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We introduce Chalkboard, a prototype tool for representing and displaying cell-signaling 
pathway knowledge, for carrying out simple qualitative reasoning over these pathways, 
and for generating quantitative biosimulation code. The design of Chalkboard has been 
driven by the need to quickly model and visualize alternative hypotheses about uncertain 
pathway knowledge. Chalkboard allows the biologists to test in silico the implications of 
various hypotheses. To fulfill this need, chalkboard includes (1) a rich ontology of path-
way entities and interactions, which is ultimately informed by the basic chemistry and 
physics among molecules, and (2) a form of qualitative reasoning that computes causal 
chains and feedback loops within the network of entities and reactions. We demonstrate 
Chalkboard’s capabilities in the domain of APP proteolysis, a pathway that plays a key 
role in the pathogenesis of Alzheimer’s disease. In this pathway (as is common), informa-
tion is incomplete and parts of the pathways are conjectural, rather than experimentally 
verified. With Chalkboard, we can carry out in silico perturbation experiments and ex-
plore the consequences of different conjectural connections and relationships in the net-
work. We believe that pathway reasoning capabilities and in silico experiments will be-
come a critical component of the hypothesis generation phase of modern biological re-
search. 

Motivation 
Molecular biologists must understand how biochemical reactions trigger down-
stream events leading to particular pathologies or phenotypes yet our signaling 
pathway knowledge is incomplete and volatile. Given a flood of high-throughput 
data, biologists increasingly depend on a myriad of well-organized, easily ac-
cessed data repositories [1-3] which, however, only provide the building blocks 
for generating and testing competing hypothetical pathway models of  pheno-
typic expression. In this paper, we describe a candidate tool, Chalkboard, that 
allows biologists to easily build, revise and reason about pathway knowledge 
based on an ontological-based representation of the underlying chemistry and 
biophysics of pathway participants and reactions. Following Davis et al., we 
recognize that a knowledge representation is both the declarative language that 
captures knowledge (such as an ontology for pathway representation) but also a 
inference method that operates on the model [4]. The declarative language that 
allows one to state facts must be linked to the inference method that allows one 
answer questions about those facts.  
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Thus, Chalkboard is an hypothesis generation tool designed for ease-of-use 
that allows researchers to easily explore the behavior of hypothetical pathways in 
order to better direct in vitro or in vivo research. Chalkboard perturbation ex-
periments graphically display the consequences of molecular activities and path-
way links as a tool to identify downstream effects and inconsistencies with cur-
rent knowledge. Furthermore, as quantitative pathway data become available, 
Chalkboard can automatically generate a set of quantitative differential equations 
in the JSim mathematical modeling language [5]. We demonstrate these capabili-
ties by representing and testing a pathway model of  amyloid precursor protein 
(APP) processing pathway are at the core of the “Amyloid hypothesis” of Alz-
heimer’s Disease pathogenesis [6] as described in Section 4.  

Overview of Chalkboard 
Chalkboard is so named to emphasize its key features: First, one can create and 
modify models easily. Second, the system is designed for hypothesis generation 
and laboratory brainstorming—sharing, developing, and communicating hypo-
thetical models with others. This contrasts with systems designed as repositories 
of consensus or authoritative models or datasets. Beyond physical a chalkboard, 
however, our Chalkboard models can be probed in silico to test ideas and predict 
outcomes as a guide to hypothesis generation.  

1.1. Representing and visualizing biomolecules and their interactions 
Chalkboard’s representation of biomolecules, events and interactions are based 
on the BioD biological description language [7]  which has evolved into an on-
tology organized around three major classes: Entity, Action, and Functional 
attribute. The Entity class represents basic cell biological entities such as com-
partments (Compartment; e.g., intracellular space, intranuclear space), molecules 
(Molecule, e.g., a protein or polynucleotide), and the functional domains of 
molecules (Functional sites, e.g., binding sites, catalytic sites). Chalkboard en-
forces rules for composing complex cell biological structures. For example, 
Compartments may be nested within Compartments but not within a Molecule; a 
Functional site can be a part of a Molecule but not vice versa. Chalkboard im-
plements a number of primitive Actions to represent functional interactions be-
tween Entities. Chemical flows represent a variety of chemical processes such as 
Bind reactions (dimerization) and Transporter flow (across a Compartment 
boundary). Actions can be modulated (e.g., activated or inhibited) to represent 
the complex cell signaling logic. We also include “wildcard” classes (Wildcard 
producer, Wildcard producer flow, Wildcard change action) for representing 
entities and actions whose physical basis is unknown. Functional attributes rep-
resent the state attributes of Entities (e.g., Concentration) and Actions (e.g., Rate 
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of a reaction) and provide the computational basis for qualitative reasoning 
(Chalkboard’s inference method) and biosimulation code generation.  

Our emphasis to date has been to create an ontology and computational sys-
tem that (a) is based on formal views of anatomy and physiology [8, 9] , (b) is 
sufficient to carry out qualitative inference (see Section 2.2) and (c) can auto-
matically generate mathematical biosimulation code as warranted by available 
data (see Section 2.3). As described in Section 4, our ontology will conform to 
standards for sharing pathway and biological knowledge [2, 10] while retaining 
its inference capability.  

Figure 1 shows Chalkboard’s graphical model editing environment that in-
cludes a model-drawing area and a tool palette for: a Cursor, a PathTrace tool 
(see Section 3.2), tools for installing Entities, and an Action tool for linking 
Entities. Model building is simplified because Entities and Actions are imple-
mented as “smart” objects that enforce entity-composition and action-linking 
rules. For example, we built the simple signaling cascade in Figure 1 in  steps: 
(1) Create and name 3 molecules with the “Molecule” tool. (2) Add to these 
molecules two Binding sites, a Phosphorylation site (“P-site”) and a Kinase site. 
(3) Use the “Action” tool to install a Bind action, an Activate action, and a 
Phosphorylate action. Chalkboard’s context-sensitive linking automatically 
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Figure 1. Annotated screenshot of the Chalkboard modeling environment 
showing the tool palette (left side) and a simple signaling cascade model.  
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Figure 2. Chalkboard PathTracing applied to a simple metabolic model. Panel A. 
“A” produces “B” which dissociates into “C” and “D”. D is transformed into “E” 
while C binds to a site on A that inhibits B production. The D-to-E transformation is 
activated by C via a Wildcard change action (solid-headed, single-weight arrow). 
Panel B. With PathTrace, the user clicks on B and drags ups to increment the amount 
of B. This increment propagates through the pathway and feeds back negatively on 
itself (a red side-arrow;  positive feedback displays a green side-arrow). The change 
of D amount is ambiguous (yellow oval) because the increment of C due to the in-
crement of B is counteracted by the activation of D transformation into E. 
Panel C. The Wildcard activation of the D-to-E reaction has been clamped (the red 
slash sign; equivalent to a “functional knockout”) so that the change in D amount is 
no longer ambiguous. 

installs the correct Action for the Entities being linked. Even the limited set of 
primitive Action and Entities in Chalkboard’s current ontology provides a rich 
and flexible vocabulary for creating models of complex cell biological systems. 
For example, activation actions can be either inhibitory (open arrowhead) or 
excitatory (solid arrowhead). In Section 4, we explore a biological example that 
includes proteolytic reactions. 
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1.2. Inference using PathTracing 
Chalkboard’s PathTrace tool allows researchers to carry out exploratory thought 
experiments in silico using an inference method that simulates qualitative re-
sponses to small perturbations of the system. Qualitative responses are displayed 
with 3 values (Figure 2): increase (upward green arrow), decrease (downward 
red arrow) or ambiguous (yellow oval). PathTracing also detects feedback loops 
as well as the effects of in silico “functional knockouts” by “clamping” an Entity 
or an Action.  

PathTracing has three user-selectable modes: 1) Find all consequences of the 
perturbation of an index Entity or Action (as shown below). 2) Find only those 
feedback loops originating at an index Entity or Action (“Feedback only” mode; 
not shown). 3) Find only those pathways by which an index node affects any 
other preselected node (the “A-to-B” mode; not shown).  

1.3. Architecture for PathTracing and biosimulation code generation 
The computational architecture that underlies PathTracing also can be used to 
generate differential equation biosimulation code. Chalkboard Entities and Ac-
tions are endowed with Functional attributes (FA)  that represent the values of 
their physical properties.  For example, a molecule has a single FA, its amount 
(amt); how much of the molecule exists in the system. Functional sites have 
three properties: amount (assumed to equal to the amount of the site’s parent 
molecule), activity (the fraction of sites in an active state), and availability (the 
amount of active sites).  Binding sites are specialized with two additional FAs: 
occupancy (the fraction of sites occupied by ligand-) and bound amount (the 
amount of occupied sites). 

As each Entity and Action is installed in a model, its corresponding FAs are 
created and linked via Operators, directed arcs that represent how each FA value 
depends (either directly or inversely) upon the values of other FAs. The resulting 
Inference network  (e.g., Figure 3) is the basis for both PathTracing inference 
and for biosimulation code generation. PathTracing is accomplished by propa-
gating tokens through the Inference network each delivering an incremental or 
decremental perturbation from one FA node to another. Incoming perturbations 
are stored and displayed as up- or down-arrows (Figure 2). A subsequent pertur-
bation with a polarity opposite to a stored perturbation displays a yellow oval. 

At Inference network bifurcations, tokens are cloned and launched into out-
going arcs (as at a Bind site amt). At network convergences (e.g., at a Binding 
action’s Jnet), if an incoming perturbation replicates a prior perturbation then the 
incoming token is terminated because cloning it would simply replicate prior 
network traversals. To detect loops, tokens enlist an identifier for each traversed 
FA node so that if it detects itself it declares a feedback loop and terminates the 
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token. Feedback loops are characterized as positive or negative according to the 
net polarity of perturbations in the token’s list. Tokens are also terminated when 
they reach nodes with no outgoing arcs (as at each occ in Figure 3).  

Chalkboard reuses the Inference network to automatically generate JSim [5] 
mathematical biosimulation code (not shown) that includes: (a) system state 
variables (one for each FA value) with default units, (b) algebraic or differential 
equations for each Operator (e.g., a rate equation), and (c) Operator equation 
parameters (e.g., reaction rate constants). The JSim system interprets Chalk-
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Figure 3. (Top) The ligand and kinase model from Figure 2. (Bottom) The Inference 
network  (not visualized in the Chalkboard user-interface), Functional attributes 
(FA) for each Entity and Action are represented and linked by a network of Opera-
tors (white circles with mathematical symbols) and arcs (arrows) that represent the 
directed dependencies of attribute values on each other. PathTracing displays one 
“main” FA for eachEntity or Action (bold frames). FA’s in this model include: 

amt = Amount of a Molecule or Site; molarity or concentration, 
act = Activity of a Site; percent or fraction, 
avl = Available amount = act x amt; molarity or concentration, 
occ = Bind-site occupancy of a Bind site; percent or fraction, 
bnd = Bound amount of a Bind site; molarity or concentration, 
Jnet = Chemical flow rate of reaction; moles/s, concentration/s, 
Del = Change of Site attribute; percent or fraction, 
mod = Modulator (of action); percent or fraction. 
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Figure 4. A view of APP proteolysis within Chalkboard where the action between 
LRP and the proteolysis by BACE is clamped. Under this condition, if more LRP is 
bound to Fe65, or if more LRP is available, then Amyloid production decreases. 
 

board-generated code while parameter values are set by users at runtime. 

A Chalkboard model of APP processing 
Alzheimer’s Disease is a pervasive neurodegenerative disorder associated with 
aging characterized by diffuse cortical plaques (neurofibrillary tangles) [6] 
whose primary constituent is a small peptide derived from the β-amyloid precur-
sor protein (APP) [11]. The primary theory of Alzheimer’s Disease etiology is 
the “amyloid hypothesis” by which elevated levels of β-amyloid production 
results in neuronal degeneration, cortical plaques, cognitive dementia, and ulti-
mately death[6]. Effective therapy requires that scientists understand the com-
plex events of APP proteolysis, in both normal and pathologic situations. 

APP is a single-pass transmembrane protein that is sequentially proteolyti-
cally cleaved by enzymes to peptides (yellow and blue, respectively, in Figure 4). 
Primary cleavage occurs in the luminal/extracellular domain at the α-secretase 
cleavage site by metalloproteinases such as TACE [12] or at the β-secretase 
cleavage site by the atypical aspartyl protease BACE[13]. Subsequently, the 
remaining carboxy-terminal fragments of APP (C99 and C83 in Figure 4) are 
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cleaved by the heterotetrameric γ-secretase complex [14]. Cleavage of APP at 
the α- and  γ-secretase sites (left hand side of Figure 4) liberates the APP ex-
tracellular domain (APPsα), p3 peptide, and the APP intracellular domain CTFγ 
(also called AICD)[15]. Alternatively, cleavage of APP at β- and γ-secretase 
sites, (right side, Figure 4) generates a soluble extracellular domain (APPsβ), an 
intracellular domain CTFγ, and amyloid β peptide[15]. CTFγ plays an important 
role in transcription. In particular, the heterotrimeric APP-CTFγ/Fe65/Tip60 
complex functions as a nuclear targeted transcriptional regulator[16, 17].  

It is currently unclear, however, how CTFγ/Fe65/Tip60 complex affects 
neuronal survival[18], [19]. Furthermore, APP proteolysis by γ-secretase com-
plex may be regulated by the APP-associated factor LRP [20] via Fe65[21] and 
also may involve the stimulation of either α-secretase or β-secretase cleav-
age[20, 22].  To test these possibilities, we have included the LRP/Fe65 binding 
in our Chalkboard model (Figure 4), and included LRP activation of both BACE 
and TACE proteolysis. Then, we clamped the effect of LRP on β-secretase 
cleavage (the red slash sign), to show that the downstream effect is to decrease 
amyloid production.  

The inherent complexity of the interactions among APP, the proteolytic 
processing enzymes, and the associated binding proteins is an arena in which a 
detailed modeling system such as Chalkboard would be extremely helpful. Po-
tentially, Chalkboard could help provide valuable insights into predictions about 
both mechanisms of action and potential experimental manipulations that could 
guide the development of effective therapeutic approaches to treating AD.  

Discussion and related work  
Chalkboard is an ontology-based computational tool for representing biomolecu-
lar pathways using a graphical language and model editing environment to repre-
sent pathway models that can be analyzed qualitatively with a built-in PathTrac-
ing tool (Section 2.2) and analyzed quantitatively by exporting model simulation 
code (Section 2.3) to the JSim simulation system. As such, Chalkboard relates to 
several threads of computational research that deserve in-depth discussion be-
yond the scope of this paper. However, here we emphasize Chalkboards relation 
to three areas of pathway informatics research: Ontology research, qualitative 
inference, and quantitative analysis. We also address the tradeoffs between scal-
ability and the rich biochemical representation we employ with Chalkboard.  

1.4. Ontology-based representations of biomolecular pathways 
The Chalkboard ontology continues to evolve from the BioD biological descrip-
tion language [7] concurrently with biomolecular pathway ontologies including 
BioPax [2], PATIKA [23], CellDesigner [24], and others. As expected there is 

Pacific Symposium on Biocomputing 12:16-27(2007) 



 

considerable representational overlap that should, with community effort, be 
resolvable into a high-level ontology or, at least, alignment between related on-
tologies. We are committed to such efforts as advocated by others [10, 25]. 

We note, however, important representational differences, particularly in 
modeling molecular “states”. Many ontologies consider different states of a 
physical entity (e.g., a molecule) to be separate entities (e.g., a molecule, its 
phosphorylated form, and its active form). Chalkboard takes an “object-oriented” 
view that a single entity Molecule can have Functional sites as parts and each 
part can have an independent operational state so that the state of a Molecule is 
specified by the values its own Functional attributes plus the FAs of its parts 
(e.g., Occupied, Active, etc.).  

We adopt the Functional attribute approach because it maps well to both 
qualitative and quantitative analyses (Section 2.3). Furthermore, we suggest, the 
Functional attribute approach generalizes readily to other biophysical domains 
such as membrane biophysics (e.g., membrane potentials, conductances and 
currents), structural mechanics (e.g., elastance), and fluid flow (e.g., diffusive or 
bulk flows). We see this generalizability as a prerequisite for the integration of 
pathway knowledge and analysis into multiscale (molecules, cells, organs, organ 
systems, etc.), multidomain (biochemistry, biophysics, mechanics) models. 

1.5. Qualitative inference and quantitative analysis 
Qualitative reasoning tools in biological research have been driven by the scar-
city and high cost of the quantitative datasets required for quantitative modeling. 
However, many representational schemes do not as yet, support qualitative infer-
ence (e.g., BioPax [2], CellDesigner [24]) and those that do use graph theoretic 
query methods (e.g., PATIKA [23]) and rule-based reasoning (e.g., BioCyc [3]) 
of state-based modeling. Chalkboard qualitative inference, is based more directly 
on the principles of quantitative modeling by tracking the propagation of (small) 
perturbations through a network of essentially quantitative relationships.  

The benefits of coupling graphical representations to the computational 
analysis of biological systems has long been recognized resulting in a variety of 
implementations including our own KineCyte [26] that integrates graphical mod-
eling with biosimulation. Chalkboard, however, relies on existing simulation 
engines to interpret automatically-generated simulation code (currently, we use 
JSim but intend to support CellML[27] and SBML[28]). Although other molecu-
lar pathway representations (e.g., PATIKA, CellDesigner) may have sufficient 
rigor and expressiveness to export simulation code, to our knowledge this is not 
yet available for existing simulation languages[29].  
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1.6. Scalability and representational richness 
We recognize trade-offs between Chalkboard's semantically-rich graphical view 
of biological pathways and less rich but more scaleable representations used by 
applications such as Cytoscape[30]. We believe that scientists need both sorts of 
tools—although Cytoscape is appropriate for coarse-grained visualization of 
large networks, only tools like Chalkboard, that use richer representations can 
capture notions of competitive binding, cooperative and anti-cooperative effects.  

We recognize that Chalkboard will not be the only tool used by a researcher, 
and thus, we have the designed the system to export its models in a sharable 
format. Chalkboard models are saved in an XML text file that represents all 
model entities, model actions and their linkages in a form that can be read and 
parsed by other applications. Our plans more specifically include inter-operating 
with the BioPAX standard [2], (as much as possible, given the differences in 
modeling), as well as to CellML and SBML for simulation code.  

Summary 
We have argued that modern pathway researchers need tools for building and 
reasoning about causal models based on an inference method. Chalkboard is one 
prototype system that fills this need. The key characteristics of Chalkboard are: 
(1) The use of an expressive ontology of Entities, Actions and Functional attrib-
utes to model pathways at a  based on the physics and biochemistry of inter- and 
intra-molecular interactions. And (2) Chalkboard’s ability to carry out high-level 
symbolic qualitative inference (PathTracing)  and to generate quantitative (JSim) 
simulation code allows users to avoids two pitfalls: (1) being tied to quantitative 
models whose utility and relevance are limited by the (typical) lack of quantita-
tive data, and (2) over-simplified biochemical representations whose fidelity to 
actual biochemical processes is limited. We have introduced Chalkboard model-
ing environment and demonstrated its use analyzing a cell-signaling pathway 
with important scientific and clinical implications. The design of effective thera-
peutics requires a rigorous understanding of how modulation of a particular 
molecular entity would affect a distributed signaling system.  As Chalkboard is 
designed to assess this issue, we suggest that use of Chalkboard modeling could 
facilitate the identification of appropriate pharmacogenetic therapeutic targets 
within Alzheimer’s Disease and other human pathologies. 
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