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Annotating genes with Gene Ontology (GO) terms is crucial for biologists to characterize 

the traits of genes in a standardized way. However, manual curation of textual data, the 

most reliable form of gene annotation by GO terms, requires significant amounts of 

human effort, is very costly, and cannot catch up with the rate of increase in biomedical 

publications. In this paper, we present GEANN, a system to automatically infer new GO 

annotations for genes from biomedical papers based on the evidence support linked to 

PubMed, a biological literature database of 14 million papers. GEANN (i) extracts from 

text significant terms and phrases associated with a GO term, (ii) based on the extracted 

terms, constructs textual extraction patterns with reliability scores for GO terms, (iii) 

expands the pattern set through “pattern crosswalks”, (iv) employs semantic pattern 

matching, rather than syntactic pattern matching, which allows for the recognition of 

phrases with close meanings, and (iv) annotates genes based on the “quality” of the 

matched pattern to the genomic entity occurring in the text. On the average, in our 

experiments, GEANN has reached to the precision level of 78% at the 57% recall level. 

1. Introduction  

In this paper, we present GEANN (Gene Annotator), a system to automatically 

infer new Gene Ontology (GO) annotations for genes from biomedical papers 

based on the evidence support linked to PubMed, a biological literature database 

of 14 million papers. Currently, annotations for GO, a controlled term 

vocabulary describing the central attributes of genes [1], are most reliably done 

manually by experts who read the literature, and decide about appropriate 

annotations. This approach is slow and costly. And, compounding the problem is 

the rate of increase in the amount of available biological literature: at the present 

time, about 223,000 new genomics papers (that contain at least one of the words 

“gene”, “protein” or “rna”, and are published in 2005) per year are added to 

PubMed [3], far outstripping capabilities of a manual annotation effort. Hence, 

effective computational tools are needed to automate annotation of genes with 

GO terms.   

Currently, possibly many genes without appropriate GO annotations exist 

even though there may be sufficient annotation evidence in a scientific paper. 

We have observed that, as of Jan. 2006, only a small portion of the papers in 
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PubMed has been referred to in support of gene annotations (i.e., 0.9% of 3 

million PubMed genomics papers with abstracts). We give an example. 

Example.  The following is an excerpt from an abstract [18] which discusses 
experiments indicating the translation repressor activity (GO: 0030371) of the gene p97.  
However, presently gene p97 does not have the translation repressor activity annotation. 

“…experiments show that p97 suppresses both cap-dependent and independent 
translation … expression of p97 reduces overall protein synthesis…results suggest that 
p97 functions as a general repressor of translation by forming...” . 

GEANN can be used to (i) discover new GO annotations for a gene, and/or 

(ii) increase the annotation strength of existing GO annotations by locating 

additional paper evidence. We are currently integrating GEANN into PathCase 

[2], a system of web-based tools for metabolic pathways, in order to allow users 

to discover new GO annotations. In general, GEANN is designed to: 

• facilitate and expedite the curation process in GO, and 

• extract explicit information about a gene that is implicitly present in text. 

GEANN uses paper abstracts, and utilizes textual pattern extraction techniques 

to discover GO annotations automatically. GEANN’s methodology is to (i) 

extract textual elements identifying a GO term, (ii) construct patterns with 

reliability scores, conveying the semantics of how confidently a pattern 

represents a GO term, (iii) extend the pattern set with longer ones via 

“crosswalks”, (iv) apply semantic pattern matching techniques using WordNet, 

and (v) annotate genes based on the “quality” of the matched pattern to the 

genomic entity occurring in the text. 

In experiments, GEANN produced, on average, 78% precision at 57% 

recall. This level of performance is significantly better than the existing systems 

described in the literature, and compared in section 5.2.3 and section 6.  

Overview: The GEANN implementation has two phases, namely, the training 

and the annotation phases. The goal of the training phase is to construct a set of 

patterns that characterize a variety of indicators for the existence of a GO 

annotation. As the training data, annotation evidence papers [1] are used. The 

first step in the training phase is the tagging of genes in the papers. Then, 

significant terms/phrases that differentially appear in the training set are 

extracted. Next, patterns are constructed based on (i) the significant 

terms/phrases, and (ii) the terms surrounding significant terms. Finally, each 

pattern is assigned a reliability score.  

The annotation discovery phase looks for possible matches to the patterns in 

paper abstracts. Next, GEANN computes a matching score which indicates the 

strength of the prediction. Finally, GEANN determines the gene to be associated 

with the pattern match. At the end, new annotation predictions are ordered by 

their scores, and presented to the user. 
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The extracted patterns are flexible in that they match to a set of phrases with 

close meanings. GEANN employs WordNet [5] to deduce the semantic 

closeness of words in patterns. WordNet is an online lexical reference system in 

which nouns, verbs, adjectives and adverbs are grouped into synonym sets, and 

these synonym sets are hierarchically organized through various relationships.  

The paper is organized as follows. In section 2, we elaborate on significant 

term discovery, and pattern construction. Sections 3 and 4 discuss pattern 

matching and the scoring scheme, respectively. Section 5 summarizes the 

experimental results. In section 6 (and 5.2.3), we compare GEANN to other 

similar, competing, systems. 

2. Pattern Construction 

In GEANN, the identifying elements of a GO concept are the representations of 

the concept in textual data. And, the terms surrounding the identifying elements 

are considered as auxiliary descriptors of the GO concept. A pattern is an 

abstraction which encapsulates the identifying elements and the auxiliary 

descriptors together in a structured manner. More specifically, a pattern is 

organized as a 3-tuple: {LEFT} <MIDDLE> {RIGHT} where each element 

corresponds to a set (bag) of words. <MIDDLE> element is an ordered sequence 

of significant terms (identifying elements), {LEFT} and {RIGHT} elements 

correspond to word sets that appear around significant terms (auxiliary 

descriptors). The number of terms in the left and the right elements is adjusted 

by a window size.  

Each word or phrase in the significant term set is assigned to be the middle 

element of a newly created pattern template. A pattern is an instance of a pattern 

template which may lead to several patterns with a common middle element, but 

(possibly) different left or right elements. We give an example. 

Example. Two of the patterns that are created from the pattern template {LEFT} <rna 

polymerase ii> {RIGHT} are listed below where rna polymerase ii is found to be a 

significant term within the context of GO concept positive transcription elongation 

factor with the window size of three. {LEFT} and {RIGHT} tuples are instantiated from 

the surrounding words that appear before or after the significant term in the text. 

{increase catalytic rate}<rna polymerase ii>{transcription suppressing transient} 

{proteins regulation transcription}<rna polymerase ii>{initiated search proteins} 

 Patterns are contiguous blocks, that is, no space is allowed between the tuples in 

a pattern. Each tuple is a nag of words which are tokens delimited by white 

space characters. Since the stop words are eliminated in the preprocessing stage, 

the patterns do not include words like “the”, “of”, etc. 
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2.1. Locating Significant Terms and Phrases 

Some words or phrases appearing frequently in the abstracts provide evidence 

for annotations by a specific GO term. For instance, RNA polymerase II which 

performs elongation of RNA in eukaryotes appears in almost all abstracts 

associated with the GO term “positive transcription elongation factor activity”. 

Hence, intuitively, such frequent term occurrences should be marked as 

indicators of a possible annotation.  In order to avoid marking word(s) common 

to almost all abstracts (e.g., “cell”), the document frequency of a significant term 

is enforced to be below a certain threshold (10% in our case). The words that 

constitute the name of a GO term are by default considered as significant terms.  

Frequent phrases are constructed out of frequent terms through a procedure 

similar to the Apriori algorithm [9]. First, individual frequent terms are obtained 

using the IDF (inverse document frequency [4]) indices. Then, frequent phrases 

are obtained by recursively combining individual frequent terms/phrases, 

provided that the constructed phrase is also frequent. 

In order to obtain significant terms, one can use various methods from 

random-walk networks to correlation mining [9]. Since the training set for each 

GO term is most of the time not large, and to keep the methodology simple, we 

use frequency information to determine the significant terms.           

2.2. Pattern Crosswalks 

Extended patterns are constructed by virtually walking from one pattern to 

another. The goal is to create larger patterns that can eliminate false GO 

annotation predictions, and boost the true candidates. Based on the type of the 

walk, GEANN creates two different extended patterns: (i) side-joined, and (ii) 

middle-joined patterns. 

Transitive Crosswalk: Given a pattern pair P1 = {left1} <middle1> {right1}, 

and  P2 = {left2} <middle2> {right2}, if {right1} = {left 2}, then patterns P1 and 

P2 are merged into a 5-tuple side-joined (SJ) pattern P3 = {left1} <middle1> 

{right1} <middle2> {right2}. Next, we give an example of a SJ pattern that is 

created for GO term positive transcription elongation factor.  

Example.    P1 = {factor increase catalytic}<rate>{RNA polymerase II} 

              P2 = {RNA polymerase II}<elongation factor>{[ge]} 

[SJ Pattern] P3 = {factor increase catalytic}<rate><RNA polymerase II>{elongation factor}{[ge]}                                                                                            

SJ patterns are helpful in detecting consecutive pattern matches that 

partially overlap in their matches. If there exist two consecutive regular pattern 

matches, then such a match should be evaluated differently than two separate 

matchings of regular patterns as it may provide a stronger evidence for the 
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existence of a possible GO annotation in the match region. Note that pattern 

merging through crosswalks is performed among the patterns of the same GO 

concept. 

Middle Crosswalk: Based on the partial overlapping between the middle and 

side (right or left) tuples of patterns, we construct the second type of extended 

patterns. Given the same pattern pair P1 and P2 as above, the patterns can be 

merged into a 4-tuple middle-joined (MJ) pattern if at least one of the following 

cases holds. 

a.  Right middle walk:{right1} ∩ <middle2> ≠ ∅ and <middle1> ∩ {left2}=∅ 

b.  Left middle walk: <middle1> ∩ {left2} ≠ ∅    and {right1} ∩ <middle2>=∅ 

c.  Middle walk: <middle1> ∩ {left2} ≠  ∅ and  {right1} ∩ <middle2>  ≠  ∅ 
MJ patterns have two middle tuples. For case (a), the first middle tuple is 

the intersection of {right1} and <middle2> tuples. Case (b) is handled similarly. 

As for case (c), the first and the second middle tuples are subsets of <middle1> 

and <middle2>. Below, we give an example of MJ pattern construction for the 

GO term positive transcription elongation factor.  

Example.  (Middle-joined pattern construction)    

 P1 = {[ge] facilitates chromatin} <transcription> {chromatin-specific elongation factor} 

 P2 = {classic inhibitor transcription} <elongation rna polymerase ii> {pol II} 

 [MJ Pattern] P3 = {[ge] facilitates chromatin} <transcription> <elongation> {pol II} 

Like SJ patterns, MJ patterns capture consecutive pattern matches in textual 

data. In particular, MJ patterns detect partial information that may not be 

recognized otherwise, since we enforce the full matching of middle tuple(s) to 

locate a pattern match, which is discussed next.  

3.  Handling Pattern Matches 

Since middle tuples of a pattern are composed of significant terms, the condition 

for a pattern match is that the middle tuple of the pattern should be completely 

included in the text. For the matching of the left and the right tuples, GEANN 

employs semantic matching. We illustrate with an example. 

Example. Given a pattern “{increase catalytic rate}<transcription elongation>{RNA 

polymerase II}”, we want to be able to detect the phrases which give the sense that 

“transcription elongation” is positively affected. Through semantic matching, phrases 

like “stimulates rate of transcription elongation” or “facilitates transcription 

elongation” are also matched to the pattern. 

GEANN first checks if an exact match is possible between the left/right 

tuples of the pattern, and the surrounding words of the matching phrase. 

Otherwise, GEANN employs WordNet [5] to check if they have similar 

meanings using an open source library [22] as access interface to WordNet. 

First, a semantic similarity matrix, R[m,n], containing each pair of words is 
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built, where R[i, j] is the semantic similarity between the most appropriate sense 

of the word at position i of phrase X, and the word at position j of phrase Y. The 

most appropriate sense of the word is found by through a sense disambiguation 

process. Given a word w, each sense of the word is compared against the senses 

of the surrounding words, and the sense of w with the highest similarity to the 

surrounding words is selected as the most appropriate sense. To compute 

semantic similarity, we adopt a simple approach: the semantic similarity between 

word senses w1 and w2 is inversely proportional to the length of the path 

between the senses in WordNet. The problem of computing semantic similarity 

between two sets of words X and Y is considered as the problem of computing a 

maximum total matching weight of a bipartite graph [7], where X and Y are two 

sets of disjoint nodes (i.e., words in our case).  The Hungarian Method [7] is 

used to solve this problem where R[i, j] is the weight of the edge from i to j. 

Finally, each individual pattern match is scored based on (i) the score of the 

pattern itself, and (ii) the semantic similarity computed using WordNet.  

Having located a match, the next step is to decide on the gene that is 

associated to the match. To this end, two main issues are resolved: (i) detecting 

gene names in the text, and (ii) determining the gene to be annotated among 

possible candidates. For the first task, we utilized a decent biological named 

entity tagger, called Abner [20]. For the second task of locating the gene to be 

annotated, GEANN first looks into the sentence containing the match, and 

locates the genes that are positioned before/after the matching region in the 

sentence, or else in the previous sentence and so on. The confidence of the 

annotation decays as the distance from the gene to the matching phrase 

increases. For more details, please see [14]. 

4. Pattern Evaluation and Scoring 

4.1.  Scoring Regular Patterns 

Each constructed pattern is assigned a score conveying the semantics of how 

confidently a pattern represents a GO term. GEANN uses several heuristics for 

the final score of a pattern based on the structural properties of its middle tuple. 

i) Source of Middle Tuple [MT]: The patterns whose middle tuples fully consist 

of words from the GO term name gets higher score than those with middle tuples 

constructed from the frequent terms.  

ii)  Type of Individual Terms in the Middle Tuple [TT]: Contribution of each 

word from GO term name changes according to (a) the selectivity, i.e., the 

occurrence frequency of the word among all GO term names, and (b) the 

position of the word in GO term name based on the observation that  words in a 

GO term name get more specific from right to left [21].  
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iii)  Frequency of the Phrase in the Middle Tuple [PC]: A pattern’s score is 

inversely proportional to the frequency of the middle tuple throughout the papers 

in the database.  

iv)  Term-Wise Paper Frequency of the Middle Tuple [PP]: The patterns with 

middle tuples which are highly frequent in the GO term’s paper set get higher 

scores.   

Based on the reasoning summarized above, GEANN uses the following 

heuristic score function: 

      PatternScr = (MT + TT + PP) * Log(1/PC)   

4.2. Scoring Extended Patterns 

(a) Scoring SJ Patterns: SJ patterns serve for capturing consecutive pattern 

matches. Our scoring scheme differentiates between two-consecutive and two-

single pattern matches where consecutive pattern matches contribute to the final 

score proportional to some exponent of the sum of the pattern scores (after 

experimenting with different values of exponents in the extended pattern score 

functions for the highest accuracy, for the experimental results section, j and k 

were set to 2 and 1.5, respectively). This way, GEANN can assign considerably 

higher scores to consecutive pattern matches which are considered as much 

stronger indicators for an annotation than two individual pattern matches. 

          Score(SJ Pattern) = ( Score(Pattern1) + Score(Pattern2) ) 
j
 

(b) Scoring MJ Patterns: Consistent with the construction process, the score 

computation for MJ patterns is more complex in comparison to SJ patterns.  

 Score(Middle-joined Pattern)= ( DegreeOfOverlap1* Score(Pattern1)  +                       

                                               DegreeOfOverlap2 * Score(Pattern2) )
k
  

where DegreeOfOverlap represents the proportion of the middle tuple of 

pattern1 (pattern2) that is included in the left tuple of pattern2 (right tuple of 

pattern1). In addition, GEANN considers the preservation of word order, 

represented by the positionalDecayCoefficient. The degree of overlap is 

computed by: 

   degreeOfOverlap = positionalDecayCoefficient  * overlapFrequency     

The positional decay coefficient is computed according to the alignment of 

the left or the right middle tuple of a pattern with the middle tuple of the other 

pattern. If a matching word is in the same position in both tuples, then the 

positional score of the word is 1, otherwise, it is 0.75.  

 

PositionalDecayCoefficient =   

( )

( )

w inOverlap

PosScore w

Size Overlap

∑
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5. Experimental Results   

5.1. Data Set  

In order to evaluate the performance of GEANN, we performed experiments on 

annotating genes in NCBI’s Genbank with selected GO terms. A subset of 

PubMed abstracts was stored in a database. The experimental subset consisted of 

evidence papers cited by GO annotations, and reference papers that were cited 

for the gene maintained by GenBank. This corpus containing around 150,000 

papers was used to approximate the word frequencies in the actual PubMed 

dataset. As part of pre-processing, abstracts/titles of papers were tokenized, 

stopwords were removed, and inverse document indices were constructed for 

each token. GEANN was evaluated on a set of 40 GO terms (24 terms from the 

biological process, 12 terms from mol. function, 4 term from cellular component 

subontology). Our decision on which terms to choose for the performance 

assessment is shaped by the choices made in two previous studies [16, 17] for 

comparison purposes. For a complete list of GO terms used in the experiments, 

see [14]. The evidence papers that are referenced from at least one of the test 

GO term are used for testing patterns. In total, 4694 evidence papers abstracts 

are used to to annotate 4982 genes where on the average each GO term has 120 

evidence papers and 127 genes. 

5.2. Experiments 

Our experiments are based on the precision-recall analysis of the predicted 

annotation set. We use the k-fold cross validation scheme [9] (k=10 in our case). 

Precision is the ratio of the number of genes that are correctly predicted to the 

number of all genes predicted by GEANN. And, recall is the fraction of the 

correctly predicted genes in the whole set of genes that are known to be 

annotated with the GO term being studied. The genes that are annotated by 

GEANN, and yet, do not have a corresponding entry in Genbank are ignored as 

there is no way to check their correctness. Additionally, GEANN uses the 

following heuristics.  

Heuristic 1 (Shared Gene Synonyms):  If at least one of the genes matching to the 
annotated symbol has the annotation with the target GO term, then this prediction is 

considered as a true positive.  

Heuristic 2 (Incorporating the GO Hierarchy): A given GO term G also annotates all 

the genes that are annotated by any of its descendants (true-path rule).  

5.2.1. Overall Performance:   

For this experiment, predicted annotations were ordered by their confidence 

scores. Precision and recall values were computed by considering top k 
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predictions. k was increased by 1 at each step until either all the annotations for a 

GO term were located, or all the candidates in the predicted set were processed.  
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Figure 2: Annotation accuracy across different 

subontologies in GO 

Observation 1: From fig. 1, which presents the average precision/recall values, GEANN 
yields 78% precision (the top-most line) at 46% recall (the bottom-most line).  

The association of a pattern to a gene relies on the accurate tagging of genes in 

the text. However, named entity taggers (NETs) are still far from being perfect 

(ABNER has 77% recall, 68% precision). It may be quite difficult to exactly 

quantify NET errors. Thus, we took a minimalist approach, and attempted to 

compute the rate of error that is guaranteed to be due to the fault of the NET.  

Heuristic 4 (Tagger Error Approximation): If none of the synonyms of a gene has been 

recognized by the tagger in any of the papers which are associated with the target GO 

term G, then we label the gene as a tagger-missed gene. 

Observation 2: After eliminating tagger-missed genes, the recall of GEANN increases to 

57% from 46% at the precision level of 78% (the middle line in figure 1). 
Note that the actual error rate of the NET, in practice, may be much more 

than what is estimated above. In addition, eliminating tagger-missed genes does 

not affect the precision. Thus, precision is plotted only once.  

5.2.2. Accuracy across Different Subontologies: 

In experiment 2, the same steps of experiment 1 were repeated; but average 

accuracy values were computed within the individual subontologies. Figure 2 

plots precision/recall values of different subontologies of GO (MF: Molecular 

Function, BP: Biological Process, CC: Cellular Component).  

Observation 3: GEANN has the best precision for CC where the precision reaches to 

85% at 52% recall while MF yields the highest recall (58% at 75% precision).  

Observation 4: CC almost always provides best precision values because the variety of 

the words to describe cellular locations may be much lower. However, CC has the lowest 

recall (52%) as the cellular location is well known for certain genomic entities, hence, 

are not stated explicitly in the text as much as MF or BP annotations. 
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Observation 5: Higher recall in MF is expected as, in general, the emphasis in a 

biomedical paper is on the functionality of a gene, where the process or the cellular 

location information is usually provided as secondary traits for the entity. 

5.2.3. Comparative Performance Analysis with Other Systems: 

Raychaudhuri et al. [16] and Izumitani  et al. [17] built paper classifiers to label 

the genes with GO terms through the classification of papers. Both works 

assume that a gene is a priori associated with several papers. This is a strong 

assumption in that if the experts are to invest sufficient time to read and 

associate a set of papers with a gene, then they can probably annotate the gene 

with the appropriate GO terms. Second, since both of the systems work at the 

document level, no direct evidence phrases are extracted from the text. Third, 

the classifiers employed by these studies need large training paper sets. In 

contrast, GEANN does not require a gene to be associated with any set of 

papers. Moreover, GEANN can also provide specific match phrases as evidence 

rather than the whole document. Fourth, GEANN handles the reconciliation of 

two different genomic databases whereas those studies have no such 

consideration. Izumitani et al. compares their system to Raychaudhuri et al.’s 

study for 12 GO terms. Our comparative analysis is also confined to this set of 

GO terms. Among these GO terms, five of them (Ion homeostasis, Membrane 

fusion, Metabolism, Sporulation) either have no or very few annotations in 

Genbank to perform 10-fold cross validation, and one of the test terms 

(Biogenesis) has recently became obsolete (i.e., removed from GO). Therefore, 

here we present comparative results for the remaining 6 GO terms. Table 1 

provides the overall F-values [9] while Table 2 provides F-values in terms of the 

subontologies. F-value is a harmonic mean of precision and recall values, and 

computed as (2*Recall*Precision)/(Recall+Precision). 

Raychaudhuri et al. GO 

category 

 

GEANN 

Izumitani 

et al. Top1 Top2 Top3 
 

GO:0006914 0.85 0.78 0.83 0.66 0.38 

GO:0007155 0.66 0.51 0.19 0.19 0.13 

GO:0007165 0.75 0.76 0.41 0.30 0.21 

GO:0006950 0.69 0.65 0.41 0.27 0.24 

GO:0006810 0.72 0.83 0.56 0.55 0.49 

GO:0008219 0.75 0.58 0.07 0.06 0.02 

Average 0.74 0.69 0.40 0.33 0.25  

GO 

Subontolgy 
GEANN 

Izumita

ni et al. 

Biological 

Process 
0.66 0.60 

Molecular 

Function 
0.66 0.72 

Cellular 

Location 
0.64 0.58 

Average 0.66 0.63  

Table 1: Comparing F-Values against Izumitani and 

Raychaudhuri 

Table 2: Comparing F-Values for GO 

Subontologies 

Observation 6: Although GEANN does not rely on the strong assumption that genes 

need to be associated with a set of papers, and provides annotation prediction at a finer 

granularity with much smaller training data, it is still comparable to or better than other 

systems in terms of accuracy. 
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5.2.4. Contributions of Extended Patterns: 

Finally, we evaluated the effects of extended patterns. The experiments were 

conducted by first utilizing extended patterns, and, then, without using extended 

patterns. 

Observation 7: The use of extended patterns improves the precision by as much as 6.3% 

(GO:0005198). However, as the average improvement is quite small (0.2 %), we 

conclude that the contribution of the extended patterns is unpredictable. We observe that 

extended patterns have a localized effect which does not necessarily apply in every case. 

Furthermore, since we only use paper abstracts, it is not very likely to find long 

descriptions that match to extended patterns.  

6. Related Work  

The second task of the BioCreAtIvE challenge involves extracting the annotation 

phrases given a paper and a protein. Most of the evaluated systems had low 

precision (46% for the best performing system) [15]. We are planning to 

participate in this assesment challenge in the  near future.  

Raychaudhuri et al. [16] and Izumitani  et al. [17] classify the documents, 

hence the genes that are associated to the documents into GO terms. As discussed 

above, even though GEANN is more flexible in terms of its assumptions, its 

performance is still comparable to these systems. Koike et al. [19] employs actor-

object relationships from the NLP perspective. This system is optimized for the 

biological process subontology, and it requires human input and manually created 

patterns. Fleischman and Hovy [8] present a supervised learning method which is 

similar to our flexible pattern approach in that it uses WordNet. However, we use 

significant terms to construct additional patterns so that we can locate additional 

semantic structures while this paper only considers the target instance as the base 

of its patterns. Riloff [10] proposes a technique to extract the patterns. This 

technique ignores semantic side of the patterns. In addition, patterns are strict in 

that they require word-by-word exact matching. Brin’s DIPRE [11] uses an initial 

set of seed elements as input, and uses the seed set to extract the patterns by 

analyzing the occurrences of seed instances in the web documents. SNOWBALL 

[12] extends DIPRE’s pattern extraction system by introducing use of named-entity 

tags. Etzioni et al. developed a web information extraction system, KnowItAll [13], 

to automate the discovery of large collection of facts in web pages, which assumes 

redundancy of information on the web.  

7. Conclusions and Future Work 

In this paper, we have explored a new methodology to automatically infer new 

GO annotations for genes and gene products from biomedical paper abstracts. 

We have developed GEANN which utilizes existing annotation information to 
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construct textual extraction patterns characterizing an annotation with a specific 

GO concept.  

Exploring the accuracy of different semantic similarity measures for 

WordNet, disambiguation of genes that share a synonym, and determining 

scoring weight parameters experimentally are among the future tasks. 

Acknowledgments 

This research is supported in part by the NSF award DBI-0218061, a grant from 

the Charles B. Wang Foundation, and Microsoft equipment grant. 

References 

1.  The Gene Ontology Consortium. The Gene Ontology (GO) database and informatics resource . 
Nucleic Acids Research 32, D258-D261, 2004 

2.   PathCase, available at http://nashua.case.edu/pathways 

3.   PubMed, available at http://www.ncbi.nlm.nih.gov/entrez/query.fcgi 
4.   Salton, G., Automatic Text Processing, Addison-Wesley, 1989. 

5.   Fellbaum, C. An Electronic Lexical Database. Cambridge, MA. MIT Press, 1998. 
6.  Mann, G. Fine-Grained Proper Noun Ontologies for Question Answering.  SemaNet, 2002. 

7.  Lovasz, L. Matching Theory, North- Holland, New York, 1986. 
8.   Fleischman, M., Hovy, E. Fine Grained Classification of Named Entities. COLING 2002 

9.  Han,  J., Kamber, M. Data Mining: Concepts and Techniques. The Morgan Kaufmann, 2000. 
10.  Riloff, E. Automatically Generating Extraction Patterns from Untagged Text. 

AAAI/IAAI,1996. 

11.   Brin, S. Extracting Patterns and Relations from the World Wide Web. WebDB 1998. 

12.   Agichtein, E., Gravano, L. Snowball: extracting relations from large plain-text 
collections.ACM DL 2000 

13.   Etzioni, O. et al. Web-scale information extraction in Knowitall: WWW 2004. 
14.   Extended version of the paper available at: http://cakmak.case.edu/TechReports/GEANN-

Extended.pdf 

15.   Blaschke, C, Leon, EA, Krallinger M, Valencia A. Evaluation of BioCreAtIvE assessment of 
task 2. BMC Bioinformatics. 2005 

16.   Raychaudhuri, S. et al. Associating genes with Gene Ontology codes using a maximum entropy 
analysis of biomedical literature. Genome Res., 12(1):203–214. 

17.   Izumitani, T. et al. Assigning Gene Ontology Categories (GO) to Yeast Genes Using Text-
Based Supervised Learning Methods. CSB 2004. 

18.   Imataka, H., Olsen, H., Sonenberg, N. A new translational regulator with homology to 
eukaryotic translation initiation factor 4G. EMBO J. 1997  

19.  Koike, A., Niwa, Y., Takagi, T. Automatic extraction of gene/protein biological functions from 
biomedical text. Bioinformatics 2005. 

20.   Settles, B. ABNER: An open source tool for automatically tagging genes, proteins, and other 
entity names in text. Bioinformatics,  2005. 

21.  Ogren, P. et al. The Compositional Structure of Gene Ontology Terms. PSB 2004. 
22.   WordNet Semantic Similarity Open Source Library 

http://www.codeproject.com/useritems/semanticsimilaritywordnet.asp 

Pacific Symposium on Biocomputing 12:221-232(2007) 


