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To investigate the combination of cetuximab, capecitabine and radiotherapy in
the preoperative treatment of patients with rectal cancer, fourty tumour samples
were gathered before treatment (T0), after one dose of cetuximab but before ra-
diotherapy with capecitabine (T1) and at moment of surgery (T2). The tumour
and plasma samples were subjected at all timepoints to Affymetrix microarray and
Luminex proteomics analysis, respectively. At surgery, the Rectal Cancer Regres-
sion Grade (RCRG) was registered. We used a kernel-based method with Least
Squares Support Vector Machines to predict RCRG based on the integration of
microarray and proteomics data on T0 and T1. We demonstrated that combining
multiple data sources improves the predictive power. The best model was based
on 5 genes and 10 proteins at T0 and T1 and could predict the RCRG with an
accuracy of 91.7%, sensitivity of 96.2% and specificity of 80%.

1. Introduction

A recent challenge for genomics is the integration of complementary views
of the genome provided by various types of genome-wide data. It is likely
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that these multiple views contain different, partly independent and comple-
mentary information. In the near future, the amount of available data will
increase further (e.g. methylation, alternative splicing, metabolomics, etc).
This makes data fusion an increasingly important topic in bioinformatics.

Kernel Methods and in particular Support Vector Machines (SVMs)
for supervised classification are a powerful class of methods for pattern
analysis, and in recent years have become a standard tool in data analysis,
computational statistics, and machine learning applications.1–2 Based on
a strong theoretical framework, their rapid uptake in applications such as
bioinformatics, chemoinformatics, and even computational linguistics, is
due to their reliability, accuracy, computational efficiency, demonstrated in
countless applications, as well as their capability to handle a very wide range
of data types and to combine them (e.g. kernel methods have been used
to analyze sequences, vectors, networks, phylogenetic trees, etc). Kernel
methods work by mapping any kind of input items (be they sequences,
numeric vectors, molecular structures, etc) into a high dimensional space.
The embedding of the data into a vector space is performed by a ma-
thematical object called a ’kernel function’ that can efficiently compute
the inner product between all pairs of data items in the embedding space,
resulting into the so-called kernel matrix. Through these inner products,
all data sets are represented by this real-valued square matrix, independent
of the nature or complexity of the objects to be analyzed, which makes all
types of data equally treatable and easily comparable.

Their ability to deal with complexly structured data made kernel me-
thods ideally positioned for heterogeneous data integration. This was
understood and demonstrated in 2002, when a crucial paper integrated
amino-acid sequence information (and similarity statistics), expression
data, protein-protein interaction data, and other types of genomic infor-
mation to solve a single classification problem: the classification of trans-
membrane versus non transmembrane proteins.3 Thanks to this integration
of information a higher accuracy was achieved than what was possible based
on any of the data sources separately. This and related approaches are now
widely used in bioinformatics.4–6

Inspired by this idea we adapted this framework which is based on a con-
vex optimization problem solvable with semi-definite programming (SDP).
As supervised classification algorithm, we used Least Squares Support Vec-
tor Machines (LS-SVMs) instead of SVMs. LS-SVMs are easier and faster
for high dimensional data because the quadratic programming problem is
converted into a linear problem. Secondly, LS-SVMs are also more suitable
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as they contain regularization which allows tackling the problem of overfit-
ting. We have shown that regularization seems to be very important when
applying classification methods on high dimensional data.7

The algorithm described in this paper will be applied on data of pa-
tients with rectal cancer. To investigate the combination of cetuximab,
capecitabine and radiotherapy in the preoperative treatment of patients
with rectal cancer, microarray and proteomics data were gathered from
fourty rectal cancer patients at three timepoints during therapy. At surgery,
different outcomes were registered but here we focus on the Rectal Can-
cer Regression Grade (RCRG)8, a pathological staging system based on
Wheeler for irradiated rectal cancer. It includes a measurement of tu-
mour response after preoperative therapy. In this paper, patients were
divided into two groups which we would like to distinguish: the positive
group (RCRG pos) contained Wheeler 1 (good responsiveness; tumour is
sterilized or only microscopic foci of adenocarcinoma remain); the nega-
tive group (RCRG neg) consisted of Wheeler 2 (moderate responsiveness;
marked fibrosis but with still a macroscopic tumour) and Wheeler 3 (poor
responsiveness; little or no fibrosis with abundant macroscopic tumour).
We refer the readers to Ref. 9 for more details about the study and the
patient characteristics.

We would like to demonstrate that integrating multiple available data
sources in the patient domain in an appropriate way using kernel methods
increases the predictive power compared to models built only on one data
set. The developed algorithm will be demonstrated on rectal cancer patient
data to predict the RCRG at T1 (= before the start of radiotherapy).

2. Data sources

Fourty patients with rectal cancer (T3-T4 and/or N+) from seven Belgian
centers were enrolled in a phase I/II study investigating the combination
of cetuximab, capecitabine and radiotherapy in the preoperative treatment
of patients with rectal cancer.9 Tissue and plasma samples were gathered
before treatment (T0), after one dose of cetuximab but before radiotherapy
with capecitabine (T1) and at moment of surgery (T2). At all these three
timepoints, the frozen tissues were used for Affymetrix microarray analysis
while the plasma samples were used for Luminex proteomics analysis. Be-
cause we had to exclude some patients, ultimately the data set contained
36 patients.

The samples were hybridized to Affymetrix human U133 2.0 plus gene
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chip arrays. The resulting data was first preprocessed for each timepoint
separately using RMA.10 Secondly, the probe sets were mapped on Entrez
Gene Ids by taking the median of all probe sets that matched on the same
gene. Probe sets that matched on multiple genes were excluded and un-
known probe sets were given an arbitrary Entrez Gene Id. This reduces
the number of features from 54613 probe sets to 27650 genes. Next, one
can imagine that the number of differentially expressed genes will be much
lower than these 27650 genes. Therefore, a prefiltering without reference
to phenotype can be used to reduce the number of genes. Taking into ac-
count the low signal-to-noise ratio of microarray data, we decided to filter
out genes that show low variation across all samples. Only retaining the
genes with a variance in the top 25% reduces the number of features at
each timepoint to 6913 genes.

The proteomics data consist of 96 proteins, previously known to be
involved in cancer, measured for all patients in a Luminex 100 instrument.
Proteins that had absolute values above the detection limit in less than 20%
of the samples were excluded for each timepoint separately. This results in
the exclusion of six proteins at T0, four at T1 and six at T2. The proteomics
expression values of transforming growth factor alpha (TGFα), which had
also too many values below the detection limit, were replaced by the results
of ELISA tests performed at the Department of Experimental Oncology
in Leuven. For the remaining proteins the missing values were replaced
by half of the minimum detected for each protein over all samples, and
values exceeding the upper limit were replaced by the upper limit value.
Because most of the proteins had a positively skewed distribution, a log
transformation (base 2) was performed.

In this paper, only the data sets at T0 and T1 were used because the
goal of the models is to predict before start of chemoradiation the RCRG.

3. Methodology

3.1. Kernel methods and LS-SVMs

Kernel methods are a group of algorithms that do not depend on the nature
of the data because they represent data entities through a set of pairwise
comparisons called the kernel matrix. The size of this matrix is determined
only by the number of data entities, whatever the nature or the comple-
xity of these entities. For example a set of 100 patients each characterized
by 6913 gene expression values is still represented by a 100 × 100 kernel
matrix.4 Similarly as 96 proteins characterized by their 3D structure are
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represented by a 100 × 100 kernel matrix. The kernel matrix can be ge-
ometrically expressed as a transformation of each data point x to a high
dimensional feature space with the mapping function Φ(x). By defining a
kernel function k(xk, xl) as the inner product 〈Φ(xk), Φ(xl)〉 of two data
points xk and xl, an explicit representation of Φ(x) in the feature space
is not needed anymore. Any symmetric, positive semidefinite function is a
valid kernel function, resulting in many possible kernels, e.g. linear, polyno-
mial and diffusion kernels. They all correspond to a different transformation
of the data, meaning that they extract a specific type of information from
the data set. Therefore, the kernel representation can be applied to many
different types of data and is not limited to vectorial or matrix form.

An example of a kernel algorithm for supervised classification is the Sup-
port Vector Machine (SVM) developed by Vapnik and others.11 Contrary
to most other classification methods and due to the way data is represented
through kernels, SVMs can tackle high dimensional data (e.g. microarray
data). The SVM forms a linear discriminant boundary in feature space with
maximum distance between samples of the two considered classes. This cor-
responds to a non-linear discriminant function in the original input space.
A modified version of SVM, the Least Squares Support Vector Machine (LS-
SVM), was developed by Suykens et al.12–13 On high dimensional data sets
this modified version is much faster for classification because a linear sys-
tem instead of a quadratic programming problem needs to be solved. The
LS-SVM also contains regularization which tackles the problem of overfit-
ting. In the next section we describe the use of LS-SVMs with a normalized
linear kernel to predict the RCRG in rectal cancer patients based on the
kernel integration of microarray and proteomics data at T0 and T1.

3.2. Data fusion

There exist three ways to learn simultaneously from multiple data sources
using kernel methods: early, intermediate and late integration.14 Figure 1
gives a global overview of these three methods in the case of two available
data sets. In this paper, intermediate integration is chosen because this type
of data fusion seemed to perform better than early and late integration.14

The nature of each data set is taken into account better compared to early
integration by adapting the kernel functions to each data set separately. By
adding the kernel matrices before training the LS-SVM, only one predicted
outcome per patient is obtained. This makes the extra decision function
which was needed for late integration unnecessary.
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Figure 1. Three methods to learn from multiple data sources. In early integration, an
LS-SVM is trained on the kernel matrix, computed from the concatenated data set. In
intermediate integration, a kernel matrix is computed for both data sets and an LS-
SVM is trained on the sum of the kernel matrices. In late integration, two LS-SVMs are
trained separately for each data set. A decision function results in a single outcome for
each patient.

3.3. Model building

In this paper, the normalized linear kernel function

k(xk, xl) = k(xk, xl)/
√

k(xk, xk)k(xl, xl) (1)

with k(xk, x) = xT
k x was used instead of the linear kernel function

k(xk, xl) = xT
k xl. With the normalized version, the values in the kernel

matrix will be bounded because the data points are projected onto the unit
sphere while these elements can take very large values without normaliza-
tion. Normalizing is thus required when combining multiple data sources
to guarantee the same order of magnitude for the kernel matrices of the
data sets.

There are four data sets that have to be combined: microarray data at
T0, at T1 and proteomics data at T0 and at T1. Because each data set
is represented by a kernel matrix, these data sources can be integrated in
a straightforward way by adding the multiple kernel matrices according to
intermediate integration explained previously. In this combination, each
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of the matrices is given a specific weight µi. The resulting kernel matrix
is given in Eq. 2. Positive semidefiniteness of the linear combination of
kernel matrices is guaranteed when the weights µi are constrained to be
non-negative.

K = µ1K1 + µ2K2 + µ3K3 + µ4K4. (2)

The choices of the weights are important. Previous studies have shown that
the optimization of the weights only leads to a better performance when
some of the available data sets are redundant or contain much noise.3 In our
case we believe that the microarray and proteomics data sets are equally
reliable based on our results of LS-SVMs on each data source separately
(data not shown). Therefore to avoid optimizing the weights, they were
chosen equally: µ1 = µ2 = µ3 = µ4 = 0.25.

Due to the data set size, we chose a leave-one-out cross-validation (LOO-
CV) strategy to estimate the generalization performance (see Fig. 2). Since
both classes were unbalanced (26 RCRG pos and 10 RCRG neg), the mino-
rity class was resampled in each LOO iteration by randomly duplicating
a sample from the minority class and adding uniform noise ([0,0.1]). This
was repeated until the number of samples in the minority class was at least
70% of the majority class (chosen without optimization).

After choosing the weights fixed, three parameters are left that have to
be optimized: the regularization parameter γ of the LS-SVM, the number of
genes used from the microarray data sets both at T0 and T1 and the number
of proteins used from the proteomics data sets. To accomplish this, a three-
dimensional grid was defined as shown in Fig. 2 on which the parameters
are optimized by maximizing a criterion on the training set. The possible
values for γ on this grid range from 10−10 to 1010 on a logarithmic scale.
The possible number of genes that were tested are 5, 10, 30, 50, 100, 300,
500, 1000, 3000 and all genes. The number of proteins used are 5, 10, 25,
50 and all proteins. Genes and proteins were selected by ranking these
features using the Wilcoxon rank sum test. In each LOO-CV iteration, a
model is built for each possible combination of parameters on the 3D-grid.
Each model with the instantiated parameters is evaluated on the left out
sample. This whole procedure is repeated for all samples in the set. The
model with the highest accuracy is chosen. If multiple models with equal
accuracy, the model with the highest sum of sensitivity and specificity is
chosen.
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Figure 2. Methodology for developing a classifier. The available data contains microar-
ray data and proteomics data both at T0 and T1. The regularization parameter γ and
the number of genes (GS) and proteins (PS) are determined with a leave-one-out cross-
validation strategy on the complete set. In each leave-one-out iteration, an LS-SVM
model is trained on the most significant genes and proteins for all possible combina-
tions of γ and the number of features. This gives a globally best parameter combination
(γ,GS,PS).

4. Results

We evaluated our methodology as described in Sec. 3.3 on the rectal cancer
data set to predict the Rectal Cancer Regression Grade. The model with
the highest performance accuracy and an as high as possible sum of sen-
sitivity and specificity was built on the five most significant genes and the
ten most significant proteins at T0 and T1 according to the RCRG. From
now on, we refer to this model as MPIM (Microarray and Proteomics In-
tegration Model). To evaluate its performance, 6 other models were built
on different combinations of data sources using the same model building
strategy: MMT0 (Microarray Model at T0: all microarray data at T0),
MMT1 (Microarray Model at T1: all microarray data at T1), MIM (Mi-
croarray Integration Model: microarray data at both timepoints), PMT0
(Proteomics Model at T0: all proteomics data at T0), PMT1 (Proteomics
Model at T1: all proteomics data at T1) and PIM (Proteomics Integration
Model: proteomics data at both timepoints).

Table 1 gives an overview of all these models with the number of features
resulting into the best performance for each model. MPIM predicts the
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RCRG correctly in 33 of the 36 patients (=91.7%). Almost all patients
with RCRG positive are predicted correctly with a sensitivity of 96.2% and
a positive predictive value of 0.926. Of the patients with RCRG negative,
80% are classified correctly. None of the other models performs better for
one of the performance parameters shown in Table 1.

Table 1. Performance of MPIM compared to models based on different combinations of data sources.

Model Nb Nb TP FP FN TN Sens Spec PPV NPV Accuracy
genes proteins (in %) (in %) (in %)

MPIM 5 10 25 2 1 8 96.2 80 0.926 0.889 91.7 (33/36)
MMT0 1000 - 25 10 1 0 96.2 0 0.714 0 69.4 (25/36)
MMT1 3000 - 23 6 3 4 88.5 40 0.793 0.571 75.0 (27/36)
MIM 30 - 25 10 1 0 96.2 0 0.714 0 69.4 (25/36)
PMT0 - all 21 4 5 6 80.8 60 0.840 0.545 75.0 (27/36)
PMT1 - 5 23 2 3 8 88.5 80 0.920 0.727 86.1 (31/36)
PIM - 25 21 3 5 7 80.8 70 0.875 0.583 77.8 (28/36)

TP, true positive; FP, false positive; FN, false negative; TN, true negative; Sens,
sensitivity; Spec, specificity; PPV, positive predictive value; NPV, negative predictive
value; Accuracy, predictive accuracy.

The MPIM is built on 5 genes different for T0 and T1, 9 proteins different
for T0 and T1 and 1 protein selected at both timepoints (ferritin).

Among the 5 genes at T0 and at T1, several were related to cancer. Bone
morphogenetic protein 4 (BMP4) is involved in development, morphogene-
sis, cell proliferation and apoptosis. This protein, upregulated in colorectal
tumours, seems to help initiate the metastasis of colorectal cancer without
maintaining these metastases.15 Integrin alpha V (ITGAV) is a receptor
on cell surfaces for extracellular matrix proteins. Integrins play important
roles in cell-cell and cell-matrix interactions during a.o. immune reactions,
tumour growth and progression, and cell survival. ITGAV is related to
many cancer types among which prostate and breast cancer for which it
is important in the bone environment to the growth and pathogenesis of
cancer bone metastases.16

Several of the proteins have known associations with rectal and colon
cancer, such as ferritin, TGFα, MMP-2 and TNFα. Ferritin, the major
intracellular iron storage protein, is an indicator for iron deficiency anemia.
This disease is recognized as a presenting feature of right-sided colon cancer
and increases in men significantly the risk of having colon cancer.17 The
transforming growth factor alpha (TGFα) is upregulated in some human
cancers among which rectal cancer.18 In colon cancer, it promotes depletion
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of tumour-associated macrophages and secretion of amphoterin.19 TGFα is
closely related to epidermal growth factor EGF, one of the other proteins on
which MPIM is built. EGF plays an important role in the regulation of cell
growth, proliferation and differentiation. The matrix metalloproteinase-2
(MMP-2), known to be implicated in rectal and colon cancer invasion and
metastasis, is associated with a reduced survival of these patients when
being higher expressed in the malignant epithelium and in the surrounding
stroma.20 The tumour necrosis factor TNFα has important roles in im-
munity and cellular remodelling and influences apoptosis and cell survival.
Dysregulation and especially overproduction of TNFα have been observed
to occur in colorectal cancer.21 Some of the other proteins such as IL-4 and
IL-6 are important for the immune system whose function depends for a
large part on interleukins. IL-4 is involved in the proliferation of B cells
and the development of T cells and mast cells. It also has an important
role in allergic response. IL-6 regulates the immune response, modulates
normal and cancer cell growth, differentiation and cell survival.22 It causes
increased steady-state levels of TGFα mRNA in macrophage-like cells.23

Several of the genes and proteins are involved in KEGG-pathways for en-
vironmental information processing (cytokine-cytokine receptor interaction,
Jak-STAT signaling pathway) and for the immune system (hematopoietic
cell lineage). Important functions and processes confirmed by Gene On-
tology 24 are protein binding, signal transduction, multicellular organismal
development, cell-cell signaling and regulation of cell proliferation.

5. Discussion

We presented a framework for the combination of multiple genome-wide
data sources in disease management using a kernel-based approach (see
Fig. 2). Each data set is represented by a kernel matrix based on a nor-
malized linear kernel function. These matrices are combined according to
the intermediate integration method illustrated in Fig. 1. Afterwards,
an LS-SVM is trained on the combined kernel matrix. In this paper, we
evaluated the resulting algorithm on our data set consisting of microarray
and proteomics data of rectal cancer patients to predict the Rectal Can-
cer Regression Grade after a combination therapy consisting of cetuximab,
capecitabine and radiotherapy. The best model (MPIM) is based on 5 genes
and 10 proteins at T0 and at T1 and can predict the RCRG with an accuracy
of 91.7%, sensitivity of 96.2% and specificity of 80%. Table 1 shows that the
performance parameters of MPIM are better than or equal to the values
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of the other models. This demonstrates that microarray and proteomics
data are partly complementary and that the performance of our algorithm
in which these various views on the genome are integrated improves the
prediction of response to therapy upon LS-SVMs trained on a combination
of less data sources. Many of the genes and proteins on which the MPIM
is built are related to rectal cancer or cancer in general.

We were inspired by the idea of Lanckriet3 and others4–6 to integrate
multiple types of genomic information to be able to solve a single classifi-
cation problem with a higher accuracy than possible based on any of the
genomic information sources separately. In the framework of Lanckriet, the
problem of optimal kernel combination is formulated as a convex optimiza-
tion problem using SVMs and is solvable with semi-definite programming
(SDP) techniques. However, LS-SVMs are easier and faster for high dimen-
sional data because the problem is formulated as a linear problem instead
of a quadratic programming problem and LS-SVMs contain regularization
which tackles the problem of overfitting. Instead of applying this approach
to protein function in yeast which requires the reformulation of the prob-
lem in 13 binary classification problems (equal to the number of different
functional classes), we applied a modified version of this framework in the
patient space where many of the prediction problems are already binary.
To the author’s knowledge, this is the first time that a kernel-based inte-
gration method has been applied on multiple high dimensional data sets in
the patient domain for studying cancer. Our results show that using infor-
mation from different levels in the central dogma improves the classification
performance.

We already mentioned that kernel methods have a large scope due to
their representation of the data. However, when the amount of available
data will increase in the near future, the choice of the weights becomes more
important, especially when applying the algorithm to problems where the
reliability of the data sources differs much or is not known a priori. In
this paper, we chose the weights equally. We cannot guarantee though that
without optimizing the weights of the different data sources we get the
most optimal model. However, this increases the computational burden
significantly.

When more data sources will become available in the future, they can be
easily added to this framework. Additionally, we are currently investigating
ways to improve the optimization algorithm, especially for the choice of the
weights. Next, we will also apply more advanced feature selection tech-
niques. At this moment a simple statistical test is used but more advanced
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techniques could be applied. Finally, we will compare kernel methods with
other integration frameworks (e.g. Bayesian techniques).25
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