusion.

2. Experiment and Data

In this section, we describe an experiment, in which replicates of two pro-
tein mixtures were analyzed on three consecutive days. We find that the
samples processed in later days experienced higher levels of protein degra-
dation due to, for instance, longer storage time as well as more freeze-thaw
cycles?. Such variations are often unavoidable in real disease studies in-
volving human samples.

2.1. Sample preparation

Two mixtures of proteins were assembled as part of an exploratory study to
understand the performance of our MS instrument. One mixture (denoted
as A) consisted of four proteins: bovine albumin, bovine transferrin, bovine
alpha lactalbumin and bovine catalase. The other mixture (denoted as B)
consisted of the same four proteins plus bovine beta lactoglobulin (proteins
were selected based on their length and abilities to produce tryptic pep-
tides). All five recombinant proteins were purified with reversed-phase high
performance liquid chromatography (VisionWorkstation Applied Biosys-
tems, Framingham, MA, USA). The collected protein fractions were dried
in SpeedVac (Thermo Savant, San Jose, CA, USA). The purified proteins
were denatured individually with 60% MeOH, reduced with 10 mM DTT
at 60°C for 1 hr, and alkylated with 50 mM iodoacetamide in the dark at
room temperature for 30 min. The polypeptides were trypsinized for 6 hr
at 37°C with a protein/enzyme of 50/1.
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2.2. LC-MS system

The LC-MS system comprised an 1100 Series Nanoflow LC system (Agilent
Technologies, Palo Alto, CA, USA), a binary capillary pump, a C18 Symme-
try NanoEase trapping column (Waters Corporation, Milford, MA, USA),
a C18 PepMap nano LC column(LC Packings, Sunnyvale, CA, USA), and
an LCT Premier time-of-flight mass spectrometer (Waters Corporation).
The flow rates are 20 uL/min in the trapping column, and 400 nL/min in
the LC column. The solvents were A(0.1% formic acid in water) and B
(0.1% formic acid in acetonitrile). Linear gradient elution was applied from
0 to 40% B in 30 min. Mass spectra were acquired every 1.0 s with a 0.1
s interscan delay time. The instrument was mass-calibrated with a sodium
formate solution prior to analysis.

2.3. Data and problem

The raw data is first processed using a program developed in our
group,msinspect.®, which includes modules for detecting and aligning pep-
tide features. The output peptide array reports the intensities of all peptide
features in each sample (an LC-MS experiment). Denote the intensity of
the ith feature in the kth sample as y¥. If the ith feature is detected in the
kth sample, then y¥ is set to 0.

The total number of non-zero intensity peptides in each sample is sum-
marized in Table 1. Clearly, more features were detected in experiments

Table 1. Number of peptide features in each sample. Mixture A con-
sists of four proteins, while mixture B consists of five proteins.

Day 1 Sample Index Al B2 B3 A4
Feature Number 660 648 789 495

Day 2 Sample Index B5 B6 AT B8 A9 A10
Feature Number 609 339 386 492 384 413

Day 3 Sample Index All B12 B13 Al4
Feature Number 237 302 406 178

Note: In the sample indexes, A=4 protein mixtures, B=five protein mix-
tures, and the number indicators the experimental order.

performed on day 1 than those performed on day 3.
If we further compare Sample Al (with 660 features) and Sample A14

aAvailable at http://proteomics.fhcrc.org/CPL/home.html
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(with 178 features), as illustrated in Figure 1, we see there is an overall
decrease in intensity in sample Al4 compared to sample Al.

Sample 1
20 660 peaks in total
- O: MLMA.]A.\L I .Il L“\Mw|Lw“.HwL‘NLL.I\\Jh..\“u”i b a Lo ]
600 800 1000 1200 1400 1600
mz
Sample 14
20 178 peaks in total
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Figure 1. Compare Sample A1l and Sample Al1l4. The two plots compare the
intensities of all features in the two samples. The x coordinate is the mass charge ratio
(mz), and the y coordinate is the intensity value. Each feature is represented by a vertical
line at its mz position, with the length of the line equal to its intensity.

Given this kind of variation, it is crucial to normalize intensities before
different samples can be properly compared.

3. Global Normalization

By globally normalizing signal intensities across multiple samples, we aim
to identify and remove systematic variation arising because of differential
amounts of sample loaded into the LC-MS system, protein degradation over
time, or variation in the sensitivity of the instrument detector.

It is natural to assume that the sample intensities are all related by
a constant factor®. A common choice for this re-scaling coefficient is the
sample mean or median. This choice is based on the assumption that the
number of features whose measurements change is few compared to the
total number of features. So the distribution of the measurements of all the
features should be roughly the same across different experimental runs?.

However, in MS experiments, because of the limitation of detector sen-
sitivity and the unavoidable instrument noise, ions below a certain intensity
level may hardly be detected, which leads to non-random missing of pep-
tide features in the result. Thus, it is not appropriate to use overall mean
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Figure 2. The effect of non-random missing. Suppose the overall peptide abun-
dance of sample 1 are twice as great as the overall peptide abundance of sample 2. The
histograms shows the true intensity distribution of all peptides in sample 1 and sample 2
respectively. The minimal detection level of the instrument is represented by the vertical
line (features on the left side of the line can not be observed in the experiment). Using
the mean or median intensity of the observed features in each sample leads to biased
estimate of the scaling coefficients.

or median for re-scaling. This is illustrated in Figure 2. In order to avoid
the possible bias due to non-random missing events, we propose to use the
top L ordered statistics of feature intensities in each sample, where L is a
parameter chosen by users.

For the simple case of two samples, denote the intensity measurements
of one sample as X = (x1,x2,...,2,) and of the other sample as ¥ =
(Y1,Y2, -, Ym), Whose order statistic can be represented as x(1) > x(9) >

- > Xy and Yy > Yy > ... > Yom) respectively. Then, for a chosen
number L(L < min(n,m)), the scaling coefficient of X versus Y can be
estimated as A = Zle )/ 2521 y(;) or more robustly,

A= median(x(l), veny z(L))/median(y(l), ciey y(L)) (1)

For the case of K(K > 2) samples, denote the intensity measurements
of the kth sample as X* = (2% 2% ....,2% ). For a given number L(L <

ng
min({ny}%_,)), define the population median as

1 .
po = 5 Z medlan(xé“l), xl&), e :v’(“L)).
k
Then the scaling coeflicient for the kth sample is

1
Ak = %median(xlfl),f](cz)a ""‘T’(CL)> @
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4. Model of Missing Events

We can make inferences on the missing events of one sample based on the in-
formation from other samples. The idea is illustrated in Figure 3. Suppose
Sample 1 and Sample 2 are identical mixtures, but due to experimental fac-
tors, the overall peptide abundance of Sample 1 is smaller than the overall
peptide abundance of Sample 2. Peptide 1 cannot be observed in Sample
1 because its intensity falls below the minimum detectable level. However,
based on the intensities of those peptides observed in both samples (e.g.
Peptide 2), the scale difference of the overall abundances between Sample
1 and Sample 2 can be estimated. Therefore, the “missing” intensity of
Peptide 1 in Sample 1 can be reasonably approximated with the intensity
measured in Sample 2 divided by a scale coefficient.

Intensity Peptide 2
. Peptide 1
Peptide 2
R _eFLE____.|_ — Minimum Detection Level

Peptide 1 i (filtering threshhold)

H 1

L 1

Sample 1 Sample 2

Figure 3. Missing model. The heights of the vertical bars indicate the true intensities
of different peptides in the two samples. The dashed vertical lines represent Peptide 1,
while the solid vertical lines represent Peptide 2. The horizontal dashed line indicates
the minimal detection level of the instrument.

More general, we use a probability model to describe such missing
events, which is described in below.

4.1. Probability Model

In one sample, we introduce a latent variable z; for the ith peptide, which
indicates whether this peptide exists in the sample or not:

3)

L 1, if ith peptide exists in the sample;
* 10, if ith peptide does not exist in the sample.

Given z; = 1 (the ith peptide exists in the sample), the abundance of this
peptide x; can be deemed as a random variable:

) ZO, ifZiZO,
’ Nfia ifzi:17

(4)
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where f; is the density function of some probability distribution. It is
reasonable to assume that z; and x;|z; = 1 are independent with each
other.

Suppose the minimum detectable level of the instrument is d. Then,
given the value (z;, z;, d), the observed abundance y; of this peptide satisfies

O7 lf Z; = O’
T, isz‘:land szd

We say that a missing event happens to the ith peptide if the ith peptide
exists in the sample but no signal has been detected (denoted as M; =
{zi = 1,y; = 0}). We are interested in the probability of missing event
when no signal is observed, i.e. P (M;|y; = 0), which can be calculated as

follows:
Pa((z = Lyi = O)lys = 0) = Lalpelus0)
= Py(yi=0|z;=1)P(z;=1)
= Pa(yi=0[zi=1)P(zi=1)+Pa(y;=0[z;=0) P(2;=0)
— Py(z;<d|z;=1)P(2;=1)
T Py(z;<d|z;=1)P(z;=1)+P(z;=0)"
(6)
where

and
Pd(yi = 0|Zz = 0) = Pd(zi = 0|Zi = O) =1

comes from Equation (5); P(z;) does not depend on d.
In addition, if P(z; > d|z; = 1) > 0, we have

. Pd(zz =1,z; > d) . Pd(yz > 0) 7
N Pd(xi > d|Zz = 1) N Pd(xi > d'Zl = 1)' ( )
Therefore, given the detectable level parameter d, the distribution func-
tion f;, and the observed abundance y;, we can estimate the probability
P(M;ly; = 0) with Equation (6) and (7).

Moreover, a natural choice for imputing the intensity of a missing peak
is E(x;|y; = 0), which can be calculate as

E(xz|yl = 0) = E(l‘i‘yi = O,Zi = 1)P(Z, = 1|yi = 0)
+E(l‘,|y1 =0,z = O)P(Zl = O|yi = 0)
= E(.Ti‘.’lfi < d, 2 = 1)P(zl = 1|yi = O) +0
= E(ﬂ?i‘.’L‘i < d, 2 = 1)P(Mi|yi = 0)

(8)
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Note E(x;|x; < d,z; = 1) only depends on the detector level parameter d
and the distribution function f;.

4.2. Model Fitting
4.2.1. Detectable level d

A reasonable estimate of the parameter, d, is the background noise level in
each MS profiles, since those peaks with height below this value can not
be confidently distinguished from noise signals. For a set of profiles from
the same instrument, we assume that the same detectable level. Hence, we
estimate d using all raw profiles. After the global normalization described
in section (3), the detectable level of the kth profile becomes d¥ = -4

PRl
where A* is the normalization scale coefficient in Equation (2).
4.2.2. Abundance distribution f,
A. When Biological Replicates Available
k
For K replicates of the same biology samples, we assume that {i—k zzk =

1}K | are independently identically distributed as N(p;,0?) for some pa-
rameter p; and o;, where mf is the true abundance of the ith peptide in the
kth profile.

Since z¥|2F = 1 and 2F are independent from each other, it is easy to see
that y¥|(y¥ > 0) and 2F|(z¥ > d,zF = 1) are equal in distribution. Thus,

( k
k e P(zF/AFedt,af>d,zi=1
BI(5k > 0) ~ fh(t) = Hetpedt ey )

 Puie (1) —
B W, for t > dF.
where @, 5, is the density function of N(u;,07).

For the simple case where o; < |d* — p;|, we can approximate P(:ciC >

d|z5 = 1) with I (Zﬁ < u) It follows

fik N Pug,op when ;l\]? < i (10)
Thus, the mean intensity of the ith peptide can be estimated as the average
of the observed signals:
eIy >0)
Together with Eq.(7), we have

(11)

Pz =1) = Dl >0) (12)
> (i > d¥)
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9
Therefore
~ P(zi=1), if i < d*
P(MF|yF = 0) = (2 = 1), if i < d¥, (13)
0, if ;> d~.
And then,
. APy — e Tk
Btk =0) = § MPE =1, i <, (14)
0, if f; > dk.

with Eq.(8), Eq.(11) and Eq.(12).

B. When Biological Replicates Not Available

Because the biological samples are limited, a large number of MS replicates
are not always available for each sample. In such cases, a natural solution
is to use the nearest K “neighbor samples” as pseudo replicates to fit the
missing model. Here nearest K “neighbors” refers to the K closest profiles
to the target profile under certain distance metrics (i.e. Lo norm). How-
ever, if the missing rate is relatively high, the distance measured with the
raw data could be misleading. Thus, we propose the following iteration
procedure to try to recover the true “neighborhood” structure:

(1) Begin with K=N, where N is the total number of samples. Denote
the original peptide array data matrix as Pep®.

(2) (a) Based on Pep™ X, calculate the distance between each two
samples.
(b) For each sample, estimate the missing features by using its near-
est K neighbors. Denote the new peptide arrays as Pep™ ~K+1,
(¢) K=K-1.

(3) Repeat step 2 until K = Ky, where Ky is a pre-selected number.

If we aim to separate the samples into two clusters, a possible choice for
KO is N/Q

5. Result
5.1. Global normalization

The scale coefficients of global normalization are estimated with the top
80 order statistics of each sample according to Eq.(2). Fig.4 shows the
relationships between the top 80 order statistics of Samples 11 — 14 (the
four samples on the third day) and the top 80 order statistics of Sample 1.

Table3 shows the scale coefficients for the four pairs of samples in Fig.4.
Compared to the estimators derived with the order statistics, the estimators
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Figure 4. The top 80 order statistics of Sample 11 — 14 v.s. Sample 1. The
y and x coordinates represent the log intensities of the 80 most abundant features in
the corresponding samples. The good linear relationship with slope= 1 justifies the
assumption that the sample intensities are related by a constant factor (model z = Ay
is equivalent to model log(z) = log(y) 4+ b, where b and A are parameters).

derived with overall medians dramatically overestimate the scale change
between these sample pairs. This demonstrates the necessariness of using
the top order statistics to conduct the global normalization when non-
random missing is a concern in the study.

Table 2. Scale Coeflicients v.s. Sample 1.

Sample Index 11 12 13 14

A (based on the order statistics) 0.43 0.69 0.95 0.32
A (based on overall median) 1.19 1.10 0.99 1.09

5.2. Study of Missing Events

We consider 12 of the 14 samples whose non-zero features are at least 10%
of the total.

5.2.1. Supervised analysis

Treating all 4-protein samples as replicas and all 5-protein samples as repli-
cas, using Equation (13) we can estimate the total number of possibly miss-
ing features ), I (]3(Mf|yfC = 0) > 0) for each sample. The result is shown
in Table 3. Again, we can see that the missing trend is more severe in some

samples than in others. Ignoring such trend may bring unexpected bias
into downstream analysis.
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Table 3. Number of peptide features in each sample.

Sample Al B2 B3 A4 B5 B6 A7 B8 A9 Al10 Bl12 BI13
Missing 8 0 0 8 0 187 118 63 116 69 116 17

5.2.2. Unsupervised analysis

The goal here is to use the MS profiles to recover the 4-protein and 5-
protein group labels for each sample. First, based on the data after global
normalization, we perform hierarchical clustering analysis using the R
function hclust with complete linkage. The dendrogram is illustrated in the
top plot of Figure 5. The two main sub-clusters are separated according
to when the MS experiments were conducted (the first four samples were
processed on day 1 while the others on the day 2 and 3).

Next, we use the iterative procedure described in section 4.2.2 to sub-
stitute the possible missing measurements with their expected values, and
perform the hierarchical clustering on the resulting data. The new dendro-
gram is illustrated in the bottom plot of Figure 5, in which the 4-protein
samples and the 5-protein samples are correctly clustered into two groups.
This suggests that properly modelling the missing events would prevent the
analysis from being driven by experimental variation rather than biological
variation.

Before missing values are estimated and substituted
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Figure 5. Tree Structures of Unsupervised Hierarchical Clustering. Each leaf
in the tree represents one sample. A = 4 protein mixture; B = 5 protein mixture.
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PR is a free statistics software, which can be downloaded at: http://www.r-project.org/



September 23, 2005 12:14 Proceedings Trim Size: 9in x 6in wang

12

6. Conclusion

In this paper, we have shown that ignoring the intensity-dependent missing
events in MS experiments may result in severe biases in the data analysis.
To address this problem, we developed a probability model for the missing
events and implemented a few normalization schemes to remove the nega-
tive effects. The missing rate estimates can also be used as a quality control
of the data.

In the probability model, given that one peptide exists in the sample, a
normal density is used to approximate the distribution of the intensity of
this peptide. This approximation is supported by the synthetic data exam-
ple: the Kolmogorov-Smirnov distance between N(0,1) and the observed
distribution of intensities (centered to mean = 0 and scaled to sd = 1) is
0.0392, which corresponds to a p-value of 0.1742.

When we estimate the missing values with nearest-neighbor scheme,
the iteration number need to be carefully controlled to avoid problem of
over-fitting.
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