
SemBiosphere: A Semantic Web Approach to Recommending Microarray Clustering
Services

Kevin Y. Yip, Peishen Qi, Martin Schultz, David W. Cheung, and Kei-Hoi Cheung

Pacific Symposium on Biocomputing 11:188-199(2006)



September 19, 2005 16:12 Proceedings Trim Size: 9in x 6in yip

SEMBIOSPHERE: A SEMANTIC WEB APPROACH TO
RECOMMENDING MICROARRAY CLUSTERING SERVICES

KEVIN Y. YIP1, PEISHEN QI1, MARTIN SCHULTZ1, DAVID W. CHEUNG5

AND KEI-HOI CHEUNG1,2,3,4

1Computer Science, 2Center for Medical Informatics, 3Anesthesiology, 4Genetics,
Yale University, New Haven, Connecticut, USA,

5Computer Science, University of Hong Kong, Hong Kong

Clustering is a popular method for analyzing microarray data. Given the large
number of clustering algorithms being available, it is difficult to identify the most
suitable ones for a particular task. It is also difficult to locate, download, install
and run the algorithms. This paper describes a matchmaking system, SemBio-
sphere, which solves both problems. It recommends clustering algorithms based
on some minimal user requirement inputs and the data properties. An ontology
was developed in OWL, an expressive ontological language, for describing what
the algorithms are and how they perform, in addition to how they can be in-
voked. This allows machines to “understand” the algorithms and make the rec-
ommendations. The algorithm can be implemented by different groups and in
different languages, and run on different platforms at geographically distributed
sites. Through the use of XML-based web services, they can all be invoked in
the same standard way. The current clustering services were transformed from
the non-semantic web services of the Biosphere system, which includes a variety
of algorithms that have been applied to microarray gene expression data analy-
sis. New algorithms can be incorporated into the system without too much effort.
The SemBiosphere system and the complete clustering ontology can be accessed
at http://yeasthub2.gersteinlab.org/sembiosphere/.

1. Introduction

As modern life sciences research involves high throughput bio-technologies (e.g.,
sequencing, DNA microarray, and mass spectrometry), a vast quantity of data is
being generated, which needs to be stored, analyzed, visualized, and interpreted.
As a result, a plethora of analyzing tools have been developed and made acces-
sible via the Internet. Subsequently, it has become difficult to locate the tools
that are relevant to the research questions at hand. The current web technolo-
gies rely heavily on the use of keyword-based searches in locating web resources,
which suffers from the problem of sensitivity and specificity. In addition, even
if the relevant software tools are found, users may still experience problems in



September 19, 2005 16:12 Proceedings Trim Size: 9in x 6in yip

downloading, installing, and running the programs. It is also difficult for users
to keep track of the updates, such as bug fixes and the addition of new features.

1.1. Microarray Cluster Analysis

For microarray data, clustering is a popular data analysis method. A large
collection of clustering algorithms have been developed, published, and made
available in different forms through many web sites. Some of them are available
as downloadable software that can be installed on the client computer. For ex-
ample, Eisen’s cluster program18 can be downloaded from the Eisen Lab website
and run on a Windows PC. Some algorithms are available as web server applica-
tions that allow users to submit their microarray data to the server on which the
cluster analysis is performed (e.g. EPCLUST 3). More recently, some cluster
analysis algorithms have been implemented as web services using SOAP10, which
allow direct machine invocation over the Internet. Biosphere17 is a representa-
tive example. The advantage of publishing the algorithms as web services is that
all programs are invoked through the same XML-based interface, regardless of
what languages they are written in, and what platforms they are running on.

The availability of a large number of algorithms provides more options to
choose from, but at the same time also makes it difficult for one to determine
the most suitable algorithm for the current task. This problem is especially
true for many microarray experimentalists who may not know much about the
technical details of the algorithms. Although reports16 have been published
on the evaluation and comparison of different algorithms, it relies on the human
users to study many such reports carefully to figure out which algorithms perform
better under different circumstances.

To address this problem, we employ the latest semantic web technologies
to transform the basic clustering web services of Biosphere into semantic web
services. The semantic layer describes what the algorithms are and how they
perform in addition to how they can be invoked. It is thus possible for machines
to recommend which algorithms to use based on the user requirement inputs
and data properties. In the following we describe SemBiosphere, a matchmaking
system that provides such recommendations.

2. SemBiosphere

Figure 1 shows the overall system architecture of SemBiosphere. First, there are
algorithm providers who expose their available algorithms as web services. As
discussed, the providers have the flexibility to choose the programming language
and the running platform, as long as they follow the XML standards to describe
their programs. The descriptions involve two parts: a lower part based on



September 19, 2005 16:12 Proceedings Trim Size: 9in x 6in yip

WSDL11 for specifying the input/output types, and an upper part for specifying
semantic descriptions. We developed an ontology for clustering algorithms using
OWL8, and described the algorithms using the ontology. The two types of
descriptions are combined by the latest OWL-S language7, and are stored in a
central RDF9 repository for querying. The recommendation system is a web
application that can be accessed using web browsers. It accepts both the data
and the matching requirements from users through an HTML interface. It then
performs filtering and ranking to produce a sorted list of algorithms according to
the matching scores. The users may pick any number of them to use. The system
provides a form for inputting the parameters. It then executes the algorithms,
and sends an email notification to the users when the results are ready.

Figure 1. SemBiosphere system architecture.

Compared with other popular microarray software and systems such as Bio-
conductor 1 and EPCLUST 3, the SemBiosphere system is more extensible as
it can integrate programs written in different languages and by different groups
dynamically. The potentially larger variety of algorithms allows experimentalists
to try out newer methods that may suit their specific needs more. Compared
with some keyword-based searching systems, the semantic web approach allows
for much more focused and structured queries and the possibility to answer
questions based on logical inference rather than text associations.

There are some large-scale projects aiming at facilitating complex in sil-
ico experiments that adopt semantic web technologies, including myGrid 5 and
BioMOBY 2. The current study is related to, but not covered by, these projects.
It is an interesting future work to see how the ideas of the current project can
be applied to their general frameworks.

Below we describe in more detail some of the core components of the system.



September 19, 2005 16:12 Proceedings Trim Size: 9in x 6in yip

2.1. Ontology for Describing Clustering Algorithms

Figure 2 shows the class hierarchy of our clustering algorithm ontology. It covers
three aspects of clustering algorithms: algorithm types, the kinds of data that
can be handled, and time complexities.

Algorithms are classified into common categories such as hierarchical, parti-
tional and density-based. The ontology is extensible so that more categories can
be added. The categorization is useful for making some quick decisions on which
clustering algorithms to use. For example, if a user wants to have a dendrogram
as part of the clustering output (such as those produced by TreeView18), hier-
archical algorithms are by default more suitable.

Each algorithm is allowed to belong to multiple classes. For example, the
algorithm ORCLUS14 involves both a hierarchical phase and a partitional phase
in each iteration. Some classes also have subclasses. For example, hierarchical
clustering algorithms are further subdivided into agglomerative and divisive al-
gorithms. Besides these main categories, some categories were also defined for
special classes of clustering algorithms, such as projected clustering22 and bi-
clustering algorithms15. These categories are orthogonal to the main categories.
Each algorithm belongs to at least one main category and any number of these
special categories. For example, PROCLUS13 is both a partitional clustering
algorithm, and a projected clustering algorithm. These special categories are
useful for matching some special requirements. For example, when the num-
ber of experiments (columns) in a dataset is large in compared to the number of
genes (rows), algorithms that find clusters in subspaces (e.g. projected clustering
algorithms) may perform better22.

Another important classification of the algorithms is the kind of data at-
tributes that they can handle. For example, some microarray data are dis-
cretized, such that the attributes are categorical. We selected a relevant subset
of the attribute types in Kaufman and Rousseeuw21 to define a hierarchy of at-
tribute types. Some Biosphere implementations of the algorithms are modified
versions that can handle some attributes that the original algorithms cannot
handle. The extra capability is provided by defining special similarity functions.
For example, if an algorithm relies on the distance between different expression
values in the clustering process, by default they cannot handle categorical at-
tributes in which the distance between different values is not defined. However,
if a similarity function can also define the distance between different categori-
cal values, then the algorithm can also work on categorical attributes. In view
of this, we defined different similarity functions, each associated with a list of
attribute types that it can handle. Each clustering algorithm then picks the
similarity functions that it can use, from which the types of attributes that it



September 19, 2005 16:12 Proceedings Trim Size: 9in x 6in yip

Figure 2. Clustering algorithm ontology.

can handle are defined.
Finally we defined the time complexity of each algorithm. It turned out to

be very difficult to define such a category, as time complexities are expressed in
functions, and may involve many variables specific to each algorithm. To make
things simple, we defined several coarse complexity classes such as constant time,
O(n) time and O(nlogn) time, and requires each algorithm to pick the tightest
ones with respect to the number of experiments and genes in a dataset. This
is certainly not an ideal way to specify the time complexities. Also, time com-
plexity alone does not directly imply the actual running time of the algorithms.
However, the current categories are already very useful in some basic matching.
For example, if a dataset contains more than 10000 genes and the user is only
willing to wait for seconds, an algorithm with cubic time complexity with respect
to the number of genes is unlikely to be a good choice.

2.2. Semantic Clustering Web Services

We use the KPrototype algorithm20 as an example to explain what have to be
specified for a semantic web service. Figure 3 shows its descriptions in OWL-S,
which contain the following parts:

• The service part organizes all other parts of a web service description.
The “KPrototypeClusteringService” is described by “KPrototypeClus-
teringProfile”, presents “KPrototypeClusteringProcess” and supports



September 19, 2005 16:12 Proceedings Trim Size: 9in x 6in yip

“KPrototypeClusteringGrounding”. The service can be thought of as
an API declaration for an entry point that a service provider wants to
make accessible.

• The profile part tells us “what the service does”; that is, it gives the type
of information needed by a service-seeking agent to determine whether
the service meets its needs. It also provides the contact information of
the service provider. Here, we defined “KPrototypeClusteringProfile”
as an instance of “ClusteringService”, which is linked to our clustering
algorithm ontology by its “algorithm” property. An agent searching
for clustering services can first determine the appropriate algorithms it
desires by examining the ontology, and then get to the services via the
“algorithm” relationships.

• The process model tells “how the service works”. Our clustering service
processes are composed of two alternative atomic processes: getAlgo-
rithmMetaData and execute. getAlgorithmMetaData requires no inputs
and returns the metadata description, such as the type and parame-
ters, of the algorithm. execute requires three inputs: dataset URL, user
email and the set of parameter values. It responds with a task ID and
a security token for the retrieval of clustering results when the service
is successfully executed.

• Service grounding specifies the details of how an agent can access a
service. Here we use SOAP RPC as our communication protocol and
ground our services on WSDL to specify the port used in contacting the
services. Each atomic process is grounded to a WSDL operation and
its inputs and outputs to the message parts of that operation. When
an atomic process is invoked, the corresponding operation is called in
the remote server. Inputs and outputs are transformed between seman-
tic OWL documents and SOAP messages using the XSLT12 stylesheet
embedded in the grounding part of the OWL-S file.

2.3. Matchmaker

The matchmaking subsystem takes as input a microarray dataset and some other
user requirements for a clustering task (Figure 4). In order not to request users
to know too many technical details about the algorithms, the requirements are
entered through answering several very simple questions. The system performs
the matching and returns a list of algorithms in descending order of their match-
ing scores (Figure 5). Matching details are provided at the bottom of the page
for explaining how the matching was performed. From the list, the users can
choose one or more algorithms to cluster the data. The request will be sent to



September 19, 2005 16:12 Proceedings Trim Size: 9in x 6in yip

Figure 3. OWL-S representation of the KPrototype clustering web service.

the chosen clustering web services, and the users will be notified by email when
the results are ready, which can be viewed on a result page with a standard
colored graph for visualizing the clusters (Figure 6).

The current matching system adopts a rule-based approach. Matching is
performed based on two types of predefined rules: filtering rules and scoring
rules. Filtering rules define which algorithms cannot be used in the current
clustering task. For example, if the dataset contains a certain kind of attributes
that an algorithm cannot handle, the algorithm will be filtered. In general, a set
of preconditions can be specified for each algorithm so that it can be used for a
clustering task only if all the preconditions are satisfied.

The algorithms that remain are evaluated by the scoring rules. Each rule
takes into account an evaluation criterion and gives a score for each algorithm.
For example, one rule evaluates the speed performance of the algorithms in terms



September 19, 2005 16:12 Proceedings Trim Size: 9in x 6in yip

Figure 4. User input.

Figure 5. Matched algorithms and match description.

of the number of genes. Basically, algorithms with higher time complexities will
receive lower scores. However, the importance of the rule depends on the size
of the dataset as well as the time that the user is willing to wait. If the dataset
is large, an algorithm with O(n2) time complexity may run significantly faster
than one with O(n3) time complexity. Yet if the dataset is small, the difference
may be negligible and the scores for the two algorithms will not have a large
difference. Similarly, if the user wants the clustering result be ready within
seconds, the execution time is very important and the rule will give a large score
difference between algorithms with different time complexities. But if the user
is willing to wait for days, the rule will give similar scores to the algorithms.

The final score for an algorithm is a weighted sum of the individual scores.
The weights depend on the dataset, the algorithm, and also the user require-



September 19, 2005 16:12 Proceedings Trim Size: 9in x 6in yip

Figure 6. Visualization of clustering results.

ments. Currently the weights are set by fixed rules, but it is also possible to learn
the personalized weights by collecting user feedbacks after actually running the
algorithms. A difficulty is that for a reasonably large set of rules, the number of
training examples required is huge. The learning may therefore need to be based
on the feedbacks of all the users, but with a special emphasis on the part of the
particular user. We leave this learning capability as a future research direction.

3. Discussion

While we considered only clustering algorithms in this study, many concepts
are brought from the more general data analysis or machine learning domain,
such as the hierarchy of attribute types. It is a good idea to have the ontology
general enough to be able to merge with other machine learning ontology. How-
ever, over-generalization may make things complicated while not gaining much
for the current goal. Also, if the logic inferencing capability is to be heavily
used, a complicated ontology is more prone to errors and may incur a large
computational overhead. Our suggestion is to keep the ontology minimal and



September 19, 2005 16:12 Proceedings Trim Size: 9in x 6in yip

flexible. For example, we did not attempt to include all the possible clustering
algorithm types in the ontology, but we kept in mind that in future more types
might be defined, so the codes were written in ways such that minimal changes
are required when new types are added. This flexibility is very important in a
fast growing field such as bioinformatics, since new concepts evolve rapidly. For
instance, the concept of finding the corresponding subspace of each cluster has
become popular only in recent years due to the production of extremely high
dimensional datasets from sources such as microarray experiments. Rather than
being static, the ontology needs to grow dynamically with time.

The above discussion is also related to another question: by whom the algo-
rithm descriptions should be defined or changed? One possibility is to have the
classes, properties and the relationships involved defined in a commonly agreed
ontology. Each group then defines the property values of their own algorithms
accordingly. The problem is that since the values directly affect the chance that
the corresponding services being chosen, there has to be an objective and fair
way to determine the values, which is not easy if this is done by each group
individually. On the other hand, it may not be possible to have the values com-
pletely determined by a central committee since the performance of the services
may be dependent on some information owned only by the service provider, such
as the CPU load of their servers. Some monitoring and trust mechanisms are
required in such situations. Feedbacks from the user could also help fine-tune
the matching mechanism to penalize imprecise descriptions.

The current ontology is mainly based on the computational issues of the
algorithms. Since the system is targeted for biologists, there has to be some
means to translate their high-level, domain-specific requirements into these low-
level technicalities. The current implementation performs this by providing a
simple user interface with several non-technically deep questions. For the system
to be widely used by biologists, it has to incorporate more biological knowledge.
Our proposal is to keep a low-level ontology for computational issues, but at the
same time add a high-level ontology for specifying domain-specific requirements.
It would then be possible to define more formal rules for the matching between
algorithm characteristics and user requirements. While there are existing bio-
ontologies related to microarray experiments (e.g. MGED 4), they are mainly
for describing data properties and experiments. Such ontologies are necessary,
but not sufficient for specifying the user requirements. The high-level ontology
also needs to include ways for describing analysis tasks. Current efforts in this
area (e.g. PMML 6) are not tailored for biological sciences. A biologists-friendly
version would be needed for capturing the specific goals and common practices
of the field.

We have also observed some fundamental issues at the web service layer. One



September 19, 2005 16:12 Proceedings Trim Size: 9in x 6in yip

of them is the need to transfer large amount of data through the network. In
our case, the dataset needs to be transmitted between the client and both the
recommendation system and the clustering web services. Caching can alleviate
the problem if different algorithms are applied to the same dataset, but cannot
completely solve the problem. One solution is to run the algorithms at a machine
close to the data, so that large data moves are localized to a small region,
preferably a local area network. To achieve this, either the services have to
be mirrored at different geographically areas, or there has to be some ways to
“download” the service to run locally. The concept is similar to Java applets that
are downloaded to run at client browsers, but here the concept is generalized in
that the programs may also be run on an intermediate powerful server. In order
to make this approach possible, the service programs have to be divided into two
halves so that only the downloaded part works directly on the data, and only the
server part connects directly to server-side resources such as backend databases.
In our case, this approach seems feasible since the clustering algorithms are Java
classes that can run on any machines with a Java virtual machine, and they do
not need to access any server side resource directly. At the same time, server side
activities such as authentication and task queuing do not need to deal with the
data directly. Whether the approach is generally applicable in other situations
is yet to be determined.

4. Conclusion

In this paper, we described how the semantic web approach could be used to ad-
dress the problem of choosing among the many clustering algorithms available
for analyzing microarray data. We demonstrated the importance of semantic
web service descriptions (through the use of ontology), and how the semantic
web technologies can be used to build a matchmaking system that can make
recommendations to users on which clustering web services to use according to
their requirements. While our results are preliminary and there are yet issues to
be addressed, we believe this kind of web-services-based distributed and collab-
orative systems will become the trend of the near future. This project can be
viewed as a small showcase for exploring the impact of semantic web in modern
life sciences research.

5. Acknowledgement

We would like to thank Mark Gerstein, Andrew Smith and other members of
the Gerstein Lab for their comments on a preliminary version of the system.
This work was supported in part by NIH grant K25 HG02378 from the National
Human Genome Research Institute, and NSF grant BDI-0135442.



September 19, 2005 16:12 Proceedings Trim Size: 9in x 6in yip

References

1. Bioconductor. http://www.bioconductor.org/.
2. BioMOBY. http://www.mygrid.org.uk/.
3. EPCLUST. http://ep.ebi.ac.uk/EP/EPCLUST/.
4. The MGED ontology.

http://mged.sourceforge.net/ontologies/MGEDontology.php.
5. myGrid. http://www.mygrid.org.uk/.
6. The predictive model markup language (PMML). http://www.dmg.org/

pmml-v3-0.html.
7. W3C OWL-S: Semantic markup for web services. http://www.w3.org/

Submission/OWL-S/.
8. W3C OWL web ontology language overview.

http://www.w3.org/TR/owl-features/.
9. W3C RDF primer. http://www.w3.org/TR/rdf-primer/.

10. W3C SOAP version 1.2 part 0: Primer. http://www.w3.org/TR/2003/
REC-soap12-part0-20030624/.

11. W3C web services description language (WSDL) version 2.0 part 0: Primer. http:
//www.w3.org/TR/2004/WD-wsdl20-primer-20041221/.

12. W3C XSL transformation (XSLT) version 1.0. http://www.w3.org/TR/xslt.
13. C. C. Aggarwal, C. Procopiuc, J. L. Wolf, P. S. Yu, and J. S. Park. Fast algo-

rithms for projected clustering. In ACM SIGMOD International Conference on
Management of Data, 1999.

14. C. C. Aggarwal and P. S. Yu. Finding generalized projected clusters in high di-
mensional spaces. In ACM SIGMOD International Conference on Management of
Data, 2000.

15. Y. Cheng and G. M. Church. Biclustering of expression data. In Proceedings of the
8th International Conference on Intelligent Systems for Molecular Biology, 2000.

16. S. Datta and S. Datta. Comparisons and validation of statistical clustering tech-
niques for microarray gene expression data. BioInformatics, 19(4):459–466, 2003.

17. R. de Knikker, Y. Guo, J. long Li, A. K. H. Kwan, K. Y. Yip, D. W. Cheung, and
K.-H. Cheung. A web services choreography scenario for interoperating bioinfor-
matics applications. BMC Bioinformatics, 5(25), 2004.

18. M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein. Cluster analysis and
display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA, 95:14863–
14868, 1998.

19. J. A. Hartigan and M. A. Wong. A K-means clustering algorithm. Applied Statis-
tics, 28, 1979.

20. Z. Huang. Clustering large data sets with mixed numeric and categorical values.
In The First Pacific-Asia Conference on Knowledge Discovery and Data Mining,
1997.

21. L. Kaufman and P. J. Rousseeuw. Finding Groups in Data: An Introduction to
Cluster Analysis. Wiley Inter-Science, 1990.

22. K. Y. Yip, D. W. Cheung, M. K. Ng, and K.-H. Cheung. Identifying projected
clusters from gene expression profiles. Journal of Biomedical Informatics (JBI),
37(5):345–357, 2004.




