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Many applications of next-generation sequencing technologies involve anchoring of a 

sequence fragment or a tag onto a corresponding position on a reference genome 

assembly. Positional Hashing method, implemented in the Pash 2.0 program, is 

specifically designed for the task of high-volume anchoring. In this article we present 

multi-diagonal gapped kmer collation and other improvements introduced in Pash 2.0 

that further improve accuracy and speed of Positional Hashing. The goal of this article is 

to show that gapped kmer matching with cross-diagonal collation suffices for anchoring 

across close evolutionary distances and for the purpose of human resequencing. We 

propose a benchmark for evaluating  the performance of anchoring programs that 

captures key parameters in specific applications, including duplicative structure of 

genomes of humans and other species. We demonstrate speedups of up to tenfold in 

large-scale anchoring experiments achieved by PASH 2.0 when compared to BLAT, 

another similarity search program frequently used for anchoring. 

1. Introduction 

Next generation sequencing technologies produce an unprecedented number of 

sequence fragments in the 20-300 basepair range. Many applications of next-

generation sequencing require anchoring of these fragments onto a reference 

sequence, which involves comparison of these fragments to determine their 

position in the reference. Anchoring is required for the purpose of various 

mapping applications or for comparative sequence assembly (also referred to as 

comparative genome assembly and templated assembly). Anchoring is also a key 

step in the comparison of assembled evolutionarily related genomes. Due to the 

sheer number of fragments produced by next-generation sequencing technologies 
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and the size of reference sequences, anchoring is rapidly becoming a 

computational bottleneck.  

The de facto dominant paradigm for similarity search is that of “Seed-and-

Extend” embodied in algorithms such as BLAST [1, 2], BLAT [3], SSAHA [4], 

PatternHunter [5, 6]. and FASTA [7, 8]. While not initially motivated by the 

anchoring problem, the Seed-and-Extend paradigm is employed by most current 

anchoring programs. We recently proposed Positional Hashing, a novel, 

inherently parallelizable and scaleable approach to specifically address the 

requirements of high-volume anchoring [9]. We first review key concepts behind 

Positional Hashing; then, we present the Pash 2.0 program, a new 

implementation which overcomes a number of deficiencies in the initial 

implementation of Positional Hashing. Pash 2.0 includes multidiagonal collation 

of gapped kmer matches to enhance accuracy in the presence of indels, and 

improvements that enhance speed when mapping large volumes of reads onto 

mammalian-sized genomes. The goal of this article is to show that gapped kmer 

matching with cross-diagonal collation suffices for anchoring across close 

evolutionary distances and for the purpose of human resequencing. To 

demonstrate this, we evaluate Pash by comparing its accuracy and speed against 

Blat, a Seed-and-Extend program that is widely used for anchoring. We 

determine parameters for Pash such it achieves comparable accuracy with Blat 

while providing several-fold speedups by avoiding basepair-level computation 

performed by Blat. To complement real-data experiments, we propose a 

simulation benchmark for evaluating performance of anchoring programs that 

captures key parameters in specific applications, including duplicative structure 

of the genomes such as that of humans. Using both real data and the simulation 

benchmark, we demonstrate speedups of up to tenfold without significant loss of 

sensitivity or accuracy in large-scale anchoring experiments when compared to 

BLAT. 

2. Two approaches to anchoring: Seed-and-Extend vs. Positional 

Hashing 

2.1. The seed-and-extend paradigm 

The seed-and-extend paradigm currently dominates the field of sequence 

similarity search [2, 3, 4, 5, 6, 7, 10, 11]. This paradigm originally emerged to 

address the key problem of searching a large database using a relatively short 

query to detect remote homologies. A homology match to a gene of known 

function was used to derive a hypothesis about the function of the query  

sequence. The first key requirement for this application is sensitivity when  
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Figure 1. Positional Hashing. 1. The positional hashing scheme breaks the anchoring problem along 

the L diagonals of the comparison matrix; each cluster node detects and groups matches along a 

subset of  the L diagonals. 2. Each diagonal is split into horizontal and vertical windows of size L. 

Short bold lines indicate positions used to calculate hash keys for positional hash table H(0,0)  

 

comparing  sequences across large evolutionary distances. The second key 

requirement is speed when searching a large database using a short query. The 

first generation seed-and-extend algorithms such as BLAST [2] and FASTA  [7] 

employed pre-processing of the query to speed up the database search while 

second-generation seed-and-extend algorithms such as BLAT [3] and SSAHA 

[4] employed in-memory indexing of genome-sized databases for another order 

of magnitude of speed increase required for interactive lookup of genome loci in 

human genome browsers using genomic DNA sequence queries. 

2.2. Positional Hashing specifically addresses the anchoring problem 

It is important to note that the anchoring problem poses a new and unique set of 

requirements. First, the detection of remote homologies is less relevant for 

anchoring than discrimination of true orthology relations when comparing 

closely related genomes. Second, with the growth of the genome databases and 

the emergence of next-generation sequencing technologies the query itself may 

now contain tens of millions of fragments or several gigabases of assembled 

sequence. To address the requirements specific to the anchoring problem, we 

recently developed the Positional Hashing method [9]. The method avoids costly 

basepair-level matching by employing faster and more scaleable gapped kmer 

matching [2,5,6,9]; this is performed using distributed position-specific hash 

tables that are constructed from both compared sequences. 

To better formulate the difference between Positional Hashing and the 

classical Seed-and-Extend paradigms, we first introduce a few definitions. A 

“seed” pattern P is defined by offsets {x1,…,xw}. We say that a “seed” match—a 
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gapped kmer match where k equals w-- is detected between sequences S and T in 

respective positions i and j if S[i+x1]= T[j+x1], …, and S[i+xw]=T[j+xw]. To 

further simplify notation, we define pattern function fP at position i in sequence S 

as fP(S,i) = S[i+x1]…S[i+xw]. Using this definition, we say that a “seed” match is 

detected between sequences S and T in respective positions i and j if fP(S,i)= 

fP(T,j). A Seed-and-Extend method extends each seed match by local basepair 

alignment. The alignments that do not produce scores above a threshold of 

significance are discarded. 

In contrast to the Seed-and-Extend paradigm, Positional Hashing groups all 

collinear matches—i.e., those falling along the same diagonal or, in Pash 2.0,  a 

set of neighboring diagonals in the comparison matrix-- to produce a score. The 

score calculated by grouping the matches suffices for a wide range of anchoring 

applications, while providing significant speedup by eliminating the time-

consuming local alignment at the basepair level. In further contrast to the Seed-

and-Extend paradigm, Positional Hashing involves numerous position-specific 

hash tables, thus allowing extreme scalability through parallel computing. The 

positional hashing scheme breaks the anchoring problem along its natural 

diagonal structure, as illustrated in the Figure 1.1. Each node detects and groups 

matches along a subset of diagonals. More precisely, matches along diagonal 

d=0,1,…L-1, of the form fP(S,i)= fP(T,j), where i=j+d (mod L) are detected and 

grouped in parallel on individual nodes of a computer cluster. Position-specific 

hash tables are defined by conceptually dividing each alignment diagonal into 

 

Figure 2. Positional hashing and multi-diagonal collation. 1. Lists of match positions for diagonals 

0-5 induced by the appropriate hash tables are generated in the inversion step, for horizontal 

windows I1 and I2 and for vertical windows J1 and J2; the lists are sorted from right to left. A priority 

queue is used to quickly select the set of match positions within the same horizontal and vertical L-

sized window, on which multidiagonal collation needs to be performed. 2. A greedy heuristic is 

used to determine the highest scoring anchoring across multiple diagonals; in the figure we depict 

matches within horizontal window I1 and vertical window J1, across diagonals 0-4. 
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non-overlapping windows of length L, as indicated by dashed lines in Figure 1.2. 

A total of L
2
 positional hash tables H(d,k) are constructed for each diagonal 

d=0,1,…L-1 and diagonal position k=0,1,… L-1. Matches are detected by using 

the values of fP(S,i) and fP(T,j) as keys for storing horizontal and vertical 

window indices I=[i/L] and J=[j/L] into specific hash table bins. A match of the 

form fP(S,i)= fP(T,j) where i=j+d (mod L) and j=k (mod L) is detected whenever 

I  and J occur in the same bin of hash table H(d,k), as also shown in Figure 2.1. 

Further implementation details are described in [9]. 

3. Improved implementation of Positional Hashing 

3.1.  Multidiagonal collation 

A key step in Pash is represented by the collation of matching kmers across 

diagonals. In Pash 1.0, collation was performed across a single diagonal only; an 

indel would split matching kmers across two or more neighboring diagonals. For  

Sanger reads, typically 600-800 base pairs long, Pash 1.0 could find enough 

information on either side of an indel to accurately anchor a read. For the shorter 

reads, generated by the next generation sequencing technologies, it might not be 

possible to find matching kmers on either side of an indel to anchor the read. The 

use of pyrosequencing, which causes insertion/deletion errors in the presence of 

homopolymer runs, further amplified this problem. 

To overcome the problem, Pash 2.0 collates kmer matches across multiple 

diagonals. Pash detects similarities between two sequences, denoted a vertical 

sequence and a horizontal sequence (as indicated in Figure 1). After performing 

hashing and inversion for multiple diagonals, Pash generates one list of 

horizontal and vertical sequence positions of the matching kmers for each 

diagonal and positional hash table pair; these lists are sorted by the horizontal 

then by the vertical position of the matching kmer. Next, Pash considers 

simultaneously all lists of matching kmers for the set of diagonals that are being 

collated, and traverses them to determine all the matching positions between a 

horizontal and vertical window of size L (see Figure 2.1). To collate across k 

diagonals, Pash first selects matching positions across the same vertical and 

horizontal window from the kL lists of matching kmer positions. It uses a 

priority queue, with a two-part key: first the horizontal positions are compared, 

followed by the vertical position of matches, as shown in Figure 2.1. Kmers in 

each such set are collated, by performing banded alignment not at basepair level 

but at the kmer level. We used a greedy method to collate the matches across a 

diagonal set, and select the highest scoring match, as shown in Figure 2.2. By 

collating kmers across k diagonals, Pash is in effect anchoring across indels of 

Pacific Symposium on Biocomputing 13:102-113(2008)



  

size k-1; a user can control through command-line parameters the maximum 

indel size detectable by Pash. Pash 2.0 scores matches across indels using an 

affine indel penalty. Let m be the number of matching bases; for each indel I let 

s(I) be the indel length. The score of an anchoring is then                         . 

3.2. Efficient hashing and inversion 

Pash version 1.0 was hashing both the vertical and the horizontal sequence. For 

comparisons against large genomes, such as mammalian genomes, hashing the 

whole genome during the hashing/inversion phase required significant time and 

memory. In Pash 2.0, only one of the sequences is hashed, namely the vertical 

sequence. For the horizontal sequence, instead of hashing it, Pash 2.0 traverses 

the horizontal kmer lists and then matches each kmer against the corresponding 

bin in the hash table created by hashing the vertical sequence. If a match is 

detected, the corresponding kmer is added to the list of matching kmers prior to 

proceeding to the next horizontal kmer. This improvement substantially 

accelerated the hashing and inversion steps. 

4. Experimental Evaluation 

Our experimental platform consisted of compute nodes with dual 2.2GHz 

AMD Opteron processors, 4GB of memory, running Linux, kernel 2.6.  We used 

Pash 2.0, and BLAT Client/Server version 32. All experiments were run 

sequentially; when input was split in multiple chunks, we reported total compute 

time. The focus of this section is on comparing Pash 2.0 to Blat. When 

comparing Pash 2.0 against Pash 1.2, we determined overall speed 

improvements of 33%, similar accuracy for Sanger reads, and significant 

accuracy improvements for pyrosequencing reads. For Pash 2.0 we used the the 

following pattern of weight 13 and span 21:  111011011000110101011. Code 

and licenses for Pash, Positional Hashing, and auxiliary scripts are
 
available free 

of charge for academic use. Current access and
 
licensing information is posted at 

http://www.brl.bcm.tmc.edu/. 

4.1. UD-CSD benchmark 

The choice of a program for an anchoring application depends on a number of 

data parameters, data volume, and computational resources available for the 

task. To facilitate selection of the most suitable program it would therefore be 

useful to test candidates on a benchmark that captures key aspects of the problem 

at hand. Toward this end, we developed a benchmark that includes segmental 

duplications, an important feature of mammalian genomes, and particularly of 

the genome of humans and other primates. The duplications are especially 
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challenging because they limit the sequence uniqueness necessary for anchoring. 

The UD-CSD benchmark is named after five key aspects: Unique fraction of the 

genome; Duplicated fraction; Coevolution of duplicated fraction during which 

uniqueness is gradually developed; Speciation; and Divergence of orthologous 

reads. As illustrated in Figure 3, the UD-CSD benchmark is parameterized by the 

following four parameters: number of unique reads k; number of duplicated 

reads n; coevolution parameter x; and divergence parameter y; we are in fact 

simulating genomes as a concatenation of reads. For example, the divergence 

parameter y=1% may be appropriate for human-chimpanzee anchoring and 

y=5% anchoring of a rhesus monkey onto human. Note that in a human genome 

resequencing study, the divergence parameter y would be set to a very small 

value due to relatively small amount human polymorphism but the duplicative 

structure of the human genome could be captured using remaining three 

parameters.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. The UD-CSD (Unique,Duplicated-Coevolution,Speciation,Divergence) Anchoring 

Benchmark.  1. Randomly generate k Unique reads and n Duplicated reads. 2. Coevolution: each 

base mutates with probability x. 3. Speciation: Each read duplicates. 4. Divergence: each base 

mutates with probability y. 

 

Using the UD-CSD benchmark, we evaluated the sensitivity and specificity 

of Pash compared to BLAT, a widely used seed-and-extend comparison 

algorithm. We first generated k+1 random reads of size m base pairs, then we 

duplicated the last read n-1 times, as illustrated in Figure 3.1, and obtained seed 

reads si, i=1,n+k. This corresponds to a genome where the k reads represent 

unique regions, and the n duplicated reads represent duplicated regions. Next, we 

evolved each read si, such that each base has a mutation probability of x, and 

each base was mutated at most once, and obtained reads ri, i=1,n+k. Out of the 

mutations, 5% were indels, with half insertions and half deletions; the indel 
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lengths were chosen using a geometric probability distribution with the 

parameter p=0.9, and imposing a maximum length of 10. The remaining 

mutations were substitutions. This process approximates a period of coevolution 

of two related species during which duplicated regions acquire uniqueness 

(parameterized by x) necessary for anchoring. Next, two copies of each read 

were generated, and one assigned to each of two simulated genomes of 

descendant species, as shown in Figure 3.3; this corresponds to a speciation 

event. Subsequently, each read evolved independently such that each base had a 

mutation probability of y, as illustrated in Figure 3.3; this corresponds to a 

period of divergence between the two related species. Finally, we obtained the 

set of reads ri,1 and ri,2, with i=1,n+k. We then employed Pash and  BLAT to 

anchor the read set {r1,1,…,rn+k,1} onto {r1,2,…,rn+k,2},  by running each program 

and then filtering its output such that only the top ten best matches for each read 

are kept. Any time a read ri,1 is matched onto ri,2, we consider this a true positive; 

we count how many true positives are found to evaluate the accuracy of the 

anchoring program. 

One may raise objection to our considering the top ten best matches and may 

instead insist that only the top match counts. Our more relaxed criterion is 

justified by the fact that anchoring typically involves a reciprocal-best-match 

step. For example, a 10-reciprocal-best-match step would sieve out false matches 

and achieve specific anchoring as long as the correct match is among the top 10 

scoring reads. Assuming random error, one may show that the expected number 

of false matches would remain constant (10 in our case) irrespective of the total 

number of reads matched. For our experiment, we chose a read length of 200 

bases, and varied the total number of reads from 5,000 to 16,000,000. k and n 

were always chosen such that 90% of the start reads were unique, and 10%  were 
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          1  25% coevolution , 1% divergence                       2. 25% coevolution, 5% divergence 

Figure 4.1.Anchoring times of Pash and BLAT for coevolution of 25% and divergence of 1%, which 

may be appropriate for comparing closely related primates such as chimpanzee and human. 

2.Anchoring times of Pash and BLAT for coevolution of 25% and divergence of 5%, which may be 

appropriate for comparing a New World monkey such as rhesus macaque and human. 
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repetitive. In Figure 4.1 we present the execution times for Pash and BLAT for 

25% coevolution and 1% divergence, while in Figure 4.2 we present execution 

times for Pash and BLAT for 25% coevolution and 5% divergence. Pash was run 

using a gapped pattern of weight 13 and span 21, and a kmer offset gap of 12, 

while for BLAT we used the default settings. 

In both cases, Pash and BLAT achieve comparable sensitivity (the numbers  

mate pairs found are within 1% of each other). This result is significant because 

it indicates that time-consuming basepair-level alignments performed by BLAT 

are not necessary for accurate anchoring – kmer-level matching performed by 

Pash suffices. For up to 2 million reads, Pash and BLAT achieve comparable 

performance. When the number of reads increases to 4, 8, and 16 million reads, 

however, Pash outperforms BLAT by a factor of 1.5 to 2.7. 

4.2. Simulated Anchoring of WGS reads 

Next generation technologies enable the rapid collection of a large volume of 

reads, which can then be used for applications such as genome variation 

detection. A key step is the anchoring of such reads onto the human genome. In 

our experiment, we used reads obtained by randomly sampling the human 

genome (UCSC hg18, http://genome.ucsc.edu/downloads.html)  with read sizes 

chosen according to the empirical distribution of read lengths observed in 

sequencing experiments using 454 sequencing technology. The set of reads 

covering the human genome at 6x sequence coverage was independently mapped 

back onto the reference genome using Blat and Pash. Pash anchored 73 million 

reads in 160 hours, using kmers of weight 13, span 21, and kmer gap offset of 

12. Blat was run with default parameters; it mapped the reads from chromosomes 

1 and 2 in 289 hours; this extrapolates to an overall running time of 1823 hours, 

for a 11.3 fold acceleration of Pash over Blat; Blat mapped only 0.3 percent 

more reads than Pash; this difference is caused by reads that Pash did not map 

because of its own default ignoring overrepresented kmers; we could improve 

this figure by increasing Pash’s tolerance for overrepresented kmers. Next, we 

extracted tags of 25 base pairs from each simulated WGS read, and mapped 

them on the human genome using Pash and Blat. Pash anchored the tags from 

chromosomes 1 and 2 in 4.5 hours, while Blat anchored them in 105 hours. 

However, with default parameters Blat does not perform well for the 25 base 

pair tags, anchoring back correctly 28% of the tags for chromosome 1 and 31% 

for chromosome 2, compared to 77% and 85% respectively for Pash. 
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4.3. Anchoring of mate pairs 

Sequenced ends of a small-insert or a long-insert clone such as a Fosmids or a 

Bacterial Artificial Chromosome (BAC) may be anchored onto a related 

reference genomic sequence. Numerous biological applications rely on this step, 

such as detection of cross-mammalian conservation of chromosome structure 

using mapping of sequenced BAC-End Sequences [13,14,15] and reconstruction 

of the evolution of the human genome [12]. Next-generation sequencing 

technologies provide a particularly economical and fast method of delineating 

conserved and rearranged regions using the paired-end method. 

The fraction of consistently anchored paired end-sequences from a particular set 

depends on the accuracy of the anchoring program, making this a natural 

benchmark for testing anchoring programs. We obtained about 16 million Sanger 

reads from fosmid end sequences in the NCBI Trace Archive, for a total of 

7,946,887 mate pairs, and anchored them onto the human genome with Blat and 

Pash 2.0. For each read we selected the top 10 matches, then looked for 

consistently mapped mate pairs. We counted the total number of clone ends that 

were anchored at a distance consistent with clone insert size (25-50 Kb) and 

computed their percentage of the expected number of mate pairs. Since 

anchoring performance also depends on the size of anchored reads, we also 

simulated five shorter read sizes by extracting 250bp, 100bp, 50bp, 36bp, and 

25bp reads respectively from each Sanger read, generating  additional sets of 

simulated short fosmid end sequences. We anchored each of the short read sets 

onto the human genome, then determined the number of clone ends consistently 

mapped. We summarize the results of our experiment in Table 1. We used 

gapped kmers of weight 13 and span 21, and kmer offsets of 12 for Sanger and 

250 bp reads, of 6 for 100 bp reads, and of 4 for 50, 36, and 25 bp reads. As 

evident from Table 1, in all the experiments  both Pash and BLAT found a 

comparable number of consistent mate pairs mapping, while Pash ran 4.5 to 10.2 

times faster compared to BLAT. A recent option added to Blat is that of 

fastMap, which enables rapid mapping of queries onto  highly similar targets. 

 

Table 1. Summary of results for actual and simulated mate pair anchoring 

 
Read Type Pash execution 

time (hrs) 

Percent of 

matepairs found 

Blat execution 

time (hrs) 

Percent of 

matepairs found 

Sanger 102 76% 1045 76% 

250 bp 45 76% 421 76% 

100 bp 23 75% 154 75% 

50 bp 17 68 % 92 68 % 

36 bp 8 57% 85 58% 

25 bp 4 56 % 154 15 % 
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We ran Blat with this option, but determined that it yielded very low sensitivity 

compared to Blat with default parameters, retrieving around 1 percent of the 

total number of matepairs; we argue the Blat with fastMap is not a good choice 

for this task. Blat with default parameters performs poorly on 25bp reads. 

Pash 2.0 accelerates anchoring the most for very large input data sets. To 

measure this effect, we partitioned our input of 16 million reads into chunks of 

0.5, 1, 2, 4, and 8 million reads each and run Pash on the whole input, computing 

average time per chunk. Each chunk could be run on a separate cluster node, and 

the parallel Pash wall time would be the maximum execution time of an input 

chunk. In Figure 5 we present the Pash execution time per chunk and the overall 

running time; our results show that while our method has a significant overhead 

for a small number of reads, its effectiveness improves as the number of input 

reads per chunk is increased. Pash 2.0 is therefore suitable for anchoring the 

output of high-volume, high-throughput sequencing technologies.   

 

 

 

 

 

 

 

 

 

Figure 5. Anchoring time for 16 million Sanger reads onto human genome.  

5. Conclusions 

We demonstrate that by avoiding basepair-level comparison the Positional 

Hashing method accelerates sequence anchoring, a key computational step in 

many applications of next-generation sequencing technologies, over a large 

spectrum of read sizes -- from 25 to 1000 base pairs. Pash shows similar 

sensitivity to state-of-the-art alignment tools such as BLAT on longer reads and 

outperforms BLAT on very short reads, while achieving an order of magnitude 

speed improvement. Pash 2.0 overcomes a major limitation of previous 

implementations of Positional hashing, sensitivity to indels, by performing cross-

diagonal collation of kmer matches. A future direction is to exploit multi-core 

hardware architectures by leveraging the low-level parallelism; another direction 

is to further optimize anchoring performance in the context of pipelines for 

comparative sequence assembly and other specific applications of next-

generation sequencing. 
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