
September 24, 2006 23:49 Proceedings Trim Size: 9in x 6in seki

DISCOVERING IMPLICIT ASSOCIATIONS BETWEEN
GENES AND HEREDITARY DISEASES

KAZUHIRO SEKI

Graduate School of Science and Technology, Kobe University
1-1 Rokkodai, Nada, Kobe 657-8501, Japan

E-mail: seki@cs.kobe-u.ac.jp

JAVED MOSTAFA

Laboratory of Applied Informatics Research, Indiana University
1320 E. 10th St., LI 011, Bloomington, Indiana 47405-3907

E-mail: jm@indiana.edu

We propose an approach to predicting implicit gene-disease associations based on the inference
network, whereby genes and diseases are represented as nodes and are connected via two types
of intermediate nodes: gene functions and phenotypes. To estimate the probabilities involved in
the model, two learning schemes are compared; one baseline using co-annotations of keywords
and the other taking advantage of free text. Additionally, we explore the use of domain ontolo-
gies to complement data sparseness and examine the impact of full text documents. The validity
of the proposed framework is demonstrated on the benchmark data set created from real-world
data.

1. Introduction

The ever-growing textual data make it increasingly difficult to effectively utilize
all the information relevant to our interests. For example, Medline—the most
comprehensive bibliographic database in life science—currently indexes approx-
imately 5,000 peer-reviewed journals and contains over 17 million articles. The
number of articles is increasing rapidly by 1,500–3,000 per a day. Given the sub-
stantial volume of the publications, it is crucial to develop intelligent information
processing techniques, such as information retrieval (IR), information extraction
(IE), and text data mining (TDM), that could help us manage the information
overload.

In contrast to IR and IE, which deal with information explicitly stated in doc-
uments, TDM aims to discover heretofore unknown knowledge through an auto-
matic analysis on textual data.1 A pioneering work in TDM (or literature-based
discovery) was conducted by Swanson in the 1980’s. He argued that there were
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two premises logically connected but the connection had been unnoticed due to
overwhelming publications and/or over-specialization. For instance, given two
premises A → B and B → C, one could deduce a possible relation A → C. To
prove the idea, he manually analyzed numbers of articles and identified logical
connections implying a hypothesis that fish oil was effective for clinical treatment
of Raynaud’s disease.2 The hypothesis was later supported by experimental evi-
dence.

Based on his original work, Swanson and other researchers have developed
computer programs to aid hypothesis discovery (e.g., see Refs. 3 and 4). Despite
the prolonged efforts, however, the research in literature-based discovery can be
seen to be at an early stage of development in terms of the models, approaches,
and evaluation methodologies. Most of the previous work was largely heuristic
without a formal model and their evaluation was limited only on a small number
of hypotheses that Swanson had proposed.

This study is also motivated by Swanson’s and attempts to advance the re-
search in literature-based discovery. Specifically, we will examine the effective-
ness of the models and techniques developed for IR, the benefit of free- and full-
text data, and the use of domain ontologies for more robust system predictions.
Focusing on associations between genes and hereditary diseases, we develop a
discovery framework adapting the inference network model5 in IR, and we con-
duct various evaluative experiments on realistic benchmark data.

2. Task Definition

Among many types of information that are of potential interest to biomedical re-
searchers, this study targets associations between genes and hereditary diseases
as a test bed. Gene-disease associations are the links between genetic variants
and diseases to which the genetic variants influence the susceptibility. For exam-
ple, BRCA1 is a human gene encoding a protein that suppresses tumor formation.
A mutation of this gene increases a risk of breast cancer. Identification of these
genetic associations has tremendous importance for prevention, prediction, and
treatment of diseases. In this context, predicting or ranking candidate genes for
a given disease is crucial to select more plausible ones for genetic association
studies.

Focusing on gene-disease associations, we assume a disease name and known
causative genes, if any, as system input. In addition, a target region in the hu-
man genome may be specified to limit the search space. Given such input, we
attempt to predict a (unknown) causative gene and produce a ranked list of candi-
date genes.
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3. Proposed Approach

Focusing on gene-disease associations, we explored the use of a formal IR model,
specifically, the inference network5 for this related but different problem target-
ing implicit associations. The following details the proposed model and how to
estimate probabilities involved in the model.

3.1. Inference Network for Gene-Disease Associations

In the original IR model, a user query and documents are represented as nodes in
a network and are connected via intermediate nodes representing keywords that
compose the query and documents. To adapt the model to represent gene-disease
associations, we treat disease as query and genes as documents and use two types
of intermediate nodes: gene functions and phenotypes which characterize genes
and disease, respectively (Fig. 1). An advantage of using this particular IR model
is that it is essentially capable of incorporating multiple intermediate nodes. Other
popular IR models, such as the vector space models, are not easily applicable as
they are not designed to have different sets of concepts to represent documents
and queries.
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Figure 1. Inference network for gene-disease associations.

The network consists of four types of nodes: genes (g), gene functions ( f )
represented by Gene Ontology (GO) terms,a phenotypes (p) represented by MeSH
C terms,b and disease (d). Each gene node g represents a gene and corresponds to
the event that the gene is found in the search for the causative genes underlying
d. Each gene function node f represents a function of gene products. There

ahttp://www.geneontology.org
bhttp://www.nlm.nih.gov/mesh
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are directed arcs from genes to functions, representing that instantiating a gene
increases the belief in its functions. Likewise, each phenotype node p represents
a phenotype of d and corresponds to the event that the phenotype is observed.
The belief in p is dependent on the belief in f ’s since phenotypes are (partly)
determined by gene functions. Finally, observing certain phenotypes increases
the belief in d. As described in the followings, the associations between genes
and gene functions (g→ f ) are obtained from an existing database, Entrez Gene,c

whereas both the associations between gene functions and phenotypes ( f → p)
and the associations between phenotypes and disease (p→d) are derived from the
biomedical literature.

Given the inference network model, disease-causing genes can be predicted
based on the probability defined below.

P(d|G) =
∑

i

∑
j

P(d|~pi) × P(~pi|~f j) × P(~f j|G) (1)

Equation (1) quantifies how much a set of candidate genes, G, increases the belief
in the development of disease d. In the equation, ~pi (or ~f j) is defined as a vector
of random variables with i-th (or j-th) element being positive (1) and all others
negative (0). By applying Bayes’ theorem and some independence assumptions
discussed later, we derive

P(d|G) ∝
∑

i

∑
j

(
P(pi|d)
P( p̄i|d)

×
P( f j|pi)P( f̄ j| p̄i)

P( f̄ j|pi)P( f j| p̄i)
× F(pi) × F( f j) × P( f j|G)

)
(2)

where

F(pi) =
m∏

h=1

P( f̄h|pi)
P( f̄h| p̄i)

, F( f j) =
n∏

k=1

P( f̄ j)P( f j| p̄k)

P( f j)P( f̄ j| p̄k)
(3)

The first factor of the right-hand side of Eq. (2) represents the interaction between
disease d and phenotype pi, and the second factor represents the interaction be-
tween pi and gene function f j, which is equivalent to the odds ratio of P( f j|pi) and
P( f j| p̄i). The third and fourth factors are functions of pi and f j, respectively, rep-
resenting their main effects. The last factor takes either 0 or 1, indicating whether
f j is a function of any gene in G under consideration.

The inference network described above assumes independence among pheno-
types, among gene functions, and among genes. We assert that, however, the ef-
fects of such associations are minimal in the proposed model. Although there may
be strong associations among phenotypes (e.g., phenotype px is often observed
with phenotype py), the model does not intend to capture those associations. That

chttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=gene
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is, phenotypes are attributes of the disease in question and we only need to know
those that are frequently observed with disease d so as to characterize d. The same
applies to gene functions; they are only attributes of the genes to be examined and
are simply used as features to represent the genes under consideration.

3.2. Probability Estimation

3.2.1. Conditional Probabilities P(p|d)

Probability P(p|d) can be interpreted as a degree of belief that phenotype p is
observed when disease d has developed. To estimate the probability, we take
advantage of the literature data. Briefly, given a disease name d, a Medline search
is conducted to retrieve articles relevant to d and, within the retrieved articles, we
identify phenotypes (MeSH C terms) strongly associated with the disease based
on chi-square statistics. Given disease d and phenotype p, the chi-square statistic
is computed as

χ2(d, p) =
N(n11 · n22 − n21 · n12)2

(n11 + n21) (n12 + n22) (n11 + n12) (n21 + n22)
(4)

where N is the total number of articles in Medline, n11 is the number of articles
assigned p and included in the retrieved set (denoted as R), n22 is the number of
articles not assigned p and not included in R, n21 is the number of articles not
assigned p and included in R, and n12 is the number of articles assigned p and not
in R. The resulting chi-square statistics are normalized by the maximum to treat
them as probabilities P(p|d).

3.2.2. Conditional Probabilities P( f |p)

Probability P( f |p) indicates the degree of belief that gene function f underlies
phenotype p. For probability estimation, this study adopts the framework similar
to the one proposed by Perez-Iratxeta et al.6 Unlike them, however, this study
focuses on the use of textual data and domain ontologies and investigate their
effects for literature-based discovery.

As training data, our framework uses Medline records that are assigned any
MeSH C terms and are cross-referenced from any gene entry in Entrez Gene. For
each of such records, we can obtain a set of phenotypes (the assigned MeSH
C terms) and a set of gene functions (GO terms) associated with the cross-
referencing gene from Entrez Gene. Considering the fact that the phenotypes and
gene functions are associated with the same Medline record, it is likely that some
of the phenotypes and gene functions are associated. A question is, however, what
phenotypes and functions are associated and how strong those associations are.
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We estimate those possible associations using two different schemes:
SchemeK and SchemeT. SchemeK simply assumes a link between every pair of
the phenotypes and gene functions with equal strength, whereas SchemeT seeks
for evidence in the textual portion of the Medline record, i.e., title and abstract,
to better estimate the strength of associations. Essentially, SchemeT searches for
co-occurrences of gene functions (GO terms) and phenotypes (MeSH terms) in a
sliding window, assuming that associated concepts tend to co-occur more often in
the same context than unassociated ones. However, a problem of SchemeT is that
gene functions and phenotypes are descriptive by nature and may not be expressed
in concise GO and MeSH terms. In fact, Schuemie et al.7 analyzed 1,834 articles
and reported that less than 30% of MeSH terms assigned to an article actually ap-
pear in its abstract and that only 50% even in its full text. It suggests that relying
on mere occurrences of MeSH terms would fail to capture many true associations.

To deal with the problem, we apply the idea of query expansion, a technique
used in IR to enrich a query by adding related terms. If GO and MeSH terms
are somehow expanded, there is more chance that they could co-occur in text.
For this purpose, we use the definitions (or scope notes) of GO and MeSH terms
and identify representative terms by inverse document frequencies (IDF), which
has long been used in IR to quantify the specificity of terms in a given document
collection. We treat term definitions as documents and define IDF for term t as
log(N/Freq(t)), where N denotes the total number of MeSH C (or GO) terms
and Freq(·) denotes the number of MeSH C (or GO) terms whose definitions
contain term t. Only the terms with high IDF values are used as the proxy terms
to represent the starting concept, i.e., gene function or phenotype.

Each co-occurrence of the two sets of proxy terms (one representing a gene
function and the other representing a phenotype) can be seen as evidence that
supports the association between the gene function and phenotype, increasing the
strength of their association. We define the increased strength by the product of
the term weights, w, for the two co-occurring proxy terms. Then, the strength of
the association between gene function f and phenotype p within article a, denoted
as S ( f , p, a), can be defined as the sum of the increases for all co-occurrences of
the proxy terms in a. That is,

S ( f , p, a) =
∑

(t f ,tp,a)

w(t f ) · w(tp)
|Proxy( f )| · |Proxy(p)| (5)

where t f and tp denote any terms in the proxy terms for f and p, respectively, and
(t f , tp, a) denotes a set of all co-occurrences of t f and tp within a. The product of
the term weights is normalized by the proxy size, |Proxy(·)|, to eliminate the effect
of different proxy sizes. As term weight w, this study used the TF·IDF weighting
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scheme. For term tp for instance, we define TF(tp) as 1 + log Freq(tp,De f (p)),
where De f (p) denote p’s definition and Freq(tp,De f (p)) denotes the number of
occurrences of tp in De f (p).

The association scores, S ( f , p, a), are computed for each cross reference (a
pair of Medline record and gene) by either SchemeK or SchemeT and are accu-
mulated over all articles to estimate the associations between f ’s and p’s, de-
noted as S ( f , p). Based on the associations, we define probability P( f |p) as
S ( f , p)/

∑
p S ( f , p).

A possible shortcoming of the approach described above is that the obtained
associations S ( f , p) are symmetric despite the fact that the network presented in
Fig. 1 is directional. However, since it is known that an organism’s genotype (in
part) determines its phenotype—not in the opposite direction, we assumed that the
estimated associations between gene functions and phenotypes are directed from
the former to the latter.

3.2.3. Enhancing Probability Estimates P( f |p) byDomainOntologies

The proposed framework may not be able to establish true associations between
gene functions and phenotypes for various reasons, e.g., the amount of training
data may be insufficient. Those true associations may be uncovered using the
structure of MeSH and/or GO. MeSH and GO have a hierarchical structured and
those located nearby in the hierarchy are semantically close to each other. Taking
advantage of these semantic relations, we enhance the learned probabilities P( f |p)
as follows.

Let us denote by A the matrix whose element ai j is probability estimate
P( f j|pi) and by A′ the updated or enhanced matrix. Then, A′ is formalized as
A′ = WpAW f , where Wp denotes an n×n matrix with element wp(i, j) indicating a
proportion of a probability to be transmitted from phenotypes p j to pi. Similarly,
W f is an m×m matrix with w f (i, j) indicating a proportion transmitted from gene
functions fi to f j. This study experimentally uses only direct child-to-parent and
parent-to-child relations and defines wp(i, j) as

wp(i, j) =



1 if i = j
1

# of children of p j
if pi is a child of p j

1
# of parents of p j

if pi is a parent of p j

0 otherwise

(6)

dTo be precise, GO’s structure is directed acyclic graph, allowing multiple parents.
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Equation (6) means that the amount of probability is split equally among its chil-
dren (or parents). Similarly, wp(i, j) is defined by replacing i and j in the right-
hand side of Eq. (6). Note that the enhancement process can be iteratively applied
to take advantage of more distant relationships than children/parents.

4. Evaluation

To evaluate the validity of the proposed approach, we implemented a prototype
system and conducted various experiments on the benchmark data sets created
from the genetic association database (GAD).e GAD is a manually-curated archive
of human genetic studies, containing pairs of gene and disease that are known to
have causative relations.

4.1. Creation of Benchmark Data

For evaluation, benchmark data sets were created as follows using the real-world
data obtained from GAD.

(1) Associate each gene-disease pair with the publication date of the article
from which the entry was created. The date can be seen as the time when
the causative relation became public knowledge.

(2) Group gene-disease pairs based on disease names. As GAD deals with
complex diseases, a disease may be paired with multiple genes.

(3) For each pair of a disease and its causative genes,
(a) Identify the gene whose relation to the disease was most recently re-
ported based on the publication date. If the date is on or after 7/1/2003,
the gene will be used as the target (i.e., new knowledge), and the disease
and the rest of the causative genes will be used as system input (i.e., old
knowledge).
(b) Remove the most recently reported gene from the set of causative
genes and repeat the previous step (3a).

The separation of the data by publication dates ensures that a training phase
does not use new knowledge in order to simulate gene-disease association dis-
covery. The particular date was arbitrarily chosen by considering the size of the
resulting data and available resources for training. Table 1 shows the number of
gene-disease associations in the resulting test data categorized under six disease
classes defined in GAD. In the following experiments, the cancer class was used
for system development and parameter tuning.

ehttp://geneticassociationdb.nih.gov
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Table 1. Number of gene-disease associations in the benchmark data.

Cancer
Cardio-
vascular

Immune Metabolic Psych Unknown Total

45 36 61 23 12 80 257

4.2. Experimental Setup

Given input (disease name d, known causative genes, and a target region), the
system computes the probability P(d|G) as in Eq. (3) for each candidate gene g
located in the target region, where G is a set of the known causative genes plus g.
The candidate genes are then outputted in a decreasing order of their probabilities
as system output.

As evaluation metrics, we use area under the ROC curve (AUC) for its attrac-
tive property as compared to the F-score measure (see Ref. 8 for more details).
ROC curves are two dimensional measure for system performance with x axis
being true positive proportion (TPP) and y axis being false positive proportion
(FPP). TPP is defined as TP/(TP+FN), and FPP as FP/(FP+TN), where TP, FP,
FN, and FP denote the number of true positives, false positives, false negatives,
and false positives, respectively. AUC takes a value between 0 and 1 with 1 being
the best. Intuitively AUC indicates the probability that a gene randomly picked
from positive set is scored more highly by a system than one from negative set.

For data sets, this study used a subset of the Medline data provided for the
TREC Genomics Track 2004.9 The data consist of the records created between the
years 1994 and 2003, which account for around one-third of the entire Medline
database. Within these data, 29,158 cross-references (pairs of Medline record
and gene) were identified as the training data such that they satisfied all of the
following conditions: 1) Medline records are assigned one or more MeSH C terms
to be used as phenotypes, 2) Medline records are cross-referenced from Entrez
Gene to obtain gene functions, 3) cross references are not from the target genes
to avoid using possible direct evidence, 4) Medline records have publication dates
before 7/1/2003 to avoid using new knowledge.

Using the cross references and the test data in the cancer class, several pa-
rameters were empirically determined for each scheme, including the number of
Medline articles as the source of phenotypes (nm), threshold for chi-square statis-
tics to determine phenotypes (tc), threshold for IDF to determine proxy terms (tt),
and window size for co-occurrences (ws). For SchemeT, they were set as nm=700,
tc=2.0, tt=5.0, and ws=10 (words) by testing a number of combinations of their
possible values.
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4.3. Results

4.3.1. Overall Performance

With the best parameter settings learned in the cancer class, the system was ap-
plied to all the other classes. Table 2 shows the system performance in AUC.

Table 2. System performance in AUC for each disease class. The figures in the paren-
theses indicate percent increase/decrease relative to SchemeK.

Scheme
Cardio-
vascular

Immune Metabolic Psych Unknown Overall

K 0.677 0.686 0.684 0.514 0.703 0.682

T
0.737 0.668 0.623 0.667 0.786 0.713
(8.9%) (-2.6%) (-9.0%) (29.8%) (11.7%) (4.6%)

Both SchemeK and SchemeT achieved significantly higher AUC than 0.5 (i.e.,
random guess), indicating the validity of the general framework adapting the infer-
ence network for this particular problem. Comparing the two schemes, SchemeT
does not always outperform SchemeK but, overall, AUC improved by 4.6%. The
result suggests the advantage of the use of textual data to acquire more precise
associations between concepts. Incidentally, without proxy terms described in
Section 3.2.2, the overall AUC by SchemeT decreased to 0.682 (not shown in
Tab. 2), verifying its effectiveness.

4.3.2. Impact of Full-Text Articles

This section reports preliminary experiments examining the impact of full text
articles for literature-based discovery. Since full-text articles provide more com-
prehensive information than abstracts, they are thought to be beneficial in the pro-
posed framework. We used the full-text collection from the TREC Genomics
Track 2004,9 which contains 11,880 full-text articles. However, the conditions
described in Section 4.2 inevitably decreased the number of usable articles to 679.
We conducted comparative experiments using these full-text articles and only the
corresponding 679 abstract in estimating P( f |p) for fair comparison. Note that,
due to the small data size, these results cannot be directly compared to those re-
ported above.

Table 3 summarizes the results obtained based on only titles and abstracts
(“Abs”) and complete full-text articles (“Full”) using SchemeT.
Examining each disease class, it is observed that the use of full-text articles lead
to a large improvement over using abstracts except for the immune class. Overall,
the improvement achieved by full texts is 5.1%, indicating the potential advantage
of full text articles.
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Table 3. System performance in AUC based on 679 articles. The figures in the
parentheses indicate percent increase/decrease relative to Abs.

Text
Cardio-
vascular

Immune Metabolic Psych Unknown Overall

Abs 0.652 0.612 0.566 0.623 0.693 0.643

Full
0.737 0.590 0.640 0.724 0.731 0.676

(13.0%) (-3.6%) (13.0%) (16.2%) (5.5%) (5.1%)

4.3.3. Enhancing Probability Estimates by Domain Ontologies

In order to examine the effectiveness of the use of domain ontologies for enhanc-
ing P( f |p), we applied the proposed method to SchemeT in Tab. 2 and to Full in
Tab. 3. (Note that Full is also based on SchemeT for estimating P( f |p) but uses
full-text articles instead of abstracts). Figure 2 summarizes the results for differ-
ent number of iterations, where the left and right plots correspond to SchemeT
and Full, respectively. Incidentally, we used only child-to-parent relations in GO
hierarchy for this experiment as it yielded the best results in the cancer class.

Card Imm Meta Psy Unkw All

0.
55

0.
60

0.
65

0.
70

0.
75

SchemeT

None
Once
Twice

Card Imm Meta Psy Unkw All

0.
55

0.
60

0.
65

0.
70

0.
75

Full (SchemeT w/ 679 full−text articles)

None
Once
Twice

A
U

C

Disease classes

Figure 2. System performance after enhancing associations using GO parent-to-child relations.
Three bars in each disease class correspond to # of iterations of enhancement.

For SchemeT, the effects were less consistent across the classes and, overall,
the improvement was small. For Full, on the other hand, we observed clearer
improvement except for two classes, Cardiovascular and Psych, and the overall
AUC improved by 4.0%. The difference is presumably due to the fact that the
associations learned by Full is more sparse than those by SchemeT as the amount
of the training data for Full was limited for this experiment. The enhancement
was intended to uncover missed associations and thus worked favorably for Full.

5. Conclusion

This study was motivated by Swanson’s work in literature-based discovery and
investigated the application of IR models and techniques in conjunction with the
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use of domain-specific resources, such as gene database and ontology. The key
findings of the present work are that a) the consideration of textual information im-
proved system prediction by 4.6% in AUC over simply relying on co-annotations
of keywords, b) using full text improved overall AUC by 5.1% as compared to
using only abstracts, and c) the hierarchical structure of GO could be leveraged
to enhance probability estimates, especially for those learned from small training
data. Moreover, we created realistic benchmark data, where old and new knowl-
edge were carefully separated to simulate gene-disease association discovery.

For future work, we plan to investigate the use of semantic distance10 in prop-
agating the probabilities P( f |p). In addition, we would like to compare the pro-
posed framework with the previous work (e.g., Ref. 6) and with other IR models
having one intermediate layer between genes and disease so as to study the char-
acteristics of our model.
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