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There has been much work devoted to the mapping, alignment, and linking of on-
tologies (MALO), but little has been published about how to evaluate systems that
do this. A fault model for conducting fine-grained evaluations of MALO systems
is proposed, and its application to the system described in Johnson et al. [15] is
illustrated. Two judges categorized errors according to the model, and inter-judge
agreement was calculated by error category. Overall inter-judge agreement was
98% after dispute resolution, suggesting that the model is consistently applicable.
The results of applying the model to the system described in [15] reveal the reason
for a puzzling set of results in that paper, and also suggest a number of avenues and
techniques for improving the state of the art in MALO, including the development
of biomedical domain specific language processing tools, filtering of high frequency
matching results, and word sense disambiguation.

1. Introduction

The mapping, alignment, and/or linking of ontologies (MALO) has been
an area of active research in recent years [4,28]. Much of that work has
been groundbreaking, and has therefore been characterized by the lack of
standardized evaluation metrics that is typical for exploratory work in a
novel domain. In particular, this work has generally reported coarse met-
rics, accompanied by small numbers of error exemplars. However, in similar
NLP domains finer-grained analyses provide system builders with insight
into how to improve their systems, and users with information that is cru-
cial for interpreting their results [23,14,8]. MALO is a critical aspect of
the National Center for Biomedical Ontology/Open Biomedical Ontologies
strategy of constructing multiple orthogonal ontologies, but such endeavors
have proven surprisingly difficult—Table 1 shows the results of a represen-
tative linking system, which ranged as low as 60.8% overall when aligning
the BRENDA Tissue ontology with the Gene Ontology [15].

This paper proposes a fault model for evaluating lexical techniques in
MALO systems, and applies it to the output of the system described in
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Johnson et al. [15]. The resulting analysis illuminates reasons for differences
in performance of both the lexical linking techniques and the ontologies
used. We suggest concrete methods for correcting errors and advancing the
state of the art in the mapping, alignment, and/or linking of ontologies.
Because many techniques used in MALO include some that are also applied
in text categorization and information retrieval, the findings are also useful
to researchers in those areas.

Previous lexical ontology integration research deals with false positive
error analysis by briefly mentioning causes of those errors, as well as some
illustrative examples, but provides no further analysis. Bodenreider et al.
mention some false positive alignments but offer no evaluations [3]. Burgun
et al. assert that including synonyms of under three characters, substring
matching, and case insensitive matching are contributors to false positive
rates and thus are not used in their linking system [5]. They report that
term polysemy from different ontologies contributes to false positive rates,
but do not explain the magnitude of the problem. Zhang et al. report a
multi-part alignment system but do not discuss errors from the lexical sys-
tem at all [29]. Lambrix et al. report precision from 0.285-0.875 on a small
test set for their merging system, SAMBO, which uses n-grams, edit dis-
tance, WordNet, and string matching. WordNet polysemy and the N-gram
matching method apparently produce 12.5% and 24.3% false positive rates,
respectively [17,16]. Lambrix and Tan state that the same alignment sys-
tems produce different results depending on the ontology used; they give
numbers of wrong suggestions but little analysis [18]. For a linking system
that matches entities with and without normalization of punctuation, cap-
italization, stop words, and genitive markers, Sarkar et al. report without
examples a 4-5% false positive rate [26]. Luger et al. present a structurally
verified lexical mapping system in which contradictory mappings occur at
certain thresholds, but no examples or analyses are given [20]. Mork et al.
introduce an alignment system with a lexical component but do not detail
its performance [22]. Johnson et al. provide error counts sorted by search
type and ontology but provide no further analysis [15]. Their system’s
performance for matching BRENDA terms to GO is particularly puzzling
because correctness rates of up to 100% are seen with some ontologies, but
correctness for matching BRENDA is as low as 7% (see Table 1).

There has been no comprehensive evaluation of errors in lexical MALO
systems. This leaves unaddressed a number of questions with real conse-
quences for MALO system builders: What types of errors contribute to
reduced performance? How much do they contribute to error rates? Are
there scalable techniques for reducing errors without adversely impacting
recall? Here we address these questions by proposing a fault model for
false-positive errors in MALO systems, providing an evaluation of the er-
rors produced by a biomedical ontology linking system, and suggesting
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Table 1. Correctness rates for the ontology linking system described in Johnson
et al. (2006). The three OBO ontologies listed in the left column were linked to
the GO via the three lexical methods in the right columns.

Type of linking method

Ontology Overall Exact Synonyms Stemming

ChEBI 84.2% 98.3% (650/661) 60.0% (180/300) 73.5%(147/200)

Cell Type 92.9% 99.3% (431/434) 73.0% (65/89) 83.8% (88/105)

BRENDA 60.8% 84.5% (169/200) 76.0% (152/200) 11.0% (22/200)

methods to reduce errors in MALO.

2. Methods

2.1. The ontology linking method in Johnson et al. (2006)

Since understanding the methodology employed in Johnson et al. is impor-
tant to understanding the analysis of its errors, we review that methodology
briefly here. Their system models inter-ontology relationship detection as
an information retrieval task, where relationship is defined as any direct
or indirect association between two ontological concepts. Three OBO on-
tologies’ terms (BRENDA Tissue, ChEBI, and Cell Type) are searched for
in GO terms [9,27,11,1]. Three types of searches are performed: (a) exact
match to OBO term, (b) OBO term and its synonyms, and (c) stemmed
OBO term. The stemmer used in (c) was an implementation of the Porter
Stemmer provided with the Lucene IR library [13,25]. Besides stemming,
this implementation also reduces characters to lower case, tokenizes on
whitespace, punctuation and digits (removing the latter two), and removes
a set of General English stop words. The output of the system is pairs of
concepts: one GO concept and one OBO concept.

To determine the correctness of the proposed relationships, a random
sample of the output (2,389 pairs) was evaluated by two domain experts
who answered the question: Is this OBO term the concept that is being
referred to in this GO term/definition? Inter-annotator agreement after
dispute resolution was 98.2% (393/400). The experts deemed 481 relations
to be incorrect, making for an overall estimated system error rate of 20%.
All of the system outputs (correct, incorrect, and unjudged) were made
publicly available at compbio.uchsc.edu/dependencies.

2.2. The fault model

In software testing, a fault model is an explicit hypothesis about potential
sources of errors in a system [2,8]. We propose a fault model, comprising
three broad classes of errors (see Table 2), for the lexical components of
MALO systems. The three classes of errors are distinguished by whether
they are due to inherent properties of the ontologies themselves, are due
to the processing techniques that the system builders apply, or are due to
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including inappropriate metadata in the data that is considered for locating
relationships. The three broad classes are further divided into more spe-
cific error types, as described below. Errors in the lexical ambiguity class
arise because of the inherent polysemy of terms in multiple ontologies (and
in natural language in general) and from ambiguous abbreviations (typi-
cally listed as synonyms in an ontology). Errors in the text processing class
come from manipulations performed by the system, such as the removal of
punctuation, digits, or stop words, or from stemming. Errors in metadata
matching occur when elements in one ontology matched metadata in an-
other ontology, e.g. references to sources that are found at the end of GO
definitions.

To evaluate whether or not the fault model is consistently applicable,
two authors independently classified the 481 incorrect relationships from
the Johnson et al. system into nine fine-grained error categories (the seven
categories in the model proposed here, plus two additional categories, dis-
cussed below, that were rejected). The model allows for assignment of mul-
tiple categories to a single output. For instance, the judges determined that
CH:29356 oxide(2-) erroneously matched to GO:0019417 sulfur oxidation
due to both character removal during tokenization ((2-) was deleted) and
to stemming (the remaining oxide and oxidation both stemmed to oxid).
Detailed explanations of the seven error categories, along with examples of
each, are given belowa.

3. Results

Table 2 displays the counts and percentages of each type of error, with
inter-judge agreement (IJA) for each category. Section 3.1 discusses inter-
judge agreement and the implications that low IJA has for the fault model.
Sections 3.2-3.3 explain and exemplify the categories of the fault model, and
3.4 describes the distribution of error types across orthogonal ontologies.

3.1. Inter-judge agreement

Inter-judge agreement with respect to the seven final error categories in the
fault model is shown in Table 2. Overall IJA was 95% before dispute reso-
lution and 99% after resolution. In the 1% of cases where the judges did not
agree after resolution, the judge who was most familiar with the data as-
signed the categories. The initial fault model had two error categories that
were eliminated from the final model because of low IJA. The first category,
tokenization, had an abysmal 27% agreement rate even after dispute reso-
lution. The second eliminated category, general English polysemy, had 80%

aIn all paired concepts in our examples, BTO=BRENDA Tissue Ontology, CH=ChEBI
Ontology, CL=Cell Type Ontology, and GO=Gene Ontology. Underlining indicates the
portion of GO and OBO text that matches, thereby causing the linking system to propose
that a relationship exists between the pair.
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pre-resolution agreement and 94% post-resolution agreement, with only 10
total errors assigned to this category. Both judges felt that all errors in this
category could justifiably be assigned to the biological polysemy category;
therefore, this category is not included in the final fault model.

Table 2. The fault model and results of its application to Johnson et al.’s erroneous
outputs. The rows in bold are the subtotaled percentages of the broad categories of errors
in relation to all errors. The non-bolded rows indicate the percentages of the subtypes of
errors in relation to the broad category that they belong to. The counts for the subtypes
of text processing errors exceed the total text processing count because multiple types of
text processing errors can contribute to one erroneously matched relationship.

Inter-judge agreement
Type of error Percent Count pre-resolution post-resolution

Lexical ambiguity errors
biological polysemy 56% (105/186) 86% 98%
ambiguous abbreviation 44% (81/186) 96% 99%
Lexical Ambiguity Total 38% (186/481)
Text processing errors
stemming 6% (29/449) 100% 100%
digit removal 51% (231/449) 100% 100%
punctuation removal 27% (123/449) 100% 100%
stop word removal 14% (65/449) 99% 100%
Text Processing Total 60% (290/481)
Matched Metadata Total 1% (5/481) 100% 100%

Total 99% (481/481) 95% 99%

3.2. Lexical ambiguity errors

Lexical ambiguity refers to words that denote more than one concept. It
is a serious issue when looking for relationships between domain-distinct
ontologies [10:1429]. Lexical ambiguity accounted for 38% of all errors.

Biological polysemy is when a term that is present in two ontologies
denotes distinct biological concepts. It accounted for 56% of all lexical
ambiguity errors. Examples of biological polysemy include (1–3) below.
Example (1) shows a polysemous string that is present in two ontologies.

(1) BTO 0000280: cone
def: A mass of ovule-bearing or pollen-bearing scales or bracts in

trees of the pine family or in cycads that are arranged usually
on a somewhat elongated axis.

GO 0042676: cone cell fate commitment
def: The process by which a cell becomes committed to become a

cone cell.

OBO terms have synonyms, some of which polysemously denote concepts
that are more general than the OBO term itself, and hence match GO
concepts that are not the same as the OBO term. Examples (2) and (3)
show lexical ambiguity arising because of the OBO synonyms.
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(2) BTO 0000131: blood plasma
synonym: plasma

def: The fluid portion of the blood in which the particulate com-
ponents are suspended.

GO 0046759: lytic plasma membrane viral budding
def: A form of viral release in which the nucleocapsid evaginates

from the host nuclear membrane system, resulting in envelop-
ment of the virus and cell lysis.

(3) CH 17997: dinitrogen
synonym: nitrogen

GO 0035243: protein-arginine omega-N symmetric methyltransferase activity
def: ... Methylation is on the terminal nitrogen (omega nitrogen) ...

Example (4) shows that by the same synonymy mechanism, terms from
different taxa match erroneously.

(4) CL 0000338: neuroblast (sensu Nematoda and Protostomia)
synonym: neuroblast

GO 0043350: neuroblast proliferation (sensu Vertebrata)

Ambiguous abbreviation errors happen when an abbreviation in one on-
tology matches text in another that does not denote the same concept.
The ambiguity of abbreviations is a well-known problem in biomedical text
[7,6]. In the output of [15] it is the cause of 43% of all lexical ambiguity
errors. The chemical ontology includes many one- and two-character sym-
bols for elements (e.g. C for carbon, T for thymine, As for arsenic, and At
for astatine). Some abbreviations are overloaded even within the chemical
domain. For example, in ChEBI C is listed as a synonym for three chemical
entities besides carbon, viz. L-cysteine, L-cysteine residue, and cytosine.
So, single-character symbols match many GO terms, but with a high error
rate. Examples (5) and (6) illustrate such errors.

(5) CH 17821: thymine
synonym: T

GO 0043377: negative regulation of CD8-positive T cell differentiation

One- and two-character abbreviations sometimes also match closed-class or
function words, such as a or in, as illustrated in example (6).

(6) CH 30430: indium
synonym: In

GO 0046465: dolichyl diphosphate metabolism
def: ... In eukaryotes, these function as carriers of ...

3.3. Text processing errors

As previously mentioned, Johnson et al.’s system uses a stemmer that re-
quires lower-case text input. The system performs this transformation with
a Lucene analyzer that splits tokens on non-alphabetic characters, then re-
moves digits and punctuation, and removes stop words. This transformed
text is then sent to the stemmer. Example (7) illustrates a ChEBI term
and a GO term, and the search and match strings that are produced by the
stemming device.
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(7) Original text Tokenized/stemmed text
CH 32443: L-cysteinate(2-) l cystein
GO 0018118: peptidyl-L-cysteine ... peptidyl l cystein ...

Errors arise from the removal of digits and punctuation, the removal of
stop words, and the stemming process itself (see Table 2). These are illus-
trated in examples (8–16). Few errors resulting from text processing can
be attributed to a single mechanism.

Digit removal is the largest contributor among the text processing error
types, constituting 51% of the errors. Punctuation removal is responsible
for 27% of the errors. These are illustrated in examples (8–10).

(8) CL 0000624: CD4 positive T cell
GO 0043378: positive regulation of CD8-positive T cell differentiation

(9) CH 20400: 4-hydroxybutanal
GO 0004409: homoaconitate hydratase activity

def: Catalysis of the reaction: 2-hydroxybutane-1,2,4-tri ...

(10) CH 30509: carbon(1+)
GO 0018492: carbon-monoxide dehydrogenase (acceptor) activity

Six percent of the errors involve the stemming mechanism. (This is some-
what surprising, since the Porter stemmer has been independently charac-
terized as being only moderately aggressive [12].)

Table 3. Counts of correct and incorrect relationships that resulted after
the stemming mechanism was applied.

Matches -al -ate -ation -e -ed -ic -ing -ize -ous -s

Correct 19 1 2 12 0 11 0 0 2 157
Incorrect 1 17 3 26 3 2 4 1 0 39

Of the 580 evaluated relationships that were processed by the stemming
mechanism in the original linking system, 43% (253/580) match because of
the stemming applied. Of those, 73% (185/253) are correct relationships;
27% (68/253) are incorrect. Table 3 displays a list of all suffixes that were
removed during stemming and the counts of how many times their removal
resulted in a correct or an incorrect match. Examples (11–13) display er-
rors due to stemming:

(11) CH 25741: oxides
GO 0016623: oxidoreductase activity, acting on the aldehyde or oxo ...

def: Catalysis of an oxidation-reduction (redox) reaction ...

(12) CH 25382: monocarboxylates
GO 0015718: monocarboxylic acid transport

def: The directed movement of monocarboxylic acids into ...

(13) CH 32530: histidinate(2-)
GO 0019558: histidine catabolism to 2-oxoglutarate
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While stemming works most of the time to improve recall—the count
of correct matches in Table 3 is more than double the count of incorrect
matches (204 versus 96)—an analysis of the errors shows that in this data,
there is a subset of suffixes that do not stem well from biomedical terms,
at least in these domains. Removal of -e results in incorrect matches far
more often than it results in correct matches, and removal of -ate almost
never results in a correct match. These findings illustrate the need for a
domain-specific stemmer for biomedical text.

Finally, stop word removal contributed 14% of the error rate. Examples
like (14–16) are characteristic:

(14) CL 0000197: receptor cell
GO 0030152: bacteriocin biosynthesis

def: ... at specific receptors on the cell surface ...
(15) CH 25051: lipid As

GO 0046834: lipid phosphorylation

(16) CH 29155: His-tRNA(His)
GO 0050562: lysine-tRNA(Pyl) ligase activity

3.4. Applying the fault model to orthogonal ontologies

The fault model that this paper proposes explains the patterns observed in
the Johnson et al. work. They report an uneven distribution of accuracy
rates across the ontologies (see Table 1); Table 4 shows that this corresponds
to an uneven distribution of the error types across ontologies. Most striking
is that ChEBI is especially prone to ambiguous abbreviation errors, which
were entirely absent with the other two ontologies. BRENDA is prone to
deletion-related errors — in fact, over half of the errors in the text process-
ing error category are due to a specific type of term in BRENDA (169/290).
These terms have the structure X cell, where X is any combination of capi-
tal letters, digits, and punctuation, such as B5/589 cell, T-24 cell, and 697
cell. The search strings rendered from these after the deletions—B cell, T
cell, and cell, respectively—match promiscuously to GO (see Figure 1).

Biological polysemy errors are a problem in all three ontologies. Sixty-
four percent of the errors for Cell Type were related to polysemy, 20% in
BRENDA, and 12% in ChEBI. Dealing with word sense disambiguation
could yield a huge improvement in performance for these ontologies.

None of this error type distribution is apparent from the original data
reported in [15], and all of it suggests specific ways of addressing the errors
in aligning these ontologies with GO.

4. Fault-driven analysis suggests techniques for improving MALO

Part of the value of the fault model is that it suggests scalable methods for
reducing the false positive error rate in MALO without adversely affecting
recall. We describe some of them here.
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Table 4. Distribution of error types across ontologies

Ontology Biological Abbreviation Deletion of: Stemming Totals
polysemy ambiguity digit punct. stopword

BRENDA 84 0 187 89 54 2 416
Cell Type 29 0 9 0 7 0 45
ChEBI 26 81 35 34 4 27 207

Figure 1. A few terms from BRENDA caused a large number of errors.

4.1. Error reduction techniques related to text processing

Johnson et al. reported exceptionally low accuracy for BRENDA relation-
ships based on stemming: only 7-15% correctness. Our investigation sug-
gests that this low accuracy is due to a misapplication of an out-of-the-box
Lucene implementation of the Porter stemmer: it deletes all digits, which
occur in BRENDA cell line names, leading to many false-positive matches
against GO concepts containing the word cell. Similarly, bad matches be-
tween ChEBI chemicals and the GO (73-74% correctness rate) occur be-
cause of digit and punctuation removal. This suggests that a simple change
to the text processing procedures could lower the error rate dramatically.

4.2. Error reduction techniques related to ambiguity

For ontologies with error patterns like ChEBI and BRENDA, excluding
synonyms shorter than three characters would be beneficial. For example,
Bodenreider and Burgun excluded synonyms shorter than three characters
[5]. Length-based filtering of search candidates has been found useful for
other tasks in this domain, such as entity identification and normalization
of Drosophila genes in text [21].

Numerous techniques have been proposed for resolving word sense am-
biguities [24]. The OBO definitions may prove to be useful resources for
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knowledge-based ontology term disambiguation [19].

4.3. Error reduction by filtering high error contributors

The Zipf-like distribution of error counts across terms (see Figure 1) sug-
gests that filtering a small number of terms would have a beneficial effect
on the error rates due to both text processing and ambiguity-related errors.
This filtering could be carried out in post-processing, by setting a thresh-
old for matching frequency or for matching rank. Alternatively, it could
be carried out in a pre-processing step by including high-frequency tokens
in the stop list. This analysis would need to be done on an ontology-by-
ontology basis, but neither method requires expert knowledge to execute
the filtering process. As an example of the first procedure, removing the
top contributors to false-positive matches in each ontology would yield the
results in Table 5.

Table 5. Effect of filtering high-frequency match terms.

Ontology Terms removed Increase in Decrease
correctness in matches

BRENDA 697 cell, BY-2 cell, blood plasma, T-84 cell 27% 41%
Cell Type band form neutrophil, neuroblast 4% 3%
ChEBI iodine, L-isoleucine residue, groups 2% 2%

5. Conclusion

The analysis presented in this paper supports the hypotheses that it is
possible to build a principled, data-driven fault model for MALO systems;
that the model proposed can be applied consistently; that such a model
reveals previously unknown sources of system errors; and that it can lead
directly to concrete suggestions for improving the state of the art in ontology
alignment. Although the fault model was applied to the output of only one
linking system, that system included linking data between four orthogonal
ontologies. The model proved effective at elucidating the distinct causes
of errors in linking the different ontologies, as well as the puzzling case of
BRENDA. A weakness of the model is that it addresses only false-positive
errors; evaluating failures of recall is a thorny problem that deserves further
attention.

Based on the descriptions of systems and false positive outputs of re-
lated work, it seems that the fault model presented in this work could
be applied to the output of many other systems, including at least
[3,5,16,17,18,26,20,22,29]. Note that in the data that was examined in
this paper, the distribution of error types was quite different across not
just lexical techniques, but across ontologies, as well. This reminds us that
specific categories in the model may not be represented in the output of
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all systems applied to all possible pairs of ontologies, and that there may
be other categories of errors that were not reflected in the data that was
available to us. For example, the authors of the papers cited above have
reported errors due to case folding, spelling normalization, and word order
alternations that were not detected in the output of Johnson et al.’s system.
However, the methodology that the present paper illustrates—i.e., combin-
ing the software testing technique of fault modelling with an awareness
of linguistic factors—should be equally applicable to any lexically-based
MALO system. Many of the systems mentioned in this paper also employ
structural techniques for MALO. These techniques are complementary to,
not competitive with, lexical ones. The lexical techniques can be evaluated
independently of the structural ones; a similar combination of the software
testing approach with awareness of ontological/structural issues may be
applicable to structural techniques. We suggest that the quality of future
publications in MALO can be improved by discussing error analyses with
reference to this model or very similar ones derived via the same techniques.
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