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In this paper we introduce a clustering algorithm capable of simultaneously factorizing two 
distinct gene expression datasets with the aim of uncovering gene regulatory programs that are 
common to the two phenotypes. The siNMF algorithm simultaneously searches for two 
factorizations that share the same gene expression profiles. The two key ingredients of this 
algorithm are the nonnegativity constraint and the offset variables, which together ensure the 
sparseness of the factorizations. 
While cancer is a very heterogeneous disease, there is overwhelming recent evidence that the 
differences between cancer subtypes implicate entire pathways and biological processes 
involving large numbers of genes, rather than changes in single genes. We have applied our 
simultaneous factorization algorithm looking for gene expression profiles that are common 
between the more homogeneous pancreatic ductal adenocarcinoma (PDAC) and the more 
heterogeneous colon adenocarcinoma. The fact that the PDAC signature is active in a large 
fraction of colon adeocarcinoma suggests that the oncogenic mechanisms involved may be 
similar to those in PDAC, at least in this subset of colon samples. 
There are many approaches to uncovering common mechanisms involved in different 
phenotypes, but most are based on comparing gene lists. The approach presented in this paper 
additionally takes gene expression data into account and can thus be more sensitive. 

1 Introduction and motivation 
 
Understanding cancer at the molecular level is a daunting task due to the enormous 
heterogeneity of this disease, depending not only on tissue and cell type, the 
progenitor cells involved, but also on the stochastic nature of genomic mutations as 
well as the associated local evolutionary processes. 

However, not all cancers are equally heterogeneous. An ongoing microarray 
study of pancreatic ductal adenocarcinoma (PDAC) [6] involving 76 samples (i.e. 
38 normal-tumor pairs) has revealed a surprising homogeneity of this particularly 
deadly type of cancer, characterized by a strong so-called “desmoplastic reaction” 
(fibrosis), as well as by a very high metastatic potential.  

A preliminary analysis of the genes differentially expressed between tumor and 
control samples emphasized the essential role of the TGF-beta pathway in PDAC. 
Remarkably, the TGF-beta pathway links the two observed phenotypes: fibrosis/ 
extracellular matrix proliferation and the aggressive metastatic potential of PDAC, 
the latter being due to the fact that TGF-beta controls the so-called epithelial-
mesenchymal transition (EMT).  
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As opposed to PDAC, sporadic colon adenocarcinoma are very heterogeneous 
and their best current classification based on the presence or absence of 
microsatellite instabilities (MSI-L, MSI-H and MSS) [1] is far from ideal from the 
point of view of gene expression.  

To obtain a better subclassification of sporadic colon adenocarcinomas, we have 
applied various unsupervised clustering algorithms to a large colon cancer dataset 
(204 samples). Interestingly, a large colon adenocarcinoma subclass expressed a set 
of genes very similar to the genes differentially expressed in pancreatic ductal 
adenocarcinoma. 

This immediately leads to the question of whether the TGF-beta related 
mechanism involved in PDAC is also at work in at least a subset of colon 
adenocarcinoma. An ad-hoc approach (like the one mentioned above) based on 
overlaps of gene lists is however far from satisfactory, since it entirely ignores the 
quantitative gene expression data available. 

This paper presents a more sophisticated method of extracting the gene 
expression profiles common to a pair of distinct phenotypes (e.g. diseases) for 
which microarray studies are available. The method involves a generalization of 
Nonnegative Matrix Factorization (NMF) and is called “simultaneous NMF” 
(siNMF), since it factorizes two gene expression datasets simultaneously. More 
precisely, the siNMF algorithm searches for two factorizations (of the two gene 
expression datasets) sharing the same gene expression profiles. This allows us to 
discover the gene expression profiles that are common to pairs of subclasses in the 
two datasets.  

In the special case of PDAC and sporadic colon adenocarcinoma, we found a 
gene expression profile highly enriched in target genes of the TGF-beta pathway 
that is involved in the majority of PDAC cases as well as a large subclass of colon 
cancers. 

2     The datasets 

For the present study we have used two large PDAC and sporadic colon 
adenocarcinoma microarray datasets, which we briefly describe below. 

2.1   The pancreatic ductal adenocarcinoma dataset 

The pancreatic ductal adenocarcinoma (PDAC) dataset was produced in the 
framework of our GENOPACT project [6]. The dataset contains microarray 
measurements produced with Affymetrix U133 Plus 2.0 whole genome chips for 38 
pairs of PDAC and respectively control samples (76 samples in total). 1 The raw 

                                                           
1 As far as we know, the sample size of our study is significantly larger than all published 

microarray studies of pancreatic ductal adenocarcinoma. 
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scanning data was preprocessed with the RMA normalization and summarization 
algorithm from the R package. (The logarithmized form of the gene expression 
matrix was subsequently used, since typical gene expression values are log-
normally distributed.) After filtering out the probe-sets (genes) with relatively low 
expression as well as those with a nearly constant expression value2, we were left 
with 7232 probe-sets. Finally, the Euclidean norms of the expression levels for the 
individual genes were normalized to 1 to disallow genes with higher absolute 
expression values to overshadow the other genes in the factorization. 

2.2   The sporadic colon adenocarcinoma dataset 

Because of the known heterogeneity of sporadic colon adenocarcinoma, a dataset 
much larger than the pancreatic dataset described above was needed. We combined 
182 colon adenocarcinoma samples from the expO database [7] with 22 control 
samples from [8] to obtain a 204 sample dataset. (All of these had been measured 
on Affymetrix U133 Plus 2.0 chips.) After applying the same filtering step as the 
one used in the PDAC dataset (average expression > 100 and standard deviation > 
100), we obtained a smaller set of 5617 probe-sets. The resulting gene expression 
matrix was also logarithmized before factorization and the Euclidean norms of the 
individual genes were normalized to 1. 

In the following we describe the factorization algorithm in more detail before 
presenting its application to the two datasets. 

3     Simultaneous Nonnegative Matrix Factorization with offset 

SiNMF simultaneously factorizes two (non-negative) gene expression matrices 
)1(

sgX and )2(
sgX (the index s denotes samples, while g stands for genes) as follows: 

)1()1()1(
gc cgscsg SoSAX +⋅≈       (1) 

)2()2()2(
gc cgscsg SoSAX +⋅≈       (2) 

with the additional nonnegativity constraints:   
0,0,0,0,0 )2()1()2()1( ≥≥≥≥≥ ggcgscsc SoSoSAA     (3) 

where Xsg is the expression level of gene g in data sample s, Asc the expression level 
of the biological process (cluster) c in sample s, Scg the membership degree of gene 
g in c and Sog the expression offset of gene g. 

Note that the gene cluster membership matrix S is common to the two 
factorizations, as it is influenced by both gene expression datasets X(i). The 

                                                           
2 Only genes with an average expression value over 100 and with a standard deviation above 

100 were retained. 

Pacific Symposium on Biocomputing 13:279-290(2008)



  

nonnegativity constraints (3) express the obvious fact that expression levels, 
membership degrees and expression offsets cannot be negative. 

More formally, the factorization (1-3) can be cast as a constrained optimization 
problem: 

2)2()2()2()2(2)1()1()1()1()()( ||||
2

||||
2
1),,(min FF

ii SoeSAXSoeSAXSoSAC −−+−−= β  (4) 

subject to the nonnegativity constraints (3) (|| ⋅ ||F is the Frobenius norm of a matrix, 
while e(i) is a column of 1 of size equal to the number of samples of X(i)). 

The weight β ensures a proper balance between the two error terms and was 

taken in the following experiments to be 
2)2(

2)1(

0 ||||
||||

X
Xββ =  with  β0=1. 

The optimization problem (4) can be solved using multiplicative update rules 
3 in 

a manner similar to Lee and Seung’s seminal Nonnegative Matrix Factorization 
(NMF) algorithm [5] (ε is a small regularization parameter): 
 
siNMF(X(1), X(2), A0

(1), A0
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(1), So0
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until convergence 
normalize the rows of S to unit norm by taking advantage of the scaling 
invariance of the factorization: SDS ⋅← −1 , DAA ⋅← )1()1( , DAA ⋅← )2()2( , where 

=
g cgSdiagD 2 . 

 
The final normalization of the rows of S renders the resulting clusters 

comparable to each other. 
Note that such a factorization can be viewed as a “soft” clustering algorithm 

allowing for overlapping gene clusters, since we may have several significant Scg 
entries on a given column g of S (so a gene g may “belong” to several clusters c). 
However, although overlaps are allowed, the algorithm will not produce highly 

                                                           
3 The derivation of the above rules is very similar to the derivation of the original Lee and 

Seung update rules and is not reproduced here for lack of space. 
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overlapping clusters, due to the nonnegativity constraints and to the offset variables. 
This is unlike many other clustering algorithms that allow clusters to overlap, which 
have to resort to several parameters to keep excessive cluster overlap under control. 

4     Nonnegative Matrix Factorizations with offset 

Before discussing in more detail the application of siNMF to the adenocarcinoma 
datasets mentioned in the Introduction, we explain in more detail the role of the 
offset terms So in the factorizations (1-2) above. 

To make things simpler, we consider a single NMF factorization with offset 
rather than the simultaneous one from (1-2): 

gc cgscsg SoSAX +⋅≈       (5) 

with the additional nonnegativity constraints:   

.0,0,0 ≥≥≥ gcgsc SoSA       (6) 

The main role of the “offset” So is to absorb the constant expression levels of 
genes, thereby making the cluster samples Scg “cleaner”. 

The associated multiplicative update rules can be easily derived using the 
method of Lee and Seung [5]: 

 

ε++
←

sc
T
sc

T

scsc SASeS
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0

 

ε++
←
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T
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SS  

ε++
=

g
T

g
T

gg ASeSoe
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Figure 1 below presents a comparison between the factorizations produced by 

the standard NMF algorithm and its improvement NMFoffset on a synthetic dataset in 
which columns 36 to 85 are constant “genes”. As can be easily seen in the Figure, 
these “genes” are reconstructed by the standard NMF algorithm from combinations 
of clusters, while NMFoffset uses the additional degrees of freedom So to produce 
null cluster membership degrees Scg for the constant genes. Moreover, NMFoffset 
recovers with much more accuracy than standard NMF the original sample clusters, 
the standard NMF algorithm being confused by the cluster overlaps. This 
improvement in recovery of the original clusters is very important in our 
application, where we aim at a correct sub-classification of samples. 
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Figure 1. Comparing standard NMF with NMFoffset 
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5   Simultaneous factorization of the PDAC and colon adenocarcinoma datasets 

In the following we describe the results obtained by applying siNMF to the PDAC 
and sporadic colon adenocarconoma datasets. 

An important parameter of the factorization is its internal dimensionality (the 
number of clusters nc). To avoid overfitting, we estimated the number of clusters nc 
as the largest number of dimensions around which the change in relative error 

cdn
dε of the factorization of the real data is still significantly larger than the change in 

relative error obtained for a randomized dataset 4 (similar to [9]) – see also Figure 2 
below. Using this analysis we estimated the internal dimensionality of the dataset to 
be between 5 and 7. In the following, we used the conservative value nc=5. 

 
Figure 2. Determining the internal dimensionality of the datasets 

 
We then ran the siNMF algorithm with nc=5 and β0=1 on the two datasets 

described previously restricted to the set of common probe-sets (4677 probe-sets). 
Since the pancreatic ductal adenocarcinoma dataset is more homogeneous, we 

first inspected the sample cluster matrix A(1) to determine the cluster that best 
discriminates between tumor and control samples (see Figure 3 below). 

 

                                                           
4 The randomized dataset was obtained by randomly permuting for each gene its expression 

levels in the various samples. The original distribution of the gene expression levels is 
thereby preserved. 

randomized data 

real data 
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Figure 3. The normalized sample cluster matrix A(1) for the PDAC dataset 

 
Note that cluster 1 recovers relatively well 

5 the distinction between tumor and 
control samples in PDAC, although the algorithm was never provided with class 
information related to the samples. Similarly, cluster 5 is also significantly well 
correlated with the tumor-control distinction. In fact, while cluster 1 contains genes 
that are overexpressed in tumors, cluster 5 comprises mainly downregulated genes. 
The supplementary material online at www.ai.ici.ro/psb08/ contains the complete 

                                                           
5 A number of 5 “control” samples (N51294, N40892, N40875, N40726 and N30308) which 

in our analysis are “closer” to the tumor samples than to the other control ones were later 
reanalyzed histologically and found to be highly fibrotic (pancreatic tumor tissue is 
typically very fibrotic and the respective control samples were possibly collected from a 
site too close to the tumoral tissue). 
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lists of genes for these clusters. (The threshold used for extracting gene clusters 
from the S matrix was ◊2 /◊ng= 0.0207.)  

For a more comprehensive biological interpretation of these sets of genes, we 
then looked for enrichment in known biological annotations using the L2L 
Microarray Analysis Tool [10]. As previously observed in the isolated analysis of 
PDAC, cluster 1 was enriched in TGF-beta target genes (“tgfbeta_all_up” with p-
value 3.75e-29, “tgfbeta_early_up” with p-value 2.94e-25), as well as in the 
following Gene Ontology [11] Biological Process annotations: 

 
GO Biological Process p-value 
response to wounding 9.44e-28 
inflammatory response 2.43e-26 
response to external stimulus 6.26e-26 
defense response 1.74e-21 
cell adhesion 8.14e-20 
immune response 1.05e-18 
organ development 5.13e-18 
response to stress 1.10e-14 
Chemotaxis 1.31e-14 

 
The following L2L cancer gene expression modules were significantly affected: 

“ECM and collagens” with p-value 5.25e-82 and “Immune (humoral) and 
inflammatory response” with p-value 6.17e-65. 

All of this is in line with the observed phenotype of PDAC, which involves an 
over-proliferation of the extracellular matrix (fibrosis, “desmoplastic reaction”) and 
inflammation, supporting the view of cancer as an abnormal response to wounding. 

It is impossible to present here a complete analysis of the cluster 1 genes. Some 
of the most significant ones are:  
• INHBA (activin/inhibin betaA) – a ligand for the activin receptor (which 

triggers a TGF-beta-like pathway),  
• POSTN (periostin), which is known to have an active role in the epithelial-

mesenchymal transformation and metastasis [12] and whose over-expression 
promotes metastatic growth of colon cancer by augmenting cell survival via the 
Akt/PKB pathway [13], as well as enhancing invasion and angiogenesis, 

• SULF1, which is known to regulate growth and invasion of pancreatic cancer 
cells by Interfering with Heparin-binding Growth Factor Signalling [14], etc. 

Using the Transcriptional Regulatory Element Database TRED, we found that 
many of the genes in cluster 1 are controlled by the following transcription factors 
or a combination thereof: SP1, AP1, AP2, NF-kB, p53, ER, ETS1, SMAD family, 
CEBPA, etc. (Many direct and indirect TGF-beta targets are controlled by 
combinations of these factors.) 

After having characterized the gene cluster 1 as being the main discriminator 
between tumor and control PDAC samples, we investigated its function in the colon 
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adenocarcinoma dataset. Figure 4 below presents the normalized 
6 sample cluster 

matrix A(2) for the colon dataset sorted with respect to the first column (cluster). The 
first sample cluster thus contains 91 tumor samples – half of the total number of 182 
colon tumor samples! In other words, the PDAC gene expression program that 
distinguishes tumors from controls is active in half of the colon adenocarcinoma we 
investigated and is highly expressed 7 in about 12%.  

On the other hand, cluster 5 is not significantly overexpressed in the normal 
colon samples (as it was in the PDAC) samples – this may be due either to the small 
number of normal colon samples, or to the differences in gene expression programs 
of these tissues (pancreas vs. colon). 

 

 

 1  2  3  4  5 normal?
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Figure 4. The normalized sample cluster matrix A(2) for the colon dataset (last 

column shows sample class: black:normal, gray:cancer susceptibility, white:tumor) 

6     Conclusions and related work 

Although widely used in microarray data analysis, existing clustering algorithms 
have serious problems, the most important one being related to the fact that 
biological processes are overlapping rather than isolated. In this paper we have 

                                                           
6 i.e. Ac

(2) / ||Ac
(2)||. We use a sample threshold 1 /◊ns= 0.07. 

7 over the threshold ◊2/◊ns= 0.099. 
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introduced a clustering algorithm capable of simultaneously clustering two distinct 
gene expression datasets with the aim of uncovering gene regulatory programs that 
are common to the two phenotypes. The two key ingredients of this algorithm are 
the nonnegativity constraint and the offset variables, which together ensure the 
sparseness of the factorizations.  

Most unsupervised gene expression data analysis methods require a careful 
selection of genes that are “significant” for subsequent sub-class discovery. But 
class discovery and “significant gene” selection are tightly inter-connected and 
cannot be easily separated. Thus, another very important advantage of nonnegative 
factorization approaches with respect to other methods consists in the fact that they 
eliminate the need for such an explicit gene selection step prior to classification.  

While cancer is a very heterogeneous disease, there is overwhelming recent 
evidence that the differences between cancer subtypes implicate entire pathways 
and biological processes involving large numbers of genes, rather than changes in 
single genes. This has lead us to the following strategy for discovering these 
processes. We have started with a relatively homogeneous cancer subtype, namely 
pancreatic ductal adenocarcinoma, for which we have determined the gene group 
that best distinguishes tumors from controls thereby verifying the homogeneity of 
this subtype. Then we have applied our simultaneous factorization algorithm 
looking for gene expression profiles that are common between the more 
homogeneous PDAC and the more heterogeneous colon adenocarcinoma. The fact 
that the PDAC signature is active in a large fraction of colon adeocarcinoma 
suggests that the oncogenic mechanisms involved may be similar to those in PDAC, 
at least in this subset of colon samples. 

The simultaneous Nonnegative Matrix Factorization algorithm presented in this 
paper generalizes the simpler version introduced in [2] by estimating “offsets” for 
the individual genes, which produces much cleaner gene clusters. Moreover, in [2] 
we used siNMF to guide the factorization of gene expression data by transcription 
regulation data, while in this paper we are concerned with finding common 
mechanisms in different types of adenocarcinoma. 

The siNMF algorithm is also related in spirit with the generalized SVD 
algorithm (GSVD) [3], which was applied by Alter et al. for comparing two cell 
cycle datasets. There, the “common part” of the decomposition is represented by the 
samples (rather than the genes, as in our approach). 

There are many approaches to uncovering common mechanisms involved in 
different phenotypes, but most are based on comparing gene lists. The approach 
presented in this paper additionally takes gene expression data into account and can 
thus be more sensitive. 

Of course, this work represents just a first step towards a molecular-level 
classification of sporadic colon adenocarcinoma, going beyond the simpler one 
based on microsatellite instability status [1]. 
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