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The identification of reliable peripheral biomarkers for clinical diagnosis, patient 
prognosis, and biological functional studies would allow for access to biological 
information currently available only through invasive methods. Traditional approaches 
have so far considered aspects of tissues and biofluid markers independently. Here we 
introduce an information theoretic framework for biomarker discovery, integrating 
biofluid and tissue information.  This allows us to identify tissue information in 
peripheral biofluids. 
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We treat tissue-biofluid interactions as an information channel through functional space 
using 26 proteomes from 45 different sources to determine quantitatively the 
correspondence of each biofluid for specific tissues via relative entropy calculation of 
proteomes mapped onto phenotype, function, and drug space.  Next, we identify 
candidate biofluids and biomarkers responsible for functional information transfer 
(p < 0.01). A total of 851 unique candidate biomarkers proxies were identified. The 
biomarkers were found to be significant functional tissue proxies compared to random 
proteins (p < 0.001). This proxy link is found to be further enhanced by filtering the 
biofluid proteins to include only significant tissue-biofluid information channels and is 
further validated by gene expression.  Furthermore, many of the candidate biomarkers are 
novel and have yet to be explored. In addition to characterizing proteins and their 
interactions with a systemic perspective, our work can be used as a roadmap to guide 
biomedical investigation, from suggesting biofluids for study to constraining the search 
for biomarkers.  This work has applications in disease screening, diagnosis, and protein 
function studies. 

1. Introduction  
The rapidly increasing availability of sequenced genomes since the 1990's has 
made it clear that genetic analysis alone cannot fully account for organismal 
complexity1. A more complete realization focuses instead on genes’ protein 
products. As such, the field of proteomics aims to understand protein function, 
structure, and interactions1. 

Proteomics has considerable clinical relevance: proteins carry out cellular 
functions, comprise drug targets, and often participate in or indicate disease 
pathogenesis. For example, a doctor may take a blood sample to perform a liver 
function test2, for which certain enzymes (e.g., alanine transaminase) are 
elevated in liver dysfunction. Recently, biomarkers for various diseases have 
emerged, including prostate specific antigen (PSA) for prostate cancer3 and 
C-reactive protein (CRP) for heart disease4. Therefore, identification of 
clinically significant protein biomarkers of phenotype and biological function is 
an exciting and expanding area of research that promises to extend diagnostic 
capabilities.  

The use of biomarkers from easily accessible biofluids (e.g. blood, urine) is 
advantageous for evaluating the state of harder-to-reach tissues and organs. 
Biofluids capture proteins and protein fragments released by cells in the body, 
either as waste or to communicate with other cells or tissues5.  In addition, 
biofluids are much more readily accessible, unlike more invasive or unfeasible 
techniques such as tissue biopsies (e.g. brain tissue).  To date, however, 
approaches to biomarker prediction have analyzed tissues and biofluids 
separately6.  

Here we propose an information theoretic framework for discovery of novel 
biomarkers that utilizes information from biofluid proteins that can serve as 
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functional, phenotypic, and drug interaction proxies for the underlying tissues. 
In order to specify a biomarker, a researcher must identify both a biofluid (e.g. 
blood) and protein(s) in that biofluid that are relevant. Due to the presence of 
dozens of biofluids and many thousands of proteins, too many combinatorial 
possibilities exist for them to be tested individually.  In this work we propose 
methods to identify both biofluids and specific proteins that are particularly well 
suited for biomarker discovery and validation. 

Biofluids contain proteins from tissues and serve as effective 
communication/hormonal . Conceptually, the tissue acts as a transmitter of 
information and the biofluid (sampled by the physician) as a receiver.  The 
informativeness of the biofluid is reliant on the fidelity of the channel. Sources 
of noise which decrease fidelity include addition of proteins derived from other 
tissues or from the biofluid itself; proteins may also be lost through the 
glomerular filtration process that removes proteins smaller than 45 kDa  from 
plasma7. These factors can substantially bias the protein composition of a 
biofluid: for instance, the plasma abundances of interleukin-6 and albumin 
differ8 by 10 orders of magnitude. Additionally, looking simply at protein 
overlap would miss information transmission that occurs through classes of 
proteins and protein-protein interactions. Thus, we consider not the proteins 
directly, but instead their projection onto functional, drug, and disease spaces, 
allowing the measurement of functional distance between tissues and biofluids. 
Closeness in these abstract spaces signifies a low level of distortion across the 
information channel, and hence high informativeness of the biofluid.  

It turns out that information theory has already developed a robust, 
principled framework9 for evaluating such a channel problem.  The 
informativeness of a biofluid for a tissue can thus be evaluated within this 
framework and be used to guide disease and physiological investigations.   

2. Methods 
In total, 26 human proteomes10 were obtained from 45 studies. The 16 tissue 
proteomes comprised brain, cartilage, cornea, heart, kidney, larynx, liver, 
macrophage, muscle, nose, ovary, pancreas, pituitary, platelet, skin, and 
stomach. The 10 biofluid proteomes comprised amniotic fluid, cerebrospinal 
fluid, plasma, pleural fluid, saliva, serum, sputum, synovial fluid, tear, and 
urine. The full human proteome was obtained from the Gene Ontology 
Annotation database11. The Gene Ontology12, or GO (23,692 terms) was used to 
map proteins to functional space, employing the three hierarchies of cellular 
component, biological process, and molecular function. A controlled vocabulary 
for diseases (5,648 terms) was extracted from Online Mendelian Inheritance in 
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Man (OMIM)13 to construct the disease-based ontology for mapping proteins to 
disease space. Similarly, the drug-based ontology (411 terms) was created using 
the Pharmacogenetics and Pharmacogenomics Knowledge Base (PharmGKB)14 
for mapping proteins to drug space. Of the three ontologies, GO has the largest 
number of terms and represents the most comprehensive distribution of 
information. As such, although all three ontologies were used to identify 
significant tissue-biofluid relationships, focus was on the GO-derived results in 
the identification of candidate biomarkers. 

In information theory, relative entropy15 is a measure of the distance 
between an unobserved distribution T (here: tissue) and an observed distribution 
B (here: biofluid). Lower relative entropy denotes closer correspondence 
between the two distributions. The relative entropy R between a tissue T and a 
biofluid B was determined as: 

∑
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Here, b(Vn) and t(Vn) denote the annotation frequency of term Vn across B and T, 
respectively, and N is the total number of terms in the function, disease, and 
drug space. For example, if B = urine, with 1000 proteins, and Vn = “ion 
binding”, then b(Vn) = 0.01 means that 1% (10) proteins in the urine proteome 
are associated with “ion binding” function. A total of 36,000 relative entropy 
simulations were performed between the tissues and randomly-chosen sets of 
proteins from the entire proteome to ascertain the significance of tissue-biofluid 
connections, followed by application of Bonferroni multiple test correction16.  
Thus, a biofluid B is informative of a tissue T if its relative entropy score R(B,T) 
with that particular tissue is significantly better than the relative entropy scores 
of randomly-chosen protein sets with the same number of proteins as B (i.e., 
p < 0.01, after multiple test correction). The approach we proposed is diagramed 
in Figure 1. Connections were considered significant only if they were 
significantly better than random in terms of channel information faithfulness for 
all three spaces: function, disease, and drug.   
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Figure 1. Information theoretic characterization of biofluid-tissue interaction 
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A search was done for all GO terms with representation at significantly 
similar frequencies between B and T. Such terms were termed “bandwidth-
carrying” terms because they are primarily responsible for transfer of functional 
information across the tissue-biofluid channel (i.e., based on relative entropy 
score; see above). Fisher’s exact test was used to compute the probability 
p(Vn, B, T | F) of selecting, from the full human proteome F, a random protein 
sample the same size as B sharing, with T, the same level of frequency similarity 
or better for Vn: 
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Here, F(Vn) constitutes all human proteins annotated by Vn, and set size notation 
is used. k ranges between i = )( nVbB ⋅  and j = [ ])()(2 nn VbVtB −⋅ , denoting counts 
of equal or higher similarity for Vn. For example, say T and B both contain 100 
proteins; 40 proteins (40%) in tissue T are annotated by Vn = “ion binding” 
(Gene Ontology), and 38 proteins (38%) in biofluid B are annotated by Vn. In 
this case, i = 38 and j = 42 for an equal or more similar level of Vn frequency 
(between 38% and 42%; i.e. within 2% of 40%) with T as the specific biofluid 
B. 

Candidate biomarkers were selected using a scoring process. For a given 
tissue-biofluid combination, proteins were scored by summing the Shannon 
information content17 of the tissue-biofluid pair’s “bandwidth-carrying” terms 
residing in the protein’s list of GO annotations. Candidate biomarkers were 
chosen as biofluid proteins with p < 0.05 compared to the scores of randomly-
chosen proteins from the full human proteome. 

3. Results 
3.1 Significant Tissue-Biofluid Channels 
A total of 9 biofluids were found to be significantly informative for a total of 14 
tissues. In all, 26 tissue-biofluid channels were significant with p < 0.01 after 
Bonferroni correction, while 10 additional tissue-biofluid channels had 
borderline significance of p < 0.05. Figure 2 displays significant channels 
(p < 0.01) between tissues (rectangles) and biofluids (circles). Two tissues, the 
heart and the pituitary, were not found to be significant with any biofluid tested. 
On the other hand, the tear biofluid was not found to be informative for any 
tissue. 
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Figure 2. Significant tissue-biofluid channels 

 

As might be expected, blood plasma was significantly informative of most 
tissues (exceptions were heart, larynx, and pituitary). Interestingly, saliva was 
the next most informative biofluid (significance across 9 tissues), followed by 
sputum and urine, which were informative of 4 and 5 tissues respectively. The 
remaining biofluids (except tear) were informative of 1-2 tissues each. 

Corneal tissue shared significance with many biofluids, including 
cerebrospinal fluid (CSF). This connection has been noted in the literature; for 
instance, one study noted elevated insulin concentrations in the cornea and CSF 
upon intralumbar injection18. Moreover, topical application of insulin eye drops 
caused its accumulation within CSF19. Sclerotic diffusion could account for the 
detection of inflammatory response in CSF upon corneal inoculation of herpes 
simplex virus20. Interestingly, CSF was not found to be significantly informative 
for brain tissue, perhaps because CSF only interacts with the outer edge of the 
brain. Indeed, one common use of CSF is to diagnose meningitis, which is an 
infection of the membrane that covers the brain and not of the brain itself.   

Significant connections found between the cornea and the other biofluids 
have also been cited in previous studies. For example, the cornea has been 
associated with synovial fluid; arthritis patients often display upregulation of 
proinflammatory cytokines in synovial fluid and corneal samples21. 
Additionally, identical bacteria can be isolated from cornea and sputum during 
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nosocomial eye infection22. Literature corroboration increases confidence in our 
method; consequently, associations with other biofluids that have not been 
thoroughly explored to date can serve as useful avenues for investigation. 

Another significant relationship was discovered between macrophage and 
sputum, which can be rationalized by macrophages’ role in the removal of 
necrotic debris from the lungs. This tissue-biofluid link is supported by studies 
showing that increased inflammatory cytokine levels in sputum stimulate 
macrophage production of metalloproteinases23. Other studies have used 
induced sputum to determine macrophage phenotypes in airway afflictions24. 
Since macrophages are highly involved in immune diseases due to their 
phagocytic capacity, further elucidation of this relationship could have a variety 
of clinical applications. 
 
3.2 Identification of Candidate Biomarkers 

To identify actual candidate biomarkers, we discovered “bandwidth-
carrying” GO terms responsible for transmitting the bulk of functional 
information from tissue to biofluid. Note that such “bandwidth-carrying” terms 
can exist between a tissue and biofluid even when the overall biofluid was not 
found to be informative of the overall tissue. Between the 16 tissues and the 10 
biofluids, 519 “bandwidth-carrying” terms were identified with p < 0.001. 
Using these terms, 851 unique proteins were identified as candidate biomarkers 
for the 16 tissues in this study. Plasma was the most productive biofluid, 
containing an average of 269 candidate biomarkers per tissue; serum was next 
with an average of 112 biomarkers per tissue. Other biofluids presented varying 
numbers of candidate biomarkers: urine for instance had an average of 37 
biomarkers per tissue, whereas tear was not found to contain any candidate 
biomarkers for any tissue with the sole exception of cornea. A portion of the 
resulting network (e.g. for ovary and biofluids) is shown in Figure 3. 
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Figure 3. A portion of the tissue-biomarker-biofluid network.  Ovary (large, dark sphere in center), 
biofluids (small spheres), and candidate protein biomarkers (large, light spheres). 

 
Since our approach assesses function on a tissue-wide level, our candidate 

biomarkers are not restricted to any particular cellular or pathological process. 
However, their contributions to physiological state can be hypothesized from 
their functional annotations, and hence serve as initial candidates for 
screening.  A quick scan of the candidate biomarkers reveals some proteins that 
have been discovered by traditional means. For example, in our list of potential 
biomarkers for measuring ovarian function, we found a number of known 
cancer markers. Represented in this list were epidermal growth factor receptor 
(EGFR),  BRCA1, and Apolipoprotein E. These proteins are clinically 
significant markers of ovarian cancer: EGFR is a specific target for ovarian 
cancer therapy25, and mutation of BRCA1 correlates with ovarian cancer risk26. 
Apolipoprotein E has been found to be upregulated in ovarian cancer27 and also 
critical for cell survival and proliferation in the disease28.   

Although these ovarian cancer biomarkers have already been validated, the 
need for additional biomarkers is striking. Half of ovarian cancer patients 
initially present at Stage III or Stage IV when 5-year survival is only 20%, thus 
making the disease responsible for more deaths than all other gynecological 
cancers combined29. The successful identification of known ovarian cancer 
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biomarkers confirms our approach, suggesting that the list of predicted ovary 
biomarkers contains promising targets for clinical investigation. The rapid, 
guided testing of novel biomarkers can then improve the understanding and 
treatment of ovarian cancer. 
 
3.3 Establishing Biomarker Quality 

The overall quality of the candidate biomarkers was assessed by measuring 
co-citation frequencies in PubMed (Figure 4). The co-citation frequency of each 
biomarker with the corresponding predicted target tissue(s) (“Predicted” bar) 
was compared with that of the same biomarkers but with non-corresponding 
(off-target) tissues, for which the biomarker was not predicted to be informative 
(“Non-predicted” bar).  Results were then sampled for manual verification of 
the links within the papers as well as the underlying Medical Subject Headings 
(MeSH). 

The median number of publications co-citing a given tissue and one of its 
predicted biomarkers was 24, while the median number for non-predicted 
biomarker/tissue combinations was 16. This difference was found to be 
significant by the Mann-Whitney U-test (p < 5.3x10-13). 

Tissue specificity, and hence confidence in biomarker quality, was 
improved further by filtering the candidate biomarker list according to the 
significant tissue-biofluid channels (see section 3.1 and Figure 2). Thus, a 
candidate biomarker was considered only if the biofluid containing the 
biomarker was found to be significantly informative of the biomarker’s target 
tissue. The filtered list, comprising 519 unique biomarkers, was about 60% of 
the size of the unfiltered list. However, the filtered biomarkers were even more 
tissue-specific: the median co-citation rate of predicted biomarkers/tissues was 
28 publications, whereas the median co-citation rate of non-predicted 
biomarkers/tissues remained at 16 publications (p < 5.5x10-21). This  increase 
after filtering (Figure 4) suggests that clinically relevant protein biomarkers of a 
tissue are likely to reside in the biofluids found to be significantly informative of 
that tissue, thus integrating the information channel model of tissue-biofluid 
interaction (via relative entropy) with biomarker prediction and discovery. 
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Figure 4. Tissue specificity of candidate biomarkers.   

 
 An example case study is  Amyloid beta A4 protein.  It was found to be 

modulated with ovariectomies in previous studies30, thus helping validate the 
potential of evaluating ovarian function through such a biomarker.  On the other 
hand, it was not found to been previously associated with ovarian cancer in the 
literature.  As an indicator of function, this biomarker can be potentially 
informative about phenotypic state as well.  To validate this, we analyzed an 
independently performed gene expression study of ovarian cancer31 and found 
this protein was significantly upregulated (p < 0.01).  To control the false 
discovery rate, we calculated the q-value32 as 1.4 x 10-10. 

By combining protein interactions, gene expression, and PubMed with an 
information theoretic framework, this approach promises to allow for the 
discovery of novel functional and phenotypic biomarkers of internal tissue 
processes. 

4. Discussion and Conclusion 
Our framework combines biofluid and tissue information for the discovery of 
novel biomarkers. Unlike prior work, our approach takes advantage of 
functional synergy between certain biofluids and tissues with the potential for 
clinically significant findings not possible if tissues and biofluids were 
considered individually. 
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By conceptualizing tissue-biofluid interactions as information channels, we 
identified significant biofluid proxies that can be used for guided development 
of clinical diagnostics. We then predicted candidate biomarkers based on 
information transfer criteria across the tissue-biofluid channels. Significant 
biofluid-tissue relationships can be used to prioritize clinical validation of new 
biomarkers. 

Some of our results have already been validated for clinical utility, 
increasing confidence in our findings. At the same time, many are currently 
novel, suggesting that multiple additional biomarkers can be experimentally 
confirmed regarding clinical significance.  Our work provides a new approach 
for linking molecular bioinformatics to clinical research, with the potential to 
expand physiological, phenotypic, and clinical diagnostic capabilities for 
applications in biology and medicine.   
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