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Comparative metabolic profiling of cancerous and normal cells improves our understanding of the 
fundamental mechanisms of tumorigenesis and opens new opportunities in target and drug discovery. 
Here we report a novel methodology of comparative metabolome analysis integrating the 
information about both metabolite pools and fluxes associated with a large number of key metabolic 
pathways in model cancer and normal cell lines. The data were acquired using [U-13C]glucose 
labeling followed by two-dimensional NMR and GC-MS techniques and analyzed using isotopomer 
modeling approach. Significant differences revealed between breast cancer and normal human 
mammary epithelial cell lines are consistent with previously reported phenomena such as 
upregulation of fatty acid synthesis. Additional changes established for the first time in this study 
expand a remarkable picture of global metabolic rewiring associated with tumorigenesis and point to 
new potential diagnostic and therapeutic targets.  

1. Introduction 

Since the completion the human genome, the main thrust of functional 
genomics has been to establish the link between gene/protein expression profiles 
and cellular phenotype in normal and disease states, most notably in cancer. 
Remarkable advancements in transcriptomics and proteomics technologies (1,2) 
led to the identification of novel therapeutic targets as well as tumor subtypes 
and biomarkers (3-6). Nevertheless, these technologies, taken alone, fall short of 
reflecting the entire picture of cellular networks and pathways. A direct 
assessment of a large number of intermediary metabolites and metabolic 
activities (metabolomics) is emerging as a powerful complementary approach 
for identifying pathways that are perturbed in a given pathology. Metabolic 
profiling is of special importance in cancer biology due to profound changes in 
central metabolism associated with many tumors as established by early 
biochemical studies (7) and recently confirmed by functional genomics 
techniques. Nevertheless, our current knowledge of the molecular processes 
associated with these metabolic changes is quite incomplete.  
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Despite the recent progress in metabolomics technology its applications in 
the field of human biology are still limited, mostly due to many technical 
challenges. Among the most obvious are: a limited availability of biological 
material, insufficient sensitivity and resolution of existing protocols, incomplete 
reference data (eg for NMR peak assignment) and the lack of established 
computational modeling framework. In this study we addressed some of these 
problems by combining [U-13C]-glucose labeling with two-dimensional NMR 
and GC-MS techniques to assess simultaneously the metabolite pools and fluxes 
associated with several interrelated metabolic pathways in human cells. We were 
able to assign two-dimensional NMR signals for 24 intermediary metabolites 
representing a substantial fraction of central metabolism. The acquired data were 
analyzed using an isotopomer model derived from reconstruction of an extensive 
metabolic network. 

We applied this approach for the comparative analysis of breast cancer and 
normal human mammary epithelial cell lines. An isotopomer model was 
developed for a metabolic network including the reactions of central carbon, 
fatty acid, and amino acid metabolism. We chose this metabolic network 
because it is the central backbone of metabolism providing energy, cofactor 
regeneration, and building blocks for cell synthesis. Moreover, cancer cells have 
been reported to display different activities of some of these pathways. We 
determined the active pathways and the flux distribution in this metabolic 
network. The observed pattern of metabolic changes is consistent with earlier 
observations of metabolic shifts in tumors (7), validating the developed 
methodology. A number of newly established changes in metabolic fluxes and 
pools provided us with new insights to potential diagnostic markers and 
therapeutic targets. 

2. Materials and Methods 

2.1 Experimental techniques 
Experimental procedures are only briefly introduced in this subsection. The 
details are provided in the Supplementary on-line Materials (SOM) 1. 

Cell lines and cultivation. Human cell lines used in this study were: MCF-
10A (ATCC), derived from normal mammary epithelial cells, and MDA-MB-
435 (NCI), a highly metastatic mammary epithelial cancer cell line. Cultivation, 
metabolic labeling with 20% [U-13C]glucose and harvesting was performed as 
described in SOM.  

                                                  
1 available at: http://www.burnham.org/labs/osterman/ 
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 Gas Chromatography – Mass Spectrometry (GC-MS)  was used to analyze 
fatty acids. Samples from ~ 5×107 cells were prepared as described (8) and 
analyzed on Trace GC/Trace MS Plus system (see SOM for details). Mass 
isotopomer distribution corrected for natural abundance (9), was used to assess 
de novo fatty acid synthesis as described (8).  

Nuclear Magnetic Resonance (NMR) was used to analyze a mixture of 
methanol- and water-soluble metabolites extracted from ~ 2.5×108 labeled cells 
as described in SOM. Two-dimensional [13C,1H] HSQC spectra were acquired 
using a Bruker Avance 500 NMR spectrometer. The 13C-13C scalar coupling fine 
structures were extracted from the cross sections taken along the 13C axis in a 
HSQC spectrum by using the Bruker XWINNMR software. The concentrations 
of metabolites were determined by integrating the cross peaks in the HSQC 
spectra using the NMRPipe (10) and Sparky 
(http://www.cgl.ucsf.edu/home/sparky/) software packages, comparing with the 
integral of resonances peaks of the L-methionine that was treated as an internal 
standard, and normalizing to the amount of total cellular protein.  

  
2.2.  13C- Isotopomer Model 

A mathematical model describing the 13C isotopomer distribution of 
metabolites in human cells fed with 13C-glucose was developed. It was used for 
the determination of metabolic fluxes using 13C-multiplet patterns of metabolites 
from HSQC spectra. The considered metabolic network included glycolysis, 
pentose phosphate pathway (PPP), tricarboxylic acid (TCA) cycle, anaplerotic 
reaction, and biosynthetic pathways of fatty acids and non-essential amino acids. 
The fraction of de novo synthesis of fatty acids was determined based on the 
mass isotopomer distribution measured by GC-MS as described (8). The fluxes 
through other pathways are derived as follows. 

Contribution of PPP to pyruvate/alanine formation. The assessment of 
PPP activity relies on the analysis of 13C multiplets of alanine C2. The observed 
relative multiplet intensities were transformed to the relative abundances of 
intact carbon fragments (11). According to the carbon rearrangements in PPP, 
three pentose molecules (C1-C2-C3-C4-C5 backbone) yield five pyruvate 
molecules. Three of them retain an intact C1-C2-C3 fragment, while two 
molecules carry only a C2-C3 fragment of the original backbone. The latter 
fraction denoted as f(2)(Ala-C2), is the main contributor to the isotopomer 
population of [2,3-13C2]alanine as assessed by the relative intensity of the 
doublet  (1JCC = 35 Hz) of alanine C2. The total fraction of pyruvate derived 
from PPP can be estimated as 5/2 * f(2)(Ala-C2).   

TCA cycle and anaplerotic flux.  [U-13C]pyruvate enters the TCA cycle 
either by pyruvate dehydrogenase oxidation or by the anaplerotic reaction of 
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pyruvate carboxylase. The first process generates [4,5-13C2]α-ketoglutarate via 
[1,2-13C2]acetyl-CoA. Since intracellular α-ketoglutarate concentration is too 
low to be detected by NMR, its labeling state was assessed via glutamate, an 
abundant metabolite in rapid exchange with α-ketoglutarate. The isotopomer 
population of [4,5-13C2]glutamate reflects the flux through pyruvate 
dehydrogenase, which equals the TCA cycle (citrate synthase) flux, provided the 
acetyl-CoA synthetase flux is zero. The second process is expected to yield a 
distinct labeling pattern represented by [1,2,3-13C3] and [2,3-13C2] glutamate. 
This pattern reflects the formation of [1,2,3-13C3] and [2,3,4-13C3] oxaloacetate 
due to the pyruvate carboxylase reaction followed by the reversible 
interconversion between the asymmetric oxaloacetate and symmetric succinate 
(or fumarate).  The relative activity of pyruvate carboxylase versus pyruvate 
dehydrogenase (vPC / vPDH) was calculated from the 13C multiplet components of 
glutamate at C3 and C4 using Eq. 1:  
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where d(Glu-C3) is the contribution of doublet  (1JCC = 35 Hz) to the multiplets 
of glutamate C3, while d*(Glu-C4) and q(Glu-C4) are the relative contributions 
of the doublet with 1JCC coupling constant of 55 Hz and the quartet to the 
glutamate C4 multiplets, respectively.  

Non-essential amino acid biosynthesis. We investigated the activities of 
biosynthetic pathways of cysteine, glutamate, glutamine, glycine, and proline. 
The equation used for glycine biosynthesis is derived as follows, similarly for 
the other amino acids. Glycine can be synthesized via serine from the glycolytic 
intermediate, 3-phosphoglycerate, or obtained directly from media components. 
3-Phosphoglycerate has the same labeling pattern as pyruvate. Thus we obtain 
the isotopomer balance equation (2). 
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 where Xsyn is the fraction of glycine derived from glycolysis; s, d, d*, and q 
correspond to the relative intensities of singlet, doublet, doublet with a larger 
coupling constant and quartet, respectively. Pn is the natural 13C abundance (Pn = 
0.011), and PGly-C2 and PAla-C2 are the specific enrichments of glycine C2 and 
alanine C2. PGly-C2 can be calculated from Xsyn, Pn and PAla-C2 using the relation 
PGly-C2 = Xsyn · PAla-C2 + (1 - Xsyn) · Pn. Therefore Xsyn can be derived from the 
analysis of 13C multiplets of alanine C2 and glycine C2 using Eq. 3: 
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3. Results 

3.1. NMR Spectral Assignment 

Fig. 1 shows a typical two-dimensional [13C,1H] HSQC spectrum of 
metabolites extracted from the human breast cancer cells. The assignment of 
13C-1H cross peaks for various metabolites was made by comparing the carbon 
and proton chemical shifts with literature values (12-17), with spectra of pure 
compounds and by spiking the samples. Overall, 24 metabolites could be 
unambiguously assigned. The details of peak assignments and the reference 

 Fig. 1. A typical two-dimensional [

summary Table S1 of characteristic chemical shifts are provided in SOM. 

 breast 

3.2. Metabolic Fluxes 

relative intensities of 13C-13C scalar coupling multiplet 
com

13C, 1H] HSQC spectrum of the metabolites extracted from
cancer cells. Abbreviations for the assigned peaks are as in Table S1. 

A comparison of 
ponents of various metabolites extracted from [U-13C]glucose labeled MCF- 
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10A and MDA-MB-435 cells are shown in Table 1. These data were used in the 
13C isotopomer model to determine the metabolic fluxes or flux ratios through 
individual pathways including glycolysis, PPP, TCA cycle and anaplerotic 
reaction, fatty acid and amino acid biosynthetic pathways (Fig. 2). 

Table 1. Relative intensities of 13C multiplet components of metabolites extracted from MCF-10A 
and MDA-MB-435 cells grown on [U-13C]glucose a

Carbon position Isotopomer 
populations 

Multiplet 
components 

MCF-10A MDA-MB-
435 

Alanine-C2 2-13C s 0.27 0.16 
 2,3-13C2 d 0.01 0.11 
 1,2-13C2 d* 0.01 0.01 
 1,2,3-13C3 q 0.71 0.72 

Alanine-C3 3-13C s 0.28 0.17 
 2,3-13C2 d 0.72 0.83 

Lactate-C3 3-13C s 0.16 0.20 
 2,3-13C2 d 0.84 0.80 

Acetyl-CoA 
(GlcNAc/GalNAc)-C2 

2-13C s 0.29 0.14 

 1,2-13C2 d 0.71 0.86 
Glutamine-C4 4-13C s 0.50 −b

 3,4-13C2 d 0.01 − b

 4,5-13C2 d* 0.48 − b

 3,4,5-13C3 q 0.01 − b

Glutamate-C3 3-13C s 0.73 0.72 
 2,3-13C2 / 3,4-13C2 d 0.27 0.27 
 2,3,4-13C3 t 0 0.01 

Glutamate-C4 4-13C s 0.50 0.30 
 3,4-13C2 d 0.01 0.01 
 4,5-13C2 d* 0.48 0.66 
 3,4,5-13C3 q 0.01 0.03 

Glu (GSH)-C3 3-13C s 0.67 0.71 
 2,3-13C2 / 3,4-13C2 d 0.32 0.28 
 2,3,4-13C3 t 0.01 0.01 

Glu (GSH)-C4 4-13C s 0.24 0.13 
 3,4-13C2 d 0.02 0.02 
 4,5-13C2 d* 0.70 0.73 
 3,4,5-13C3 q 0.04 0.12 

Gly (GSH)-C2 2-13C s 0.88 0.27 
 1,2-13C2 d 0.12 0.73 

Glycine-C2 2-13C s 0.86 0.27 
 1,2-13C2 d 0.14 0.73 

Proline-C4 4-13C s 1.00 0.25 
 4,5-13C2 d 0.00 0.71 
 3,4,5-13C3 t 0.00 0.04 

Proline-C5 5-13C s 1.00 0.25 
 4,5-13C2 d 0.00 0.75 

a s, singlet; d, doublet (1Jcc, ~35 Hz); d*, doublet split by a large coupling constant (1Jcc, ~60 Hz); t, 
triplet; q, quartet. 
b Resonance of glutamine C4 is below the detection level in the MDA-MB-435 cells.  

The relative activity of PPP versus glycolysis was determined based on the 
analysis of 13C multiplets of alanine C2 as described above. The contribution of 
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the signature doublet (1JCC = 35 Hz) to the multiplets of alanine C2 is very small 
in MCF-10A but significant in MDA-MB-435 cells (Table 1), suggesting that a 
relative contribution of PPP to production of pyruvate is substantially higher in 
malignant cells (28%) compared to nonmalignant cells (~2%), where the bulk of 
pyruvate stems from glycolysis (Fig. 2). The increased use of PPP enables the 
MDA-MB-435 cells not only to supply more ribose for nucleic acid synthesis, 
but to recruit more of the NADPH reducing power for fatty acid synthesis. 
Indeed, the GC/MS analysis performed in this study revealed that 47% of 
palmitate is newly synthesized from glucose in MDA-MB-435 cells (Fig. 2) in 
correlation with the observed increase in PPP flux. The de novo synthesized 
palmitoleate, stearate, and oleate is 37%, 35%, and 18%, respectively. This is in 
marked contrast with almost no de novo fatty acid synthesis in MCF-10A cells 
as evidenced by the lack of 13C tracer accumulation in palmitate, palmitoleate, 

           Fig. 2. Met

stearate or oleate. 

abolic fluxes in MCF-10A and MDA-MB-435 cells (mean + s.d.; n=4). 
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The relative fluxes through pyruvate carboxylase and pyruv
drogenase were estimated from the analysis of glutamate labeling. The 

major isotopomer populations of 4,5-13C2 of glutamate and γ-glutamyl of 
glutathione indicated that these carbon atoms are derived from [1,2-13C2]acetyl-
CoA (Table 1). The isotopomer ratio of acetyl-CoA C2, 1,2-13C2 / 2-13C1, which 
can be assessed via the acetyl moiety of GlcNAc or GalNAc, is 2.5 for MCF-
10A and 6.1 for MDA-MB-435. Whereas these ratios are similar to the 
isotopomer ratios of 4,5-13C2 + 3,4,5-13C3 / 4-13C1 + 3,4-13C2 of glutathione C4 
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(2.8 for MCF-10A and 5.7 for MDA-MB-435), they are markedly different from 
the glutamate C4 ratios (0.96 for MCF-10A and 2.2 for MDA-MB-435). This 
indicates that the C4 and C5 in the γ-glutamyl moiety of glutathione are solely 
derived from acetyl-CoA, whereas glutamate is a likely subject of the isotopic 
dilution originating from a non-enriched carbon source (e.g. glutamine). 
Therefore, the isotopomer distribution of γ-glutamyl of glutathione was used to 
determine the relative activity of the anaplerotic reaction versus TCA cycle. The 
observed flux ratio of pyruvate carboxylase reaction over TCA cycle is slightly 
decreased in MDA-MB-435 compared to MCF-10A cells (Fig.2). 

Analysis of the 13C labeling pattern of the nonessential amino acids allowed 
us t

 NMR data from the same labeling experiments to 
dete

ell lines revealed significant 
chan

ot be 
expl

o determine the activity of the respective biosynthetic pathways. Using the 
13C isotopomer model, we found that cysteine is obtained directly from media 
components, and the activity of glutamate and glutamine biosynthesis is not 
changed significantly in MCF-10A and MDA-MB-435 cells (data not shown). 
Interestingly, MCF-10A cells do not utilize glucose for synthesis of glycine and 
proline, whereas these amino acids are actively synthesized from glucose in 
MDA-MB-435 cells (Fig. 2).  

3.3. Metabolite Pools 

We used the 2D
rmine and compare the concentrations of unambiguously assigned 

metabolites (Table 2). Quantitation of metabolites with natural isotope 
abundance yields directly the total metabolite concentrations. At the same time, 
the differences observed for biosynthetically labeled metabolites may originate 
from changes in pool sizes as well as due to the 13C enrichment. In many cases 
these effects can be decoupled as illustrated below.  

Comparison of MCF-10A and MDA-MB-435 c
ges in the pool sizes of many metabolites. For example, malignant cells 

exhibited significantly increased glutathione, m-inositol, and creatine 
concentrations and decreased isoleucine, leucine, valine, and taurine 
concentrations. Phosphocholine level is higher, whereas free choline and 
glycerophosphocholine were below the detection level in MDA-MB-435.  

The observed 12-fold increase in C2 and C3 peaks of succinate may n
ained solely by the 13C enrichment, which could account only for ~12% of 

the overall increase. The latter estimate is based on the labeling pattern of α-
ketoglutarate deduced from the observed ~1.3-fold 13C enrichment at the C3 and 
C4 of γ-glutamyl moiety of glutathione. Therefore, the total pool size of 
succinate was significantly increased in MDA-MB-435 cells. A similar approach 
allowed us to establish a substantial increase in the total pool size of GlcNAc or 
GalNAc and a decrease in those of alanine, glutamine, and glycine (Fig.3). 
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Table 2. Comparison of metabolite concentrations in MCF-10A and MDA-MB-435 cells a

Metabolites b Ratio  

M

Metabolites labeled at Ratio 
B-435 / 

M
MDA-MB-435 / specific positions 

CF-10A 
c MDA-M

CF-10A 
Arginine 0.98 ± 0.15 Alanine C2 1.02 ± 0.05 

GSH 1.59 ± 0.08 Alanine C3 1.00 ± 0.05 
I Glutamsoleucine 0.27 ± 0.04 ine C4 < 0.05 
Leucine 0.48 ± 0.05 Glutamate C3 1.56 ± 0.22 
Lysine 0.74 ± 0.16 Glutamate C4 2.09 ± 0.31 
Valine 0.26 ± 0.03 Glu (GSH) C3 2. 6 17 ± 0.1

m-Inositol 1.75 ± 0.10 Glu (GSH) C4 1.94 ± 0.15 
 Fr e ee cholin < 0.25 Gly (GSH) C2 6.54 ± 0.98 

Ph e o insphochol 1.72 ± 0.09 Glycine C2 1.15 ± 0.06 
Glyc oline erophosphoch < 0.10 Proline C4 8.57 ± 2.53 

Total choline 1. 7 39 ± 0.1 Proline C5 10.9 ± 3.3 
Phosphocholine / 

glycerophosphocholine 
> 17.2 Lactate C2 0.67 ± 0.17 

Creatine 1.74 ± 0.08 Succinate C2/C3 > 12.3 
Taurine 0.  GlcNAc / GalNAc C2 25 ± 0.03 > 14.7 

  UDP-Gl 2.56 ± 0.cNAc / UDP-
GalNAc C2 

64 

  UTP / UDP C1 3. 3 38 ± 0.5
a Relative am of the various compounds were ob eaks to 
reference standard, and further normalized per 1 mg of to  + s.d.; n=
b

ment 

pects of the metabolomics methodology used in this study were: 
ative approach was applied to assess metabolic changes in a 

mod
imm

lar metabolites (Tables 
1 an

ays including glycolysis, 
PPP

expanded our ability to interpret 
und

ge this is the first study when a 
com

ount tained by normalizing p the internal 
tal protein (mean
nce (a direct mea

4) 
etabolite  Quantitation of metabolites with natu l isotope abunda sure of m

concentrations). 
ra

c Differences observed for biosynthetically labeled metabolites may reflect both, a 13C enrich
and a change in a total pool size. 

4. Discussion 

The key as
1. A compar
el system of the highly metastatic cell line MDA-MB-435 versus the 
ortalized nontumorigenic cell line MCF-10A. 
2. [U-13C]glucose labeling followed by the high-resolution 2D NMR 

spectroscopy allowed us to monitor twenty-four intracellu
d 2) in addition to fatty acids analyzed by GC-MS.  
3. An extensive 13C isotopomer model was developed to determine and 

compare fluxes through the key central metabolic pathw
, TCA cycle and anaplerotic reactions, and biosynthetic pathways of fatty 

acids and non-essential amino acids (Fig.2).  
4. A combination of fluxes with individual metabolite pools within the 

single metabolic reconstruction framework 
erlying metabolic transitions (Fig.3). 
Although most of the individual components of this approach have been 

previously described, to our knowled
bination of these techniques was systematically applied for metabolomics of 
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cancer. Although comprehensive isotopomer models are widely used in 
microbial systems (18,19), only a few models have been described for human 
cells (20-29). Most of these models were restricted by relatively narrow 
metabolic subnetworks (20-25) or based on the labeling data for one (i.e. 
glutamate (25,26)) or a few individual metabolites (27-29). Due to the higher 
sensitivity of HSQC method compared to regular 13C-NMR we were able to 
decrease the amount of cells required for the analysis. The increased signal 
dispersion in 2D spectra allowed us to analyze a wide range of metabolites 

 Fig. 3. Metabolic profile changes in breast tumors compared with normal human mammary 
epithelial cells. The arrows represent the fluxes. Fluxes are normalized to glucose uptake rate. The 
boldface arrows indicate the flu

without prior separation.  

xes that are significantly upregulated. The pool sizes of boxed 
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metabolites are directly assessed by [13C,1H] HSQC. Metabolites are colored if their concentrations 
are increased (black), decreased (white), or not changed (gray). G6P, glucose-6-phosphate; R5P, 
ribose-5-phosphate; GAP, glyceraldehydes-3-phosphate; 3-PG, 3-phosphoglycerate. See other 
abbreviations in Table S1 given in SOM.  
 

An integration of fluxes and pool sizes acquired within a single experiment 
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gives a more detailed fingerprint of the phenotype compared to conventional 
pproaches based on one parameter. Although fluxes provide a direct measure of 

met

0,31) 
prov

gets. The 
pres

2. Klose, J., Nock, C., Herrm ., Marcus, K., Bluggel, M., 

 

4. sser, T., 

a
abolic activities pointing to potential targets, they can be usually obtained 

only for a subset of central metabolic pathways. Metabolite pools can be readily 
assessed for both central and peripheral metabolites. While providing only an 
indirect evidence of metabolic activities, they can be used as biomarkers.  

We observed a sharp increase in metabolic activity of several pathways in 
cancer cells (Fig.2 and 3). Some of these observations such as upregulation of 
PPP and fatty acid synthesis are consistent with previous reports (3

iding us with a validation of the approach. An increase in other fluxes, eg 
the synthesis of glycine and proline, are reported here for the first time. Possible 
implications of these changes in establishing and maintaining a breast cancer 
phenotype are yet to be explored. Some of the observed changes in metabolite 
pools can be readily interpreted in the context of respective fluxes. For example 
the pools of all monitored amino acids decreased or remained largely unchanged 
in cancer cells, despite the established upregulation of some of the respective 
biosynthetic pathways (Fig.3). This is consistent with accelerated consumption 
of amino acids for protein synthesis. At the same time, the pool of glutathione 
(GSH in Fig.3), which is not consumed at the same level increased in keeping 
with the increased synthetic flux. Overproduction of GSH in tumors may reflect 
the increased resistance towards oxidative stress (32). We observed significant 
alterations in pools of several peripheral metabolites (eg creatine and taurine), 
whose metabolism may not be easily assessed via flux measurements. 

Therefore, the results obtained in this study, in addition to the validation of 
the approach, provide new information about metabolic aspects of tumorigenesis, 
and can aid the identification of new diagnostic and therapeutic tar

ented approach constitutes a promising analytical tool to screen different 
metabolic phenotypes in a variety of cell types and pathological conditions.  
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