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We present GSE, the Genomic Spatial Event database, a system to store, retrieve,

and analyze all types of high-throughput microarray data. GSE handles expression

datasets, ChIP-chip data, genomic annotations, functional annotations, the results

of our previously published Joint Binding Deconvolution algorithm for ChIP-chip,

and precomputed scans for binding events. GSE can manage data associated with

multiple species; it can also simultaneously handle data associated with multiple

‘builds’ of the genome from a single species. The GSE system is built upon a middle

software layer for representing streams of biological data; we outline this layer,

called GSEBricks, and show how it is used to build an interactive visualization

application for ChIP-chip data. The visualizer software is written in Java and

communicates with the GSE database system over the network. We also present

a system to formulate and record binding hypotheses- simple descriptions of the

relationships that may hold between different ChIP-chip experiments. We provide

a reference software implementation for the GSE system.

1. Introduction

1.1. Large-Scale Data Storage in Bioinformatics

The data storage and computational requirements for high-throughput ge-
nomics experiments have grown exponentially over the last several years.
Some methods simultaneously collect hundreds-of-thousands, or even mil-
lions, of data points. Microarrays contain several orders of magnitude
more probes than just a few years ago. Short read sequencing produces
’raw’ datasets requiring over a terabyte of computer disk storage11. Com-
bine these with massive genome annotation datasets, cross-species sequence
alignments mapped on a per-base level, thousands of publicly-available mi-
croarray expression experiments, and growing databases of sequence motif
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information – and you have a wealth of experimental results (and large
scale analyses) available to the investigator on a scale unimagined just a
few years ago.

Successful analysis of high-throughput genome-wide experimental data
requires careful thought on the organization and storage of numerous
dataset types. However, the ability to effectively store and query large
datasets has often lagged behind the sophistication of the analysis tech-
niques that are developed for that data. Many publicly available analysis
packages were developed to work in smaller systems, such as yeast 19. Flat
files are sufficient for simple organisms, but for large datasets they will not
fit into main memory and cannot provide the random access necessary for
a browsing visualizer.

Modern relational databases provide storage and query capabilities for
these vertebrate-sized datasets. Built to hold hundreds of gigabytes to
terabytes of data, they provide easy access through a well-developed query
language (SQL), network accessibility, query optimizations, and facilities
for easily backing up or mirroring data across multiple sites.

Most bioinformatics tools that have taken advantage of database tech-
nology, however, are web applications. Often these tools are the front-end
interfaces to institutional efforts that gather publicly-available data or are
community resources for particular model organisms or experimental pro-
tocols. Efforts like UCSC’s genome browser and its backing database12, or
the systems of GenBank2, SGD6, FlyBase4, and many others, are all ex-
amples of web interfaces to sophisticated database systems for the storage,
search, and retrieval of species-based or experiment-based data.

1.2. A Desktop Analysis Client and a Networked Database

Server

The system that we describe here bridges the gap between the web ap-
plications that exist for large datasets and the analysis tools that work
on smaller datasets. GSE consists of back-end tools for importing data
and running batch analyses as well as visualization software for interactive
browsing and analysis of ChIP-chip data.

The visualization software, distributed as a Java application, communi-
cates over the network with the same database system as the as the middle-
layer and analysis tools. Our visualization and analysis software is written
in Java and are distributed as desktop applications. This lets us combine
much of the flexibility of a web-application interface (lightweight, no flat
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files to install, and can run on any major operating system) with the power
of not being confined to a browser environment. Our system can also con-
nect to datastreams from multiple databases simultaneously, and can use
other system resources normally unavailable to a browser application.

This paper describes the platform that we have developed for the storage
of ChIP-chip and other microarray experiments in a relational database. It
then presents our system for intepreting ChIP-chip data to identify binding
events using our previously published “Joint Binding Deconvolution” (JBD)
algorithm17. Finally, we show how we can build a system for the dynamic
and automatic analysis of ChIP-chip binding calls between different factors
and across experimental conditions.

2. A Database System for ChIP-chip Data

The core of our system is a database schema to represent ChIP-chip data
and associated metadata in a manner independent of specific genomic co-
ordinates and of the specific array platform.

2.1. Common Metadata

Figure 1 shows the common metadata that all subcomponents of GSE share.
We define species, genome builds, and experimental metadata that may be
shared by ChIP-chip experiments, expression experiments, and ChIP-seq
experiments. We represent factors (e.g. an antibody or RNA extraction
protocol), cell-types (tissue identifier or cell line name), and conditions as
entries in separate tables.

2.2. Coordinate Independent ChIP-chip Representation

In our terminology, an experiment aggregates ChIP-chip datasets which all
share the same factor, condition, and cell-type as defined in the common
metadata tables. Each replicate of an experiment corresponds to a single
hybridization performed against a particular micorarray design. In Sec-
tion 4, we will outline a system for building biological hypotheses out of
these descriptive metadata objects.

GSE stores probes separately from their genomic coordinates as shown
in Figure 2. Microarray observations are indexed by probe identifier and
experiment identifier. The key data retrieval query joins the probe observer-
ations and probe genomic coordinates based on probe identifier and filters
the results by experiment identifier (or more typically a set of experiment
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Figure 1. The Genomic Spatial Event database’s common metadata defines species,

genome assemblies, and terms to describe experiments. Cells enumerates the known

tissue or cell types. Conditions defines the conditions or treatments from which the cells

were taken. Factors describes antibodies in ChIP-chip experiments or RNA extraction

protocols (eg total RNA or polyA RNA) for expression experiments.

identifiers corresponding to replicates of a biological experiment) and ge-
nomic coordinate. To add a new genome assembly to the system, we remap
each probe to the new coordinate space once and all of the data is then
available against that assembly. Since updating to a new genome assembly
is a relative quick operation regardless of how many datasets have been
loaded, users can always take advantage of the latest genome annotations.

GSE’s database system also allows multiple runs of the same biological
experiment on different array platforms or designs to be so combined. Some
of our analysis methods can cope with the uneven data densities that arise
from this combination, and we are able to gather more statistical power
from our models when they can do so.

2.3. Discovering Binding Events from ChIP-chip Data

Modern, high-resolution tiling microarray data allows detailed analyses that
can determine binding event locations accurate to tens of bases. Older
low-resolution ChIP-chip microarrays included just one or two probes per
gene9,10. Traditional analysis applied a simple error model to each probe to
produce a bound/not bound call for each gene rather than measurements
associated with genomic coordinates22. Our Joint Binding Deconvolution
(JBD) exploits the dozens or hundreds of probes that cover each gene an
intergenic region on modern microarrays with a complex statistical model
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Figure 2. The ChIP-chip schema stores microarray designs, raw microarray observa-

tions, and the resulting analyses. We store probe designs as information about a single

spot on a microarray. Probes are grouped by slide and by slide sets (arrayset). Genomic

coordinates for each probe reside in a separate table to allow easy remapping of probes

to new genome assemblies.

that incorporates the results of multiple probes at once and accounts for
the possibility of multiple closely-spaced binding events.

JBD produces a probability of binding at any desired resolution (e.g.
a per-base probability that a transcription factor bound that location).
Figure 2 shows the tables that store the JBD output and figure 3 shows a
genomic segment with ChIP-Chip data and JBD results. Unlike the raw
probe observations, JBD output refers to a specific genome assembly since
the spatial arrangement of the probe observations is a key input. GSE’s
schema also records which experiments led to which JBD analysis.

2.4. Prior Work and Performance

We modeled portions of GSE after several pre-existing analysis and data-
handling systems. The core design of an analysis system supported by a
relational database was made after experience with the GeneXPress package
and its descendant, Genomica19. We modeled portions of the GSEBricks
system, our modular component analysis system, after the Broad Institute’s
GenePattern software 18. There are also several widely-used standards for
microarray data storage and annotation databases that we were aware of
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Figure 3. A screenshot from the GSE Visualizer. The top track represents ‘raw’ high-

resolution GCN4 data in yeast, and the bottom track shows two lines for the two output

variables of the JBD algorithm. At the bottom are a genomic scale, a representation of

gene annotations, and a custom painting of the probes and motifs from the Harbison et.

al. Regulatory Code dataset.

when designing our system. For instance, the MIAME standard for microar-
ray information 7 is well-known format and specification for microarray data
– however, we made the decision to store significantly less metadata about
our ChIP-chip experiments than MIAME requires, since much of it is not
immediately useful for biological analysis and it made it harder for our bio-
logical collaborators to enter new data into the system. We are also familiar
with the DAS system5, and GSE benefited from close discussions with one
of DAS’s co-creators, during its design and early implementation. However
GSE solves a different problem than DAS, as it is mainly focused on pro-
viding a concentrated resource for (often-unpublished) data accumulation
and an analysis platform for a small to mid-sized group of researchers.

Measuring the exact performance of a distributed system such as ours
is difficult. The system consists of multiple servers running on several het-
erogeneous platforms, with as many as twenty or thirty regular users. Per-
formance statistics are affected by system load, network latency conditions,
and even the complexity of the data itself (the JBD algorithm’s runtime is
data-dependent, taking longer when the data is more “interesting”). Our
group currently runs two database servers, one Oracle and one MySQL, and
our computational needs are served by 16 rack-mounted machines with dual
2.2GHz AMD Opteron processors and 4 GB of memory each. We currently
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store approximately 338 GB of total biological data, which includes 1460
ChIP-chip experiments, 1115 separate results of the JBD algorithm, and
over 240 million probe observations. Given this amount of data, and users
scattered among at least eight collaborating groups, we are still able to
serve up megabase visualizations of most ChIP-chip experiments in a mat-
ter of seconds, and to scan single experiments for binding events in times
on the order of about 1-2 minutes.

3. GSEBricks: A Modular Library for Biological Data
Analysis

GSE’s visualization and GUI analysis tools depend on a library of modular
analysis and data-retrieval components collectively titled ‘GSEBricks’. This
system provides a uniform interface to disparate kinds of data: ChIP-chip
data, JBD analyses, binding scans, genome annotations, microarray ex-
pression data, functional annotations, sequence alignment, orthology infor-
mation, and sequence motif instances. GSEBricks’ components use Java’s
Iterator interface such that a series of components can be easily connected
into analysis pipelines.

A GSEBricks module is written by extending one of three Java inter-
faces: Mapper, Filter, or Expander. All of these interfaces have an ‘exe-
cute’ method, with a single Object argument which is type-parameterized
in Java 5. The Mapper and Filter execute methods have an Object (also
parameterized) as a return value. Mapper produces Objects in a one-to-one
relationship with its input, while a Filter may occasionally return ‘null’
(that is, no value). The Expander execute method, on the other hand,
returns an Iterator each time it is called (although the Iterator may be
empty).

3.1. Ease of Integration and Extensibility

Each GSEBricks datastream is represented by an Iterator object and
datastreams are composed using modules which ‘glue’ existing Iterators

into new streams. Because we extend the Java Iterator interface, the
learning curve for GSEBricks is gentle even for novice Java programmers.
At the same time, its paradigm of building ‘Iterators out of Iterators’ lends
itself to a Lisp-like method of functional composition, which naturally ap-
peals to many programmers familiar with that language.

Because our analysis components implement common interfaces (eg,
Iterator<Gene> or Iterator<BindingEvent>), it is easy to simply plug
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them into visualization or analysis software. Furthermore, the modular
design lends itself to modular extensions. We have been able to quickly
extend our visualizer to handle and display data such as dynamically re-
scanned motifs (on a base-by-base level within the visualized region), auto-
matic creation of ‘meta-genes’21 (averaged displays of ChIP-chip data from
interactively-selected region sets), and the display of mapped reads from
ChIP-PET experiments13.

The final advantage of GSEBricks is the extensibility of the GSEBricks
system itself. By modifying the code we use to glue the Iterators together,
we can replace sequential-style list-processing analysis programs with net-
works of asynchronously-communicating modules that share data over the
network while exploiting the parallel processing capabilities of a pre-defined
set of available machines.

3.2. GSEBricks Interface

Figure 4 shows a screenshot from our interface to the GSEBricks system.
Users can graphically arrange visual components, each corresponding to an
underlying GSEBricks class, into structures that represent the flow of com-
putation. This extension also allows non-sequential computational flows
– trees, or other non-simply connected structures – to be assembled and
computed. The interface uses a dynamic type system to ensure that the
workflow connects components in a typesafe manner.

Workflows which can be laid out and run with the graphical interface
can also be programmed directly using their native Java interfaces. The
second half of Figure 4 gives an example of a code-snippet that performs
the same operation using the native GSEBricks components in Java.

4. Representing and Storing ChIP-chip Binding
Hypotheses

The final element of the GSE database is a system to store not just raw
experimental data but also a representation of a scientist’s beliefs about
that data.

Investigators often wish to discover the “regulatory networks” of bind-
ing that describe transcriptional control in a particular condition or cell
type. For a single experiment, the network is simply a set of genes located
near high-confidence binding sites3,16,14. With multiple experiments, each
set of gene targets (the ‘network’) is characterized by the binding profiles
of multiple factors simultaneously. If the investigator is interested in the
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Figure 4. A GSEBricks pipeline to count the genes in a genome. Each box represents a

component that maps objects of some input type to a set of output objects. The circles

represent constants that parameterize the behavior of the pipeline. The code on the

right replicates the same pipeline using Java components.

behavior of those regulating factors, she will need to summarize the be-
haviors of the regulators across multiple sets of genes14. Once a biologist
has outlined what she thinks is the “regulatory network” of a collection of
factors, she is faced with the problem of formalizing those conclusions in
a way that is useful to other scientists, or even to herself at some distant
time in the future.

GSE gives the user a simple language to express relationships between
different ChIP-chip experiments whose binding events have been precalcu-
lated and saved. GSE also provides the user with a schema for storing those
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hypotheses in the database and for automatically checking those hypothe-
ses against new and unexamined experiments. In this way, we can think of
the Hypothesis system as a kind of basic “lab notebook” for the analysis of
ChIP-chip binding data.

Our hypotheses, H, have a simple grammar: F := {factors} and H :=
F |H → H. We can treat a hypothesis h as a predicate on the set of distinct
genomic coordinates, G. If h = F, then h(x) if and only if a binding event
of F is located at x. We can also relax this condition to include binding
“within a certain distance” from one factor to another. The → of our
hypothesis language is material implication from logic. If h = H1 → H2,
then h(x) holds if and only if either H2(x) or ¬H1(x).

We will evaluate hypotheses in reverse- instead of asking how much the
data supports a particular hypothesis, we search for examples that con-
tradict the hypothesis. In other words, we treat different (and distant)
genomic coordinates as independent witnesses to the validity of a partic-
ular hypothesis and we ask how many locations seem to invalidate the
hypothesis. The approach is computationally simple because the logical
structure of our language will make it easy to quickly evaluate a fixed set of
hypotheses against wide regions of genome which have been assayed with
large numbers of binding experiments. We will also be able to easily lever-
age the high-throughput nature of our experiments, which might slow more
complex algorithms to an unusable speed. Our approach is also useful be-
cause it gives the user a way to systematically enumerate and test the set
of exceptions to a hypothesis.

In Table 1, we show the automatic results generated by our Hypothesis
system when compared against the Harbison yeast regulatory code dataset8.
For three factors we report the top ten ranked hypotheses about genes reg-
ulated by Fkh2, Rap1, and Ste12. Each column is followed by the number
of ‘inconsistent’ probes that were found by the Hypothesis system. The
results are not given a probabilistic interpretation, or even a description
beyond just their ranked lists. It is, however, reassuring that such a simple
analysis can easily recover most of the known related or interacting factors
for these three simple cases15,20,1.

5. Conclusion

We have described GSE, a system to represent microarray data and meta-
data in a relational database, and described a software system which reads
and presents that data in a modular, extensible way. A reference imple-

Pacific Symposium on Biocomputing 13:539-550(2008)



September 26, 2007 20:25 Proceedings Trim Size: 9in x 6in paper

FKH2 #errors RAP1 #errors STE12 #errors

0 → FKH1 82 → FHL1 131 → DIG1 63
1 → NDD1 86 → GAT3 195 → TEC1 98
2 → SWI6 112 → YAP5 199 → NDD1 114
3 → SWI4 114 → PDR1 201 → SWI6 115
4 → MBP1 116 → SMP1 205 → MCM1 116

mentation of this system will be available through the Gifford Lab group
website, http://cgs.csail.mit.edu. This implementation includes an
interactive, Java application for visualization and analysis that uses this
modular system to browse and view ChIP-chip experiments and genome
annotation data.

We have outlined our opinion that the automatic discovery of regulatory
relationships from databases like GSE can only occur when the database
itself stores hypotheses about the data. We have sketched a rudimentary
hypothesis system which can automatically read simple hypotheses from
the GSE database and check them in a non-probabilistic way against pre-
computed binding event scans.

In the near future, we will extend our system to handle new kinds of
large-scale ChIP-based data. Specifically, we are developing a schema and
a set of GSEBricks components to efficiently handle the multi-terabyte
datasets we expect to receive from new ChIPSeq machines11.
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