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With appropriate models, the metabolic profile of a biological system may be interrogated 
to obtain both significant discriminatory markers as well as mechanistic insight into the 
observed phenotype. One promising application is the analysis of drug toxicity, where a 
single chemical triggers multiple responses across cellular metabolism. Here, we describe 
a modeling framework whereby metabolite measurements are used to investigate the 
interactions between specialized cell functions through a metabolic reaction network. As 
a model system, we studied the hepatic transformation of troglitazone (TGZ), an anti-
diabetic drug withdrawn due to idiosyncratic hepatotoxicity. Results point to a well-
defined TGZ transformation module that connects to other major pathways in the 
hepatocyte via amino acids and their derivatives. The quantitative significance of these 
connections depended on the nutritional state and the availability of the sulfur containing 
amino acids. 

1. Introduction 

Metabolites are intermediates of essential biochemical pathways that convert 
nutrient fuel to energy, maintain cellular homeostasis, eliminate harmful 
chemicals, and provide building blocks for biosynthesis. Many metabolites are 
in free exchange with the extracellular medium, and may be used to obtain 
quantitative estimates of biochemical pathway activities in intact cells. In recent 
years, metabolite measurement arrays, or metabolic profiles, in conjunction with 
appropriate models, have been used for a variety of applications, e.g. 
comparisons of plant phenotypes [1], elucidation of new gene functions [2], and 
discovery of disease biomarkers [3]. Another promising application is the study 
of drug-mediated toxicity in specialized metabolic organs such as the liver. 

 One approach to identifying drug toxicity markers has been to extract 
characteristic fingerprints by applying pattern recognition techniques to 
‘metabonomic’ data obtained through nuclear magnetic resonance (NMR) 
spectroscopy [4]. An alternative and complementary approach is to build 
structured network models applicable to metabolomic data. These models could 
be used, for example, to globally characterize the effects of drug chemicals 
across cell metabolism, and thereby identify potential metabolic burdens; to 
associate adverse events, such as the formation of a harmful derivative, with 
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specific marker metabolites; and to formulate hypotheses on the mechanisms of 
drug toxicity. 

Here, we describe a modeling framework for characterizing the modularity 
of specific reaction clusters, in this case xenobiotic transformation. At its core, 
this framework consists of an algorithm for top-down partitioning of directed 
graphs with non-uniform edge weight distributions. The core algorithm is 
further augmented with metabolic flux profiling and stoichiometric vector space 
analysis. Thus, our modeling framework is well-suited for leveraging advances 
in both analytical technologies as well as biological informatics, especially 
genome annotation and pathway database construction [5]. As a model system, 
we considered the metabolic network of the liver, which is the major site of 
xenobiotic transformation in the body. Representative metabolic profile data 
were obtained for cultured rat or human hepatocytes from prior work [6, 7]. The 
model xenobiotic was troglitazone (TGZ), an anti-diabetic drug that  has 
recently been withdrawn due to idiosyncratic liver toxicity [8]. The exact 
mechanisms of toxicity remain unknown, but could involve the formation of 
harmful derivatives through metabolic activation, cellular energy depletion via 
mitochondrial membrane damage [9], or other metabolic burdens such as 
oxidative stress [10]. In this work, we utilize our modularity analysis model to 
characterize the connections between the reactions of known TGZ conjugates 
and the major pathways of liver cellular metabolism. This type of analysis 
should complement more detailed studies on the roles of specific conjugation 
enzymes by identifying their interdependence with other major components of 
the cellular metabolic network. In the case of TGZ transformation, our results 
indicate that key connectors are sulfur-containing amino acids and their 
derivatives. 

2. Methods 

2.1. Liver metabolic network 

Stoichiometric models of liver central carbon metabolism were constructed as 
follows. First, a list of enzyme-mediated reactions was collected from an 
annotated genome database [11]. Second, stoichiometric information was added 
for each of the collected enzymes by cross-referencing their common names and 
enzyme commission (EC) numbers using the KEGG database [12]. Third, 
biochemistry textbooks and the published literature [13] were consulted to build 
organ (liver) and nutritional state (fed or fasted) specific models. Net flux 
directions of reversible or reciprocally regulated pathways were set based on the 
nutritional state. These models were rendered into compound, directed graphs, 
visualized using the MATLAB (MathWorks, Natick, MA) Bioinformatics 
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toolbox, and corrected for missing steps and nonsensical dead ends. Reversible 
reactions flanked by irreversible reactions were assigned directionality so as to 
ensure unidirectional metabolic flux between the flanking reactions. The 
pathway memberships and other dimensional characteristics are summarized for 
each of the two models in Table 1*. 

 
Table 1. Pathway memberships of the fed- and fasted-state liver models 

Pathway Fed Fasted 
Alcohol metabolism √  
Amino acid metabolism √ √ 
Bile acid synthesis √  
Cholesterol synthesis √  
Gluconeogenesis  √ 
Glycogen synthesis √  
Glycolysis √  
Ketone body metabolism √ √ 
Lipogenesis √  
Lipolysis, β-oxidation  √ 
Oxidative phosphorylation √ √ 
PPP √ √ 
TCA cycle √ √ 
TGZ metabolism √ √ 
Urea cycle √ √ 

2.2. TGZ metabolism 

The base models were augmented with TGZ conjugation reactions identified in 
the literature. Upon entry into the hepatocyte, TGZ is almost entirely 
transformed into one of its four main conjugate forms [14]: TGZ-sulfate (TGZ-
S), TGZ-quinone (TGZ-Q), TGZ-glucuronide (TGZ-G), and TGZ-gluthathione 
(TGZ-GSH). Extension of the liver models with these derivatives added 10 new 
intermediates and 14 reactions. 

2.3. Data sets 

Inputs to the flux calculations were external flux measurements (rates of 
metabolite uptake or output) taken from previously published work. These 
studies profiled the metabolism of cultured hepatocytes under medium 
conditions that set up either a fed or fasted state. All data sets included time 
series measurements on glucose, lactate, ketone bodies, ammonia, and the 
naturally occurring amino acids. The number of measured metabolites was 25. 

                                                           
* Complete model details, including reaction stoichiometry, the identities of balanced metabolites, 

and thermodynamic reaction parameters are available upon request to the authors. 
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Summary descriptions of the experimental settings are shown in Table 2. A 
representative mean value for TGZ uptake rate was estimated based on a study 
involving primary hepatocytes obtained from human donors [15]. 
 

Table 2: Metabolite data sets used for flux estimation 

Model Cultured rat hepatocytes Cultured HepG2 cells 
Nutritional state Fed Fasted (spent medium) 
Medium DMEM w/ high (4.5 g/L) glucose DMEM w/ low (1.0 g/L) glucose 
Supplements Amino acids  
Hormones Insulin Dexamethasone 
Reference [6] [7] 

2.4. Flux calculation 

2.4.1 Metabolic Flux Analysis (MFA) 

Intracellular fluxes were calculated using an optimization based approach as 
described previously [16]. Briefly, a non-linear, constrained optimization 
problem was set up as follows: 

 Minimize: ∑ − , 
k

obs
kk vv 2)( fluxes}{external∈∀k  (1) 

 Subject to:  0vS =⋅   (2) 
  0vG ≤⋅    (3) 

where the objective function minimizes the sum squared error between 
experimentally observed ( ) and predicted external fluxes ( ). Eq. (1) 
expresses the balances around intracellular metabolites using an M×R 
stoichiometric matrix S and an R×1 flux vector v. The number of balanced 
metabolites (M) and reactions (R) were 37 and 64 for the fasted-state and 60 and 
102 for the fed-state model. Inequality (3) expresses constraints derived from 
the Second Law. To account for biochemical coupling between energetically 
favorable and unfavorable reactions, the thermodynamic constraints were 
applied to pathways, as opposed to individual reactions. Stoichiometrically 
balanced pathways were enumerated using the elementary flux mode (EFM) 
algorithm [17]. The output of the EFM analysis was collected into a P×R 
pathway matrix E, where P was the number of pathways (190 and 237 for the 
fasted- and fed-state model, respectively). To formulate the pathway ∆G 
(∆G

obs
kv kv

PATH°) constraint matrix G, we first collected the reaction ∆Gs into an R×1 
vector ∆g and then performed element-by-element multiplications with each of 
the P (R-dimensional) rows of E:  

 jijij ΔgEG ⋅= , }...1{},...1{ NjPi ∈∀∈∀  (4) 
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2.4.2 Flux Balance Analysis (FBA) 

We also simulated flux distributions that maximized the formation of the key 
liver anti-oxidant glutathione (GSH), which in vitro studies had shown to play a 
critical role in the detoxification of TGZ and other drugs in the liver [10]. The 
simulations were performed using linear programming with maximization of the 
GSH synthesis step (vGSH) as the objective. The equality and inequality 
constraints were identical to the above MFA problem. The measured external 
fluxes were used as upper and lower bound constraints. To prevent over-
constraining, we specified five of the 25 measured metabolites as major carbon 
and nitrogen sources/sinks. The final form of the FBA problem was: 

Maximize:  vGSH  (5) 
Subject to:  0vS =⋅   (2) 
  0vG ≤⋅   (3) 
  measiimeasi vvv ,, 25.0 ⋅≤≤⋅   (6) 

where vi refers to the measured rates of uptake, accumulation, or output of 
glucose, triglyceride, glutamine, urea or TGZ.  

2.5. Modularity analysis 

Analysis of reaction modules was performed using an algorithm for top-down 
decomposition of directed graphs. Details of the algorithm have been described 
elsewhere [18]. The algorithm consists of the following two steps, which are 
iteratively applied until all edges in the graph have been removed. 

1. Shortest paths through the network are calculated using Dijkstra’s 
algorithm. This calculation critically depends on the edge-weight matrix, 
which specifies the relative adjustments of reactant-product node pair 
distances based on the activity of the intervening reaction. Here, a node pair 
distance was inversely scaled with the connecting reaction activity as 
measured by its steady-state flux. 

2. The edge-betweenness centrality index is calculated for all edges. Edge-
betweenness centrality refers to the frequency of an edge that lies on the 
shortest paths between all pairs of vertices. The edges with highest 
betweenness values are most likely to lie between sub-graphs, rather than 
inside a sub-graph [19]. Successive removal of edges with the highest edge-
betweenness values will eventually isolate sub-graphs consisting of vertices 
that share connections only with other vertices in the same sub-graph. The 
edge-betweenness centrality values were calculated using a newly 
developed method [18] based on an algorithm for vertex betweenness 
centrality calculation of large, sparse networks [20]. 
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2.6. Projection and Match Scores 

The biological significance of a partition (iteration) was assessed by mapping 
the modules to stoichiometrically feasible pathways (defined by the EFMs). 

 Projection score – Each sub-graph was transformed into a 1×R binary reaction 
composition vector, where R is the total number of reactions included in the 
network. An element was set to 1 if both the reactants and products of the 
corresponding reaction were present as nodes in the module; otherwise, an 
element was set to 0. The EFM vectors (rows of E) were also transformed into 
1×R binary pathway inventory vectors (PIVs) by replacing all non-zero entries 
with one. A projection score was computed for every pair-wise combination of a 
binary module vector and each of the fed- or fasted-state model PIVs as follows:  

 k
ij

k
i

k
ji NPIVRCVPS )(, ⋅= , , kLi ,,2,1 K= mj ,,2,1 K=  (7) 

where , , and  were, respectively, the projection score, reaction 
composition vector, and number of nodes in module i at iteration number k, 

k
jiPS ,

k
iRCV k

iN
kL  

was the number of modules at k, was the jth PIV, and m was the total 
number of EFMs. The overall projection score of an iteration number k was 
calculated by averaging the ‘best match’ projection scores of this iteration:  

jPIV

 ( ) kk
ji

L

i

k LPSPS
k

,
1

max∑
=

=  (8) 

 Match score - Several cases were noted where the projection score identified 
more than one ‘best match’ PIV for a given module. In these cases, a 1×R 
consensus pathway fragment (CPF) vector was formed for each module i of 
iteration number k as the smallest common reaction set of the best match PIVs. 
The similarity between a module and its CPF was assessed by a match score: 

 RWRMS k
i

k
i −= ,  (9) kLi ,,2,1 K=

where  was the match score of module i at iteration number k, and  
was the number of mismatches between the module  and the 
corresponding CPF. A mismatch occurs if a reaction is found in the module, but 
not the fragment vector or if a reaction is found in the fragment, but not the 
module vector. The overall match score of an iteration was calculated as a 
simple average of the individual module match scores:  

k
iMS k

iW
k

iRCV

 k
L

i

k
i

k LMSMS
k

∑
=

=
1

 (10) 
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3. Results 

3.1. Flux distribution 

The predicted distributions of fluxes through the reactions of TGZ metabolism 
(Table 3) were only in partial agreement with the experimentally determined 
proportions of the derivatives reported in the literature. Radioactive tracer 
studies in animal models have shown that the major derivative is TGZ-S, 
accounting for up to 70 % of all conjugated forms [21]. For the fed-state model, 
the calculated distribution was, in decreasing order, 39 % TGZ-Q, 33 % TGZ-G, 
15 % TGZ-GSH, and 13 % TGZ-S. The distribution calculated for the fasted-
state model was 37 % TGZ-Q, 37 % TGZ-G, and 26 % TGZ-S. Thus, both 
models predicted the sulfate conjugate to be a minor component, contrary to the 
animal studies. On the other hand, the GSH conjugate was correctly predicted to 
be a minor derivative [14]. 

 
Table 3. Reactions of TGZ metabolism 

Flux, μmol/106 cells/day Reaction 
Fed Fasted 

Stoichiometry ∆GRXN° 
kcal/mol 

+TGZ Max 
GSH 

+TGZ Max 
GSH 

Cysteine + O2 + α-Ketoglutarate  
Pyruvate + SO3

2- + Glutamate -125.6 0.06 0.32 0.12 0.42 

Cysteine  Pyruvate + NH4
+ + HS- -38 0.00 0.00 0.00 0.00 

HS- + 2Gluthatione + 2O2  GSSG + 
HSO3- +  H2O -648.5 0.00 0.00 0.00 0.00 

TGZ uptake 0 0.46 0.91 0.46 0.92 
Glutamate + Cysteine + Glycine  
Glutathione 132.4 0.07 0.59 0.00 0.50 

TGZ + Glutathione  TGZ-GSH -7.5 0.07 0.59 0.00 0.50 
TGZ + SO32-  TGZ-Sulfate 19 0.06 0.32 0.12 0.42 
TGZ + HSO3-  TGZ-Sulfate 28.5 0.00 0.00 0.00 0.00 
TGZ  TGZ-Quinone -31.1 0.18 0.00 0.17 0.00 
TGZ  TGZ-Glucuronide -197.5 0.15 0.00 0.17 0.00 
TGZ-GSH secretion 0 0.07 0.59 0.00 0.50 
TGZ-Sulfate secretion 0 0.06 0.32 0.12 0.42 
TGZ-Glucuronide secretion 0 0.15 0.00 0.17 0.00 
TGZ-Quinone secretion 0 0.18 0.00 0.17 0.00 

Measured inputs are shown in bold.  +TGZ: flux distribution calculated by MFA with total drug 
uptake set to 0.46 μmol/106 cells/day. Max GSH: flux distribution calculated by FBA with upper and 
lower bounds on glucose, TG, GLN, urea, and TGZ. 

Interestingly, the two models predicted qualitatively similar trends despite their 
significantly different compositions and measured inputs, suggesting that there 
were a limited number of actively engaged connections between TGZ 
transformation and the other metabolic pathways. The major quantitative 
difference involved the contribution of the GSH conjugate. Thus, we next 
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examined the effect of increasing the availability of this conjugation substrate 
by simulating flux distributions that maximized GSH synthesis under the same 
stoichiometric and thermodynamic constraints applied to the MFA problems. To 
obtain flux values numerically compatible with the MFA results, we also 
assigned upper and lower bounds to the major carbon and nitrogen sinks and 
sources based on their respective measured external flux values. 

 As expected, the flux through the GSH synthesis step (vGSH) increased 
significantly for both the fed- and fasted-models (in μmol/106 cells/day) from 
0.07 to 0.59 and 0 to 0.50, respectively, when the maximization objective was 
paired with no direct constraints on the uptake or output of the amino acid 
reactants. The only indirect constraint on GLU was applied through the upper 
and lower bounds on GLN (0.75 and 3 μmol/106 cells/day, respectively), which 
were not approached. However, the higher vGSH flux for the fed-state model 
suggests a positive correlation with GLN uptake, which was significantly higher 
for the fed-state model. The predicted distribution of conjugation reaction fluxes 
were 65 % TGZ-GSH and 35 % TGZ-S for the fed-state model and 54 % TGZ-
GSH and 46 % TGZ-S for the fed-state model. 

Both models predicted zero fluxes for the formation of the glucuronide and 
quinone conjugates, suggesting that the distribution of the TGZ derivatives may 
be dramatically altered by the availability of GSH, which in turn is influenced 
by the medium supply of its constituent amino acids. The increase in TGZ-GSH 
was accompanied by an increase in TGZ-S formation, likely because the 
cysteine component of GSH also acts as a source of sulfate (HSO3

- and SO3
2-), 

which drive the formation of TGZ-S. Cysteine as well as its sulfate derivatives 
mutually interacts with other intermediates of central carbon metabolism. These 
interactions have been further characterized through modularity analysis.  

3.2. Reaction modules 

To characterize the interconnections between TGZ derivatives and other major 
liver metabolites, we applied a partition algorithm to directed graph 
representations of the various network models with and without edge-weights. 
The left-hand panels of Fig. 1 show the optimal partitions of the fed-state model 
without an edge-weight matrix (a), with an edge-weight matrix derived from 
MFA (c), and with an edge-weight matrix derived from FBA (e). Figs. 1b, 1d, 
and 1f show the corresponding partitions of the fasted-state model. Optimality 
was evaluated based on the projection and match scores (see Methods, Fig. 2). 
 For both the fed- and fasted-state models, the inclusion of reaction flux, or 
connection activity, significantly influenced their modularity. When only 
connectivity was considered, the (unweighted) fed-state network was optimally 
partitioned at iteration number 34 (Fig. 1a). Three modules were generated.  
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c d

e f

 
Figure 1. Optimal partitions of the liver network models. Left- and right-hand column panels show 
fed-and fasted-state models, respectively. Partition without flux weights (a, b), with flux weights (c, 
d), and with flux weights maximizing GSH (e, f). Arrows indicated carbon flow between modules as 
determined from the partition of the previous iteration. 
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The smallest module consisted of two metabolites in lipid synthesis (palmitate, 
PAL, and triglyceride, TG). The largest module included all other metabolites 
with the exception of TGZ and its direct derivatives, which constituted the 
remaining third module. When an edge-weight matrix was applied with MFA 
derived fluxes, the optimal partition was reached at iteration 8 (Fig. 1c). Four 
modules (consisting of at least two connected nodes) were found. The smallest 
module consisted of metabolites in the urea cycle. A second module consisted of 
lipid synthesis and PPP metabolites. A third module consisted of the TCA cycle 
metabolites. The largest module included TGZ, its direct derivatives, and the 
intermediates of amino acid and pyruvate metabolism. When a different edge-
weight matrix was used with a flux distribution corresponding to maximal GSH 
synthesis, the optimal partition (reached at iteration 8) consisted of three 
modules (Fig. 1e). The two smaller modules were identical to the two smallest 
modules of the partition in Fig. 1c. The third module essentially combined the 
larger two modules of Fig. 1c, with connections through the reactions in and 
around the urea and TCA cycles. 

 
Fig. 2. Mean projection and match score plots for the fed-state model partitions. Legends refer to 
flux distribution used to form the edge-weight matrix. For both series of partitions, the optimal 
iteration was set at 8, which corresponds to the first significant rise in the two scores. 

The modularity of the fasted-state was also significantly influenced by the 
connection diversity (flux) data. Without an edge-weight matrix, the net effect 
of the edge removals was to reduce the network graph size (Fig. 1b). 
Application of the MFA derived fluxes as edge-weights generated an optimal 
partition with two modules at iteration 15 (Fig. 1d). Similar to Fig. 1a, TGZ and 
its derivatives formed a separate module. However, this module lacked TGZ-
GSH, presumably because the fasted-state model calculated zero flux for GSH 
synthesis. Unlike the fed-state partition (Fig. 1c), the TGZ module did not 
connect directly to the other metabolic pathways. Direct connections remained 
absent when the GSH maximizing flux distribution was used to form the edge-
weight matrix (Fig. 1f). The major effects were to isolate a small module 
consisting of urea cycle metabolites from the largest reaction module. As 
expected from the results of Table 3, TGZ-G and TGZ–Q were eliminated from 
the TGZ module, and replaced with TGZ-GSH.  Together, Figs. 1c-d suggest 
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that the nutritional state of the liver directly impacts the connections between 
reactions of TGZ transformation and the other major pathways of liver 
metabolism. Moreover, a comparison of the partitions in Fig. 1c and 1e 
indicated that conjugation substrate availability, in this case GSH, influences the 
extent of integration between these reaction modules. 

4. Discussion 

In this paper, we examined the interactions between the specialized reactions of 
TGZ transformation and the network of major metabolic reactions in 
hepatocytes. Using prior data, flux distributions were simulated that were in 
partial agreement with experimental observations on the relative distributions of 
various TGZ conjugates. With only total TGZ clearance rate as input, TGZ-
GSH was correctly predicted as a minor derivative, but the contribution of TGZ-
S was significantly under-estimated, suggesting that additional measurements on 
the conjugation reactions are needed to improve the flux calculations. 

Nevertheless, we noted several useful outcomes. First, the thermodynamic 
constraints allowed convergent solutions to be found with relatively small 
numbers of measured inputs. Second, we avoided potential pitfalls of individual 
reaction-based inequality constraints. For example, flux calculations correctly 
predicted significant net production of TGZ-S in all cases, even though the 
individual reaction ΔGs of the final synthesis steps were positive (Table 3). 
These results directly reflect the energetic coupling between sequential reaction 
steps as specified by the EFM calculations. Third, the EFMs generated for the 
flux calculations provided an inventory of stoichiometrically and energetically 
feasible reaction routes of the model networks. 

 A major obstacle to applying the EFM analysis to larger, e.g. genome scale, 
networks is its computational intractability. One way to address this issue is to 
solve for a partial set of EFMs by eliminating high-degree currency metabolites. 
Many currency metabolites cannot be accurately measured or balanced, and thus 
frequently not included in the stoichiometric constraints, but form metabolic 
cycles that significantly expand the EFM solution space. In this work, ATP, CO2 
and O2 were not balanced, and the EFM calculations became NP-hard problems. 

 The EFMs and the calculated flux distributions were ultimately used to 
examine the modularity of TGZ metabolism across different nutritional states 
and levels of conjugation substrate availability. While the connections between 
the immediate reactions of TGZ metabolism were well-conserved across these 
different conditions, connections to other major pathways varied. In the fasted-
state, interactions between the main carbon network and the TGZ module were 
limited, regardless of the GSH level. In contrast, a number of active connections 
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were found for the fed state. These connections mainly involved the sulfur 
containing amino acid cysteine (CYS) and its immediate reaction partners. The 
liberation of the sulfide moiety from CYS requires complete degradation of the 
amino acid via transamination reactions, which involves other high-degree 
metabolites such as GLU and α-ketoglutarate. Along with glycine, GLU and 
CYS make up GSH, which also interacts with the TGZ module as a conjugation 
substrate. Taken together, our findings suggest that the availability of common 
medium nutrients could significantly influence the formation of drug 
derivatives. Prospectively, metabolic profile-based studies on drug reaction 
modules could be used to analyze drug transformation under varying metabolic 
states, which in turn could facilitate the development of effective nutritional 
approaches for managing drug toxicity [10]. 
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