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Like the primary scientific literature, GeneRIFs exhibit both growth and obsolescence. NLM’s
control over the contents of the Entrez Gene database provides a mechanism for dealing with
obsolete data: GeneRIFs are removed from the database when they are found to be of low
quality. However, the rapid and extensive growth of Entrez Gene makes manual location of
low-quality GeneRIFs problematic. This paper presents a system that takes advantage of the
summary-like quality of GeneRIFs to detect low-quality GeneRIFs via a summary revision ap-
proach, achieving precision of 89% and recall of 77%. Aspects of the system have been adopted
by NLM as a quality assurance mechanism.

1. Introduction

In April 2002, the National Library of Medicine (NLM) began an initiative to
link published data to Entrez Gene entries via Gene References Into Function,
or GeneRIFs. GeneRIFs consist of an Entrez Gene ID, a short text (under 255
characters), and the PubMed identifier (PMID) of the publication that provides
evidence for the assertion in that text. The extent of NLM’s commitment to this
effort can be seen in the growth of the number of GeneRIFs currently found in
Entrez Gene—there are 157,280 GeneRIFs assigned to 29,297 distinct genes (En-
trez Gene entries) in 571 species as of June 2006. As we will demonstrate below,
the need has arisen for a quality control mechanism for this important resource.
GeneRIFs can be viewed as a type of low-compression, single-document, extrac-
tive, informative, topic-focussed summary [15]. This suggests the hypothesis that
methods for improving the quality of summaries can be useful for improving the
quality of GeneRIFs. In this work, we evaluate an approach to GeneRIF quality
assurance based on a revision model, using three distinct methods. In one, we ex-
amined the recall of the system, using the set of all GeneRIFs that were withdrawn
by the NLM indexers over a fixed period of time as a gold standard. In another,
we performed a coarse assessment of the precision of the system by submitting
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system outputs to NLM. The third involved a fine-grained evaluation of precision
by manual judging of 105 system outputs.

1.1. A fault model for GeneRIFs

Binder (1999) describes the fault model—an explicit hypothesis about potential
sources of errors in a system [3]. Viewing GeneRIFs as summaries suggests a
set of related potential sources of errors. This set includes all sources of error
associated with extractive summarization (discussed in detail in [16]). It also in-
cludes deviations from the NLM’s guidelines for GeneRIF production—both ex-
plicit (such as definitions of scope and intended content) and tacit (such as the
presumed requirement that they not contain spelling errors).

Since the inception of the GeneRIF initiative, it has been clear that a quality
control mechanism for GeneRIFs would be needed. One mechanism for imple-
menting quality control has been via submitting individual suggestions for correc-
tions or updates via a form on the Entrez Gene web site. As the size of the set of
extant annotations has grown—today there are over 150,000 GeneRIFs—it has be-
come clear that high-throughput, semi-automatable mechanisms will be needed,
as well—over 300 GeneRIFs were withdrawn by NLM indexers just in the six
months from June to December 2005, and data that we present below indicates
that as many as 2,923 GeneRIFs currently in the collection are substandard.

GeneRIFs can be unsatisfactory for a variety of reasons:

• Being associated with a discontinued Entrez Gene entry
• Containing errors, whether minor—of spelling or punctuation—or major,

i.e. with respect to content
• Being based only on computational data—the NLM indexing protocol

dictates that GeneRIFs based solely on computational analyses are not
in scope [7]

• Being redundant
• Not being informative—GeneRIFs should not merely indicate what a

publication is about, but rather should communicate actual information
• Not being about gene function

This paper describes a system for detecting GeneRIFs with those characteris-
tics. We begin with a corpus-based study of GeneRIFs for which we have third-
party confirmation that they were substandard, based on their having been with-
drawn by the NLM indexers. We then propose a variety of methods for detecting
substandard GeneRIFs, and describe the results of an intrinsic evaluation of the
methods against a gold standard, an internal evaluation by the system builders,
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and an external evaluation by the NLM staff.
In this work, we evaluate an approach to GeneRIF quality assurance based on

a summary revision model. In summarization, revision is the process of chang-
ing a previously produced summary. [16] discusses several aspects of revision.
As he points out (citing [5]), human summarizers perform a considerable amount
of revision, addressing issues of semantic content (e.g., replacing pronouns with
their antecedents) and of form (e.g., repairing punctuation). Revision is also an
important component of automatic summarization systems, and in particular, of
systems that produce extractive summaries, of which GeneRIFs are a clear ex-
ample. (Extractive summaries are produced by “cutting-and-pasting” text from
the original, and it has been repeatedly observed that most GeneRIFs are direct
extracts from the title or abstract of a paper ([2,9,12,15]). This suggests using a
“revision system” to detect GeneRIFs that should be withdrawn.

2. Related Work

GeneRIFs were first characterized and analyzed in [17]. They presented the num-
ber of GeneRIFs produced and species covered based on the LocusLink revision
of February 13, 2003, and introduced the prototype GeneRIF Automated Alerts
System (GRAAS) for alerting researchers about literature on gene products.

Summarization in general has attracted a considerable amount of attention
from the biomedical language processing community. Most of this work has fo-
cussed specifically on medical text—see [1] for a comprehensive review. More
recently, computational biologists have begun to develop summarization systems
targeting the genomics and molecular biology domains [14,15]. GeneRIFs in par-
ticular have attracted considerable attention in the biomedical natural language
processing community. The secondary task of the TREC Genomics Track in 2003
was to reproduce GeneRIFs from MEDLINE records [9]. 24 groups participated
in this shared task. More recently, [15] presented a system that can automatically
suggest a sentence from a PubMed/MEDLINE abstract as a candidate GeneRIF
by exploiting an Entrez Gene entry’s Gene Ontology annotations, along with lo-
cation features and cue words. The system can significantly increase the num-
ber of GeneRIF annotations in Entrez Gene, and it produces qualitatively more
useful GeneRIFs than previous methods. In molecular biology, GeneRIFs have
recently been incorporated into the MILANO microarray data analysis tool. The
system builders evaluated MILANO with respect to its ability to analyze a large
list of genes that were affected by overexpression of p53, and found that a num-
ber of benefits accrued specifically from the system’s use of GeneRIFs rather than
PubMed as its literature source, including a reduction in the number of irrelevant
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Table 1. GeneRIF statistics from 2000 to 2006. The second row shows the annual increase in new
GeneRIFs. The third row shows the number of new species for the new GeneRIFs. The fourth row
is the number of genes that gained GeneRIF assignments in the year listed in the first row. Note that
although the gene indexing project was officially started by the NLM in 2002, the first set of GeneRIFs
was created in 2000.

Year 2000 2001 2002 2003 2004 2005 2006a Sum
New GeneRIFs 47 617 15,960 37,366 35,887 45,875 21,628 157,280
New Species 3 1 2 3 130 341 91 571
New Genes 34 529 6,061 6,832 5,113 7,769 2,959 29,297

results and a dramatic reduction in search time [19]. The amount of attention that
GeneRIFs are attracting from such diverse scientific communities, including not
only bioscientists, but natural language processing specialists as well, underscores
the importance of ensuring the quality of the GeneRIFs stored in Entrez Gene.

3. A corpus of withdrawn GeneRIFs

The remarkable increase in the total number of GeneRIFs each year (shown in
Table 1) comes despite the fact that some GeneRIFs have been removed internally
by the NLM. We compared the GeneRIF collection of June 2005 against that of
December 2005 and found that a total of 319 GeneRIFs were withdrawn during
that period. These withdrawn GeneRIFs are a valuable source of data for under-
standing the NLM’s model of what makes a GeneRIF bad. Our analyses are based
on the GeneRIF files downloaded from the NCBI ftp siteb at three times over the
course of a one-year period (June 2005, December 2005, and June 2006). The
data and results discussed in this paper are available at a supplementary websitec.

3.1. Characteristics of the withdrawn GeneRIFs

We examined these withdrawn GeneRIFs, and determined that four reasons ac-
counted for the withdrawal of most of them (see Figure 1).
1. Attachment to a temporary identifier: GeneRIFs can only be attached to ex-
isting Entrez Gene entries. Existing Entrez Gene entries have unique identifiers.
New entries that are not yet integrated into the database are assigned a temporary
identifier (the string NEWENTRY), and all annotations that are associated with
them are provisional, including GeneRIFs. GeneRIFs associated with these tem-
porary IDs are often withdrawn. Also, when the temporary identifier becomes

aFrom January 2006 to June 2006
bftp://ftp.ncbi.nlm.nih.gov/gene
chttp://compbio.uchsc.edu/Hunter lab/Zhiyong/psb2007
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Figure 1. Distribution of reasons for GeneRIF withdrawal from June to December 2005.

obsolete, the GeneRIFs that were formerly attached to it are removed (and trans-
ferred to the new ID). 39% (123/319) of the withdrawn GeneRIFs were removed
via one of these mechanisms.
2. Based solely on computational analyses: The NLM indexing protocol dic-
tates that GeneRIFs based solely on computational analyses are not in scope.
37% (117/319) of the withdrawn GeneRIFs were removed because they came
from articles whose results were based purely on computational methods (e.g., by
prediction techniques) rather than traditional laboratory experiments.
3. Typographic and spelling errors: Typographic errors are not uncommon in
the withdrawn GeneRIFs. They include misspellings and extraneous punctuation.
14% (46/319) of the withdrawn GeneRIFs contained errors of this type (41 mis-
spellings and 5 punctuation errors).
4. Miscellaneous errors: 6% (20/319) of the withdrawn GeneRIFs were removed
for other reasons. Some included the authors’ names at the end, e.g., Cloning and
expression of ZAK, a mixed lineage kinase-like protein containing a leucine-zipper
and a sterile-alpha motif. Liu TC, etc. Others were updated by adding new gene
names or modifying existing ones. For example, the NLM replaced POPC with
POMC in Mesothelioma cell were found to express mRNA for [POPC] ... for the
gene POMC (GeneID: 5443).
5. Unknown reasons: we were unable to identify the cause of withdrawal for the
remaining 4% (13/319) of the withdrawn GeneRIFs.

These findings suggest that it is possible to develop automated methods for
detecting substandard GeneRIFs.

4. System and Method

We developed a system containing seven modules, each of which addresses ei-
ther the error categories described in Section 3.1 or the content-based problems
described in Section 1.1 (e.g. redundancy, or not being about gene function).
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Table 2. A total of 2,923 suspicious GeneRIFs found in the June 2006 data. See Sections 4.5-7 for the
explanations of categories 5-7.

No. Category GeneRIFs GeneRIF example
1. Discontinued 202 GeneID 6841: SVS1 seems to be found only in rodents and

does not exist in humans

2. Misspellings 1,754 GeneID 64919: CTIP2 mediates transcriptional repression

with SIRT1 in mammmalian cells

3. Punctuation 505 GeneID 7124: ). TNF-alpha promoter polymorphisms are

associated with severe, but not less severe, silicosis in this

population.

4. Computational results 19 GeneID 313129: characterization of rat Ankrd6 gene in sil-

ico; PMID 15657854: Identification and characterization of

rat Ankrd6 gene in silico

5. Similar GeneRIFs 209 GeneID 3937: two GeneRIFs for the same gene differ in the

gene name in the parenthesis; Shb links SLP-76 and Vav with

the CD3 complex in Jurkat T cells (SLP-76)

6. One-to-many 67 A single GeneRIF text identification, cloning and expression

is linked to two GeneIDs (217214 and 1484476) and two

PMIDs (12049647, 15490124)

7. Length Constraint 167 GeneID 3952: review; GeneID 135 molecular model; GeneID

81657: protein subunit function

4.1. Finding discontinued GeneRIFs

Discontinued GeneRIFs are detected by examining the gene history file from the
NCBI’s ftp site, which includes information about GeneIDs that are no longer
current, and then searching for GeneRIFs that are still associated with the discon-
tinued GeneIDs.

4.2. Finding GeneRIFs with spelling errors

Spelling error detection has been extensively studied for General English (see
[13]), as well as in biomedical text (e.g. [20]). It is especially challenging for
applications like this one, since gene names have notoriously low coverage in
many publicly available resources and exhibit considerable variability, both in
text [10] and in databases [4,6]. In the work reported here, we utilized the Google
spell-checking APId . Since Google allows ordinary users only 1,000 automated
queries a day, it was not practical to use it to check all of the 4 million words
in the current set of GeneRIFs. To reduce the size of the input set for the spell-
checker, we used it only to check tokens that did not contain upper-case letters or
punctuation (on the assumption that they are likely to be gene names or domain-
specific terms) and that occurred five or fewer times in the current set of GeneRIFs

dhttp://www.google.com/apis/
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Table 3. Distribution of non-word spelling errors across unigram counts.

Word Frequency 1 2 3 4 5
Spelling Errors 1,348 268 84 34 20

(on the assumption that spelling errors are likely to be rare). (See Table 3 for
the actual distributions of non-word spelling errors across unigram frequencies in
the full June 2006 collection of GeneRIFs, which supports this assumption. We
manually examined a small sample of these to ensure that they were actual errors.)

4.3. Finding GeneRIFs with punctuation errors

Examination of the 319 withdrawn GeneRIFs showed that punctuation errors most
often appeared at the left and right edges of GeneRIFs, e.g. the extra parenthesis
and period in ). TNF-alpha promoter polymorphisms are associated with severe,
but not less severe, silicosis in this population. (GeneID:7124) . . . or the terminal
comma in Heart graft rejection biopsies have elevated FLIP mRNA expression
levels, (GeneID:8837). We used regular expressions (listed on the supplementary
web site) to detect punctuation errors.

4.4. Finding GeneRIFs based solely on computational methods

Articles describing work that is based solely on computational methods commonly
use words or phrases such as in silico or bioinformatics in their titles and/or ab-
stracts. We searched explicitly for GeneRIFs based solely on computational meth-
ods by searching for those two keywords within the GeneRIFs themselves, as well
as in the titles of the corresponding papers. GeneRIFs based solely on computa-
tional methods were incidentally also sometimes uncovered by the “one-to-many”
heuristic (described below).

4.5. Finding similar GeneRIFs

We used two methods to discover GeneRIFs that were similar to other GeneRIFs
associated with the same gene. The intuitions behind this are that similar GeneR-
IFs may be redundant, and that similar GeneRIFs may not be informative. The
two methods involved finding GeneRIFs that are substrings of other GeneRIFs,
and calculating Dice coefficients.

4.5.1. Finding substrings

We found GeneRIFs that are proper substrings of other GeneRIFs using Oracle.
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4.5.2. Calculating Dice coefficients

We calculated Dice coefficients using the usual formula ([11]:202), and set our
threshold for similarity at > 0.8.

4.6. Detecting one-to-many mappings

We used a simple hash table to detect one-to-many mappings of GeneRIF texts to
publications (see category 6 in Table 2). We anticipated that this would address
the detection of GeneRIF texts that were not informative. (It turned out to find
more serious errors, as well—see the Discussion section.)

4.7. Length constraints

We tokenized all GeneRIFs on whitespace and noted all GeneRIFs that were three
or fewer tokens in length. The intuition here is that very short GeneRIFs are
more likely to be indicative summaries, which give the reader some indication of
whether or not they might be interested in reading the corresponding document,
but are not actually informative [16]—for example, the single-word text Review—
and therefore are out of scope, per the NLM guidelines.

5. Results

5.1. Evaluating recall against the set of withdrawn GeneRIFs

To test our system, we first applied our system to the withdrawn GeneRIFs de-
scribed in Section 3. GeneRIFs that are associated with temporary IDs are still
in the curation process, so we did not attempt to deal with them, and they were
excluded from the recall evaluation. To ensure a stringent evaluation with the
remaining 196 withdrawn GeneRIFs, we included the ones in the miscellaneous
and unknown categories. The system identified 151/196 of the withdrawn GeneR-
IFs, for a recall of 77% as shown in Table 4. The system successfully identified
115/117 of the GeneRIFs that were based on solely computational results. It
missed two because we limited our algorithm to searching only GeneRIFs and
the corresponding titles, but the evidence for the computational status of those
two is actually located in their abstracts. For the typographic error category, the
system correctly identified 33/41 spelling errors and 3/6 punctuation errors. It
missed several spelling errors because we did not check words containing upper-
case letters. For example, it missed the misspellings Muttant (Mutant), MMP-1o
(MMP-10), and Frame-schift (Frame-shift). It missed punctuation errors that were
not at the edges of the GeneRIF, e.g. the missing space after the semicolon in RE-
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Table 4. Recall on the set of withdrawn GeneRIFs. Only the 196 non-temporary GeneRIFs were
included in this experiment. Although we did not attempt to detect GeneRIFs that were withdrawn
for miscellaneous or unknown reasons, we included them in the recall calculation.

Category Total True Positive False Negative Recall
Computational methods 117 115 2 98%
Misspellings 41 33 8 80%
Punctuation 5 3 2 60%
Miscellaneous 20 0 20 0
Unknown 13 0 13 0
Sum 196 151 45 77%

VIEW:Association of expression ... and the missing space after the comma in
...lymphocytes,suggesting a role for trkB...

5.2. 3rd-party evaluation of precision

The preceding experiment allowed us to evaluate the system’s recall, but provided
no assessment of precision. To do this, we applied the system to the entire June
2006 set of GeneRIFs. The system identified 2,923 of the 157,280 GeneRIFs in
that data set as being bad. Table 2 shows the distribution of the suspicious GeneR-
IFs across the seven error categories. We then sent a sample of those GeneRIFs
to NLM, along with an explanation of how the sample had been generated, and
a request that they be manually evaluated. Rather than evaluate the individual
submissions, NLM responded by internally adopting the error categories that we
suggested and implementing a number of aspects of our system into their own
quality control process, as well as using some of our specific examples to train
the indexing staff regarding what is “in scope” for GeneRIFs (Donna Maglott,
personal communication).

5.3. In-house evaluation of precision

We constructed a stratified sample of system outputs by selecting the first fif-
teen unique outputs from each category. Two authors then independently judged
whether each output GeneRIF should, in fact, be revised. Our inter-judge agree-
ment was 100%, suggesting that the error categories are consistently applicable.
We applied the most stringent possible scoring by counting any GeneRIF that ei-
ther judge thought was incorrectly rejected by the system as being a false positive.
Table 5 gives the precision scores for each category.
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Table 5. Precision on the stratified sample. For each error category, a random list of 15
GeneRIFs were independently examined by the two judges.

No. Category True Positive False Positive Precision
1. Discontinued 15 0 100%
2. Misspellings 15 0 100%
3. Punctuation 13 2 86.7%
4. Computational methods 15 0 100%
5. Similar GeneRIFs 15 0 100%
6. One-to-many 15 0 100%
7. Length constraint 5 10 33.3%
8. Overall 93 12 88.6%

6. Discussion and Conclusion

The kinds of revisions carried out by human summarizers cover a wide range of
levels of linguistic depth, from correcting typographic and spelling errors ([16]:37,
citing [5]) to addressing issues of coherence requiring sophisticated awareness of
discourse structure, syntactic structure, and anaphora and ellipsis ([16]:78–81, cit-
ing [18]). Automatic summary revision systems that are far more linguistically
ambitious than the methods that we describe here have certainly been built; the
various methods and heuristics that are described in this paper may seem sim-
plistic, and even trivial. However, a number of the GeneRIFs that the system
discovered were erroneous in ways that were far more serious than might be sus-
pected from the nature of the heuristic that uncovered them. For example, of the
fifteen outputs in the stratified sample that were suggested by the one-to-many
text-to-PMID measure (category 6 in Table 2), six turned out to be cases where
the GeneRIF text did not reflect the contents of the article at all. The articles
in question were relevant to the Entrez Gene entry itself, but the GeneRIF text
corresponded to only one of the two articles’ contents, presumably due to a cut-
and-paste error on the part of the indexer (specifically, pasting the same text string
twice). Similarly, as trivial as the “extra punctuation” measure might seem, in
one of the fifteen cases the extra punctuation reflected a truncated gene symbol
(sir-2.1 became -2.1). This is a case of erroneous content, and not of an inconse-
quential typographic error. The word length constraint, simple as it is, uncovered
a GeneRIF that consisted entirely of the URL of a web site offering Hmong lan-
guage lessons—perhaps not as dangerous as an incorrect characterization of the
contents of a PubMed-indexed paper, but quite possibly a symptom of an as-yet-
unexploited potential for abuse of the Entrez Gene resource.

The precision of the length constraint was quite low. Preliminary error analy-
sis suggests that it could be increased substantially by applying simple language
models to differentiate GeneRIFs that are perfectly good indicative summaries, but
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poor informative summaries, such as REVIEW or 3D model (which were judged
as true positives by the judges) from GeneRIFs that simply happen to be brief, but
are still informative, such as regulates cell cycle or interacts with SOCS-1 (both
of which were judged as false positives by the judges).

Our assessment of the current set of GeneRIFs suggests that about 2,900
GeneRIFs are in need of retraction or revision. GeneRIFs exhibit the two of the
four characteristics of the primary scientific literature described in [8]: growth,
and obsolescence. (They directly address the problem of fragmentation, or spread-
ing of information across many journals and articles, by aggregating data around a
single Entrez Gene entry; linkage is the only characteristic of the primary literature
that they do not exhibit.) Happily, NLM control over the contents of the Entrez
Gene database provides a mechanism for dealing with obsolescence: GeneRIFs
actually are removed from circulation when found to be of low quality. We pro-
pose here a data-driven model of GeneRIF errors, and describe several techniques,
modelled as automation of a variety of tasks performed by human summarizers as
part of the summary revision process, for finding erroneous GeneRIFs. Though
we do not claim that it advances the boundaries of summarization research in any
major way, it is notable that even these simple summary revision techniques are
robust enough that they are now being employed by NLM: versions of the punc-
tuation, “similar GeneRIF,” and length constraint (specifically, single words) have
been added to the indexing workflow. Previous work on GeneRIFs has focussed
on quantity—this paper is a step towards assessing, and improving, GeneRIF qual-
ity. NLM has implemented some of the aspects of our system, and has already
corrected a number of the examples of substandard GeneRIFs that are cited here.
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