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Motivation: Predicting the subcellular location of proteins is an active research area, as a 
protein’s location within the cell provides meaningful cues about its function. Several 
previous experiments in utilizing text for protein subcellular location prediction, varied 
in methods, applicability and performance level. In an earlier work we have used a 
preliminary text classification system and focused on the integration of text features into 
a sequence-based classifier to improve location prediction performance.  
Results: Here the focus shifts to the text-based component itself. We introduce EpiLoc, a 
comprehensive text-based localization system. We provide an in-depth study of text-
feature selection, and study several new ways to associate text with proteins, so that text-
based location prediction can be performed for practically any protein. We show that 
EpiLoc’s performance is comparable to (and may even exceed) that of state-of-the-art 
sequence-based systems. EpiLoc is available at: http://epiloc.cs.queensu.ca. 

1. Introduction 

Knowing the location of proteins within the cell is an important step toward 
understanding their function and their role in biological processes. Several 
experimental methods, such as those based on green fluorescent proteins or on 
immunolocalization, can identify the location of proteins. Such methods are 
accurate, but slow and labour-intensive, and are only effective for proteins that 
can be readily expressed and produced within the cell. 

Given the large number of proteins about which little is known, and that many 
of these proteins may not even be expressed under regular conditions – it is 
important to be able to computationally infer protein location based on readily 
available data (e.g. amino acid sequence). Once effective information is 
computationally elucidated outside the lab, well-targeted lab experiments can be 
judicially performed. For well over a decade many computational location-
prediction methods were suggested and used, typically relying on features 
derived from sequence data7,9,12,13.  

Another type of information that can assist in location prediction is derived 
from text. One option is to explicitly extract location statements from the 
literature6. While this approach offers a way to access pre-existing knowledge, it 
does not support prediction. An alternative predictive approach is to employ 
classifiers using text-features that are derived from literature discussing the 
proteins. These features may not state the location, but their relative frequency in 
the text associated with a certain protein is often correlated with the protein’s 
location. Examples of this approach include work by Nair and Rost11 and by 
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Stapley et al17. They represent proteins using text-features taken from 
annotations11 or from PubMed abstracts in which the protein’s name occur17, and 
train classifiers to distinguish among proteins from different locations. The main 
limitations of this earlier work are:  a) It was not shown to meet or improve upon 
the performance of state-of-the-art systems. b) The systems depended on an 
explicit source of text; in its absence many proteins cannot be localized.  

In an earlier work8,16 we studied the integration of text features into a 
sequence-based classifier9, showing significant improvement over state-of-the-art 
location prediction systems. The text component was a preliminary one, and was 
not studied in detail. Here we provide an in-depth study and description of a new 
and complete text-based system, EpiLoc. We compare several text-feature 
selection methods, and extensively compare the performance of this system to 
other location prediction systems. Moreover, we introduce several alternative 
ways to associate text with proteins, making the system applicable to practically 
any protein, even when text is not available from the preferred primary source. 
Further details about the differences between the preliminary version8,16 and 
EpiLoc are given in the complete report of the work3. 

While our work focuses on protein subcellular localization, the ideas and 
methods, including the study of feature selection and of ways for associating text 
with biological entities, are applicable to other text-related biological enquiries. 

In Section 2 we introduce the methods for associating text with proteins, and 
the way in which text is used to represent proteins. Section 3 focuses on feature 
selection methods, while Sections 4 and 5 describe our experiments and results, 
demonstrating the effectiveness of the proposed methods.   

2. Data and Methods 

EpiLoc is based on the representation of each protein as an N-dimensional vector 
of weighted text features, < pw1 … p

Nw >. Each position in the vector represents a 
term from the literature associated with the proteins. As not all terms are useful 
for predicting subcellular location, and to save time and space, feature selection 
is employed to obtain N terms, as discussed in Section 3. Here we describe our 
primary method for associating text with individual proteins and our term-
weighting scheme. We also present three alternative methods that assign text to 
proteins when the primary method cannot do so.  

Primary Text Source: The literature associated with the whole protein dataset is 
the collection of text related to the individual proteins. For training EpiLoc, text 
per protein is taken from the set of PubMed abstracts referenced by the protein’s 
Swiss-Prot2 entry. Abstracts associated with proteins from three or more 
subcellular locations are excluded, as their terms are unlikely to effectively 
characterize a single location. Each protein is thus associated with a set of 
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authoritative abstracts, as determined by Swiss-Prot curators. As we noted 
before16, the abstracts do not typically discuss localization – but rather are 
authoritative with respect to the protein in general. This choice of text is more 
specific than that of Stapley et al.17, who used all abstracts containing a protein’s 
gene name. Moreover, unlike Nair and Rost11, who used Swiss-Prot annotation 
text rather than referenced abstracts, our choice is general enough to assign text 
to the majority of proteins, allowing the method to be broadly applicable.  

The text in each abstract is tokenized into a set of terms, consisting of 
singletons and pairs of consecutive words; a list of standard stop wordsa is 
removed, and Porter stemming14 is then applied to all the words in this set. Last, 
terms occurring in fewer than three abstracts or in over 60% of all abstracts are 
removed; very rare terms cannot be used to represent the majority of the proteins 
in a dataset, while overly frequent terms are unlikely to have a discriminative 
value. The resulting term set typically contains more than 20,000 terms, and is 
reduced through a feature selection step (see Section 3). The feature-selection 
process produces a set of distinguishing terms for each location, that is, terms 
that are more likely to be associated with proteins within a certain location than 
with proteins from other locations. The combined set of all distinguishing terms 
forms the set of terms that we use to represent proteins, as discussed next. 

Term Weighting: Given the set of N distinguishing terms, each protein p, is 
represented as an N-dimensional weight-vector, where the weight p

itW  at position 
i, (1 ≤ i ≤ N), is the probability of the distinguishing term ti to appear in the set of 
abstracts known to be associated with protein p, denoted Dp. This probability is 
estimated as the total number of occurrences of term ti in Dp divided by the total 
number of occurrences of all distinguishing terms in Dp. Formally p

itW  is 
calculated as: p

itW =(# of times ti occurs in Dp)/Σj(# of times tj occurs in Dp), where the sum 
in the denominator is taken over all terms tj in the set of distinguishing terms TN. 

Once all the proteins in a set have been represented as weighted term vectors, 
the proteins from each subcellular location are partitioned into training and test 
sets, and a classifier is trained to assign each protein to its respective location. 
Our classifier is based on the LIBSVM5 implementation of support vector 
machines (SVMs). LIBSVM supports soft, probabilistic categorization for n-class 
tasks, where each classified item is assigned an n-dimensional vector denoting 
the item’s probability to belong to each of the n classes. Here n is the number of 
subcellular locations.  

Alternative Text Sources: As pointed out by Nair and Rost11, the text needed to 
represent a protein is not always readily available. In our case, some proteins 

                                                 
a Stop words are terms that occur frequently in text but typically do not bear content, such as prepositions. 
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may not have PubMed identifiers in their Swiss-Prot entry, and others – newly 
discovered proteins – may not even have a Swiss-Prot entry. We refer to such 
proteins as textless, and propose three methods to assign them with text. 

HomoLoc – In previous work16, if a textless protein had a homolog with 
associated text, we used the text of the homolog to represent the textless protein. 
Homoloc extends this idea to consider multiple homologs and re-weight terms 
accordingly. A BLAST1 search identifies the set of homologs, and we retain those 
that share at least 40% sequence identity with the textless protein. (This level of 
similarity was chosen based on a study by Brenner et al.4,3). The retained 
homologs are then ranked in ascending order according to their E-value, and the 
set of abstracts associated with the top three homologs are associated with the 
textless protein. To reflect the degree of homology in the term vector 
representation, a modified weighting scheme is used where the number of times 
each term occurs in the abstracts associated with a homolog is multiplied by the 
percent identity between the homolog and the textless protein. Formally, the 
modified weight is calculated as: 
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where h is a homolog, Dh is the set of abstracts associated with h, and a sum is 
taken over all the homologs in the set of homologs H. 

DiaLoc – Proteins are most likely to be textless when they have just recently 
been sequenced/identified, as little information about them exists in databases 
such as PubMed or Swiss-Prot. When no close homologs with assigned text are 
known, HomoLoc cannot be used. The most reliable source of information for 
such proteins (and the one most likely to be interested in their localization) is the 
scientist researching the proteins. A user interface (shown in Fig. 2), allows a 
researcher to type her own short description of the protein based on the current 
state of knowledge. This description is used as the text associated with the 
textless protein. DiaLoc is meant to be used as an interactive tool for researchers 
concerned with individual proteins, and not as a large-scale annotation tool.   

PubLocb – Proteins whose Swiss-Prot entries do not contain reference to 
PubMed may still have PubMed abstracts discussing them. To check if such 
abstracts exist, the name of the textless protein and its gene are extracted from 
the Swiss-Prot entry. A query consisting of an OR-delimited list of these names 
is posed to PubMed. The five most recent abstracts returned are used as the 
protein’s text source. This is a simple selection criterion and can be further 
improved upon. 

                                                 
b We thank Annette Höglund for suggesting this name. 
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To select the preferred method for handling textless proteins for large-scale 
annotation, we compared HomoLoc’s and PubLoc’s performance on the 614 
textless proteins of the MultiLoc dataset (see Section 4). A complete discussion 
of these experiments is beyond the scope of this paper and is provided 
elsewhere3; we briefly summarize them here. We trained EpiLoc on all the 
proteins in the MultiLoc dataset that do have associated text. We then 
represented the remaining textless proteins using both PubLoc and HomoLoc, 
and classified them using the trained system. The overall accuracy obtained (for 
these 614 proteins) using HomoLoc is 73% for plant and 76% for animal. Using 
PubLoc the accuracy dropped to 57% and 64%, respectivelyc. As PubLoc is 
clearly less effective than HomoLoc, it is only applied in cases where neither 
HomoLoc nor DiaLoc can be used. HomoLoc is thus our method of choice for 
handling textless proteins, and is further discussed in Section 4. 

3. Feature Selection 

As stated in Section 2, each protein is represented as a weight-vector defined 
with respect to a set of distinguishing terms. Using a set of selected features can 
improve performance (even when SVMs are used) and reduces computational 
time and space. Intuitively, a term t is distinguishing for a location L, if its 
likelihood to occur in text associated with location L is significantly different 
from that of occurring in text associated with all other locations. To compare 
these likelihoods, for each location we assign to each term a score reflecting its 
probability to occur in the abstracts associated with the location. We formalize 
this method, referred to as the Z-Test method, in Section 3.1, and compare it with 
several alternatives in Section 3.2. 

3.1. The Z-Test Method 

Let t be a term, p a protein, and L a location. A protein, p, localized to L, is 
denoted p∈L and has a set of associated abstracts, denoted Dp. The set of all 
proteins known to be localized to L is denoted PL. We denote by DL the set of 
abstracts associated with location L, (i.e. all abstracts associated with the proteins 
localized to L). Formally, this set is defined as: DL=Up∈PL

{d|d∈Dp}, and the 
number of abstracts in this set is denoted |DL|. The probability of term t to be 
associated with location L, denoted Pr(t|L), is defined as the conditional 
probability of t to appear in an abstract d, given that d is associated with location 
L. This probability is expressed as: Pr(t|L)=Pr(t∈d|d∈DL). Its maximum likelihood 
estimate is the proportion of abstracts containing the term t among all abstracts  
associated with L: Pr(t|L)≈ (# of abstracts d∈ DL such that t∈d) / |DL|.   We calculate 

                                                 
c We also tested simpler versions of these methods (including the single-homolog method we tried in 

the past16); these were not as effective as the methods presented here3. 
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