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Currently, biosimulation researchers use a variety of computational environments and 
languages to model biological processes. Ideally, researchers should be able to semi-
automatically merge models to more effectively build larger, multi-scale models. How-
ever, current modeling methods do not capture the underlying semantics of these models 
sufficiently to support this type of model construction. In this paper, we both propose a 
general approach to solve this problem, and we provide a specific example that demon-
strates the benefits of our methodology. In particular, we describe three biosimulation 
models: (1) a cardio-vascular fluid dynamics model, (2) a model of heart rate regulation 
via baroreceptor control, and (3) a sub-cellular-level model of the arteriolar smooth mus-
cle. Within a light-weight ontological framework, we leverage reference ontologies to 
match concepts across models. The light-weight ontology then helps us combine our three 
models into a merged model that can answer questions beyond the scope of any single 
model. 

1. Semantics for biosimulation modeling 

Biomedical simulation modeling is an essential tool for understanding and ex-
ploring the mechanics and dynamics of complex biological processes. To this 
end, researchers have developed a wide variety of simulation models that are 
written in a variety of languages (SBML, CellML, etc.) and are designed for a 
variety of computational environments (JSim, MatLab, Gepasi, Jarnac, etc.). 
Unfortunately, these models are not currently interoperable, nor are they anno-
tated in a sufficiently consistent manner to support intelligent searching or inte-
gration of available models. 

In the extreme case, a biosimulation model contains no explicit information 
about what it represents— it is only a system of mathematical equations encoded 
in a computational language. The biological system that is the subject of the 
model is implicit in the code; the code is an abstraction of that system into 
mathematical variables and equations that must be interpreted by a researcher. If 
one researcher wishes to understand or use a model created by another, he or she 
must (usually) communicate directly with those that created the model. For com-
plex, multi-scale models, this problem is a bottleneck to further progress—if 
models could be archived, re-used, and connected together computationally, we 
would avoid a great deal of work spent “re-creating the wheel”, by leveraging 
more directly the work of others.  
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Recognizing this problem, there are on-going efforts to build repositories of 
annotated biosimulation models [1-4]. However, these annotations are predomi-
nantly human-interpretable and depend on local semantics. For example, reposi-
tories of JSim models [4] and CellML models [1] rely on in-line code annota-
tions to explain mathematical equations—annotations that are not machine-
interpretable. The BioModels repository [3] of SBML-encoded models uses 
XML-based annotations, but, we argue, these still lack the strong semantics 
required for computer-aided integration. (This library is also restricted to the 
scales of cellular and biomolecular problems). Given that the goal of multi-scale 
modeling is the flexible reuse and integration of models to solve large-scale 
modeling problems, we argue that a much stronger, machine-interpretable se-
mantic framework needs to be applied to these biosimulation models. 

In this paper, we propose a flexible solution that will allow biosimulation 
models to be re-used and re-combined in a plug-n-play manner. The thrust of 
our approach is to build light-weight ontological models of biological systems 
for annotating model variables in terms of the physical properties and the ana-
tomical entities to which they refer, and for explicitly representing how these 
property variables depend upon each other. More concretely, we demonstrate 
how our ontologies can represent the semantics of three models, and then use 
this information to help merge these into a larger, multi-scale biosimulation 
model. 

We begin by describing the three source models that make up a driving use-
case for our research, and then show how each model is semantically mapped to 
our light-weight ApplModel Ontology framework (section 2). We can then ana-
lyze and visualize the semantics of the models using available software tools 
(Prompt [5], see section 3). Such tools help us merge the models, and we show 
that our merged model can answer multi-scale questions that are not answerable 
by single component models (section 4).  

1.1 Motivating use-case: Arteriolar calcium uptake & heart rate 

Our driving biological problem is to create a multi-scale cardiovascular model 
from three independently-coded models that contain overlapping parts of the 
cardiovascular regulatory system. Figure 1 provides both a view of our three 
‘source’ models (top half) and our ‘target’—a merged, multi-scale model (bot-
tom half). Our use-case goal is to employ the merged model to answer a multi-
scale, systems-level question such as “How do heart rate and blood pressure 
depend on calcium uptake into arteriolar smooth muscle cells?”—a question that 
cannot be answered by the individual source models. 

The three source models at the top of figure 1 are each a lumped-parameter 
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model independently encoded in the JSim simulation environment[6].a A cardio-
vascular model (CV) was coded by the second author and is a condensed version 
of a previously published model [7]. Using a constant heart rate input (HR) and 
other parameters, the CV model computes time-varying blood pressures and 
flows in a 4-chambered heart and in the pulmonary and systemic vessels. Our 
baroreceptor model (BARO) was originally coded by Daniel Beard and is based 
on Lu and Clark [8] and Spickler et al. [9]. The BARO model takes aortic blood 
pressure as input and computes a time-varying heart rate as a feedback signal to 
control blood pressure. A vascular smooth muscle model (VSM) was coded by 
the third and fourth authors to model the effect of Ca++ ion uptake into arterio-
lar smooth muscles cells and its consequent effect on arteriolar flow resistance. 
In section 4, we provide details about how we created the merged model, as well 
as descriptions of the parameters and variables listed in figure 1.  

As one measure of the challenges inherent in merging these models, our 
combined source models include over 190 named variables and parameters 
whose biophysical meanings are buried in code annotations (where available) 
that are specific to each model. To merge these models appropriately, we need to 
consider three sorts of challenges. First, we must discover identical biophysical 
entities. For example, heart rate is only coincidentally encoded as HR in both the 
CV and BARO models and in fact, represents the same biophysical entity. Sec-

                                                 
a Full source code for these three models are available at 

http://trac.biostr.washington.edu/trac/wiki/JSimModels 
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Figure 1. A simple overview of our use-case and computational goals. We are building an 
infrastructure for querying, interpreting and merging biosimulation model such as the three 
models at the top of the figure, into larger, multi-scale models, such as shown on the bottom.  
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ond, we must discover and resolve variables that are related, but not identical. 
For example, Rsa represents the arteriolar fluid resistance in VSM but the arteri-
oles are only part of the systemic arterial vasculature whose fluid resistance is 
represented as Rartcap (arteries, arterioles and capillaries) in CV. Third, we must 
discover and resolve variable dependencies. HR in the CV model is an input or 
controlled variable whereas in BARO it is an output or computed variable that 
depends ultimately on aortic blood pressure (Paop). Thus, the HR variables from 
CV and BARO should be merged into a single variable, so that the heart rate 
calculated by BARO becomes an input to the CV model. 

1.2 A solution: Light-weight ontological annotation 

The above challenges all revolve around defining the biophysical semantics of 
the variables and parameters within models. As we describe in the next section, 
our solution begins by annotating biosimulation models with light-weight se-
mantics, as provided by our Application Model Ontology (AMO, see also sec-
tion 2.2). The AMO is small, and we envision tool support to make annotation as 
easy as possible for simulation modelers. More broadly, figure 2 shows how this 
annotation step is part of a more general architecture for reusable biosimulation 
models. Once models are annotated with AMO, model libraries can be more 
intelligently searched for relevant models. As we show in section 3, once se-
lected, AMO annotations can help with the tasks of resolving differences be-
tween models to create merged models. Next, from the merged models, we plan 
to generate code in a variety of simulation languages using code-generation 
methods with which we have experience [10]. Ultimately, as with software re-
use, merged models can be returned to the library for reuse by others.  

2. Semantic annotation via ontologies 

Computer-interpretable semantics are best captured by formal ontologies. In 
recent years, a wide variety of ontologies for biology have become available. 
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Figure 2. An approach to making biosimulation models “plug-n-play”: annotate, search, resolve, 
merge, encode, and ultimately reuse. 
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Prominent among these are the ontologies available at the Open Biological On-
tologies (OBO), and its OBO foundry project (at www.obofoundry.org). These 
ontologies cover a variety of levels of formality and abstraction, as well as a 
variety of domain topics. However, although ontologies of physical entities such 
as genes, species, and anatomy have been well-developed, the domain of bio-
simulation also requires properties of anatomical entities (such as volume or 
fluid pressure) as well as some understanding of the processes by which these 
properties change over time.  

In general, we posit that although formal, abstract, “heavy” ontologies are 
essential for unambiguous, machine interpretable annotation, end-users need a 
light-weight methodology for semantic annotation. Thus, we advocate using two 
sorts of ontologies: (1) reference ontologies, that allow us to ground our work in 
the formal semantics of structural biology and physics, and (2) application 
model ontologies that are tailored for the specific semantics of particular 
biosimulation models. 

2.1 Reference ontologies: FMA and OPB 

For our example, we use two reference ontologies: the Foundational Model of 
Anatomy (FMA, [11]), a mature reference ontology of human anatomy, and the 
Ontology of Physics in Biology (OPB), an ontology of classical physics de-
signed for the physics of biological systems. The FMA is a nearly complete 
structural description of a canonical human body. Its taxonomy of Anatomical 
entities is organized according to kind (e.g., Organ system, Organ, Cell, Cell 
part) with parthood relations so that, for example, the Cardiovascular System 
has parts such as Heart, Aorta, Artery, and Arteriole. Parts are also related by 
other structural relations so that, for example, the Aorta is connected_to the 
Heart and the Blood in aorta is contained_in the Aorta.  

The Ontology of Physics for Biology (OPB) is a scale-free, multi-domain 
ontology of classical physics based on systems dynamics theory [12-15]. It thus 
distinguishes among four Physical property superclasses for lumped-parameter 
systems: Force, Flow, Displacement, and Momentum. As shown in figure 3A, 
each of these Physical property classes has subclasses in seven “energy do-
mains”: Fluid mechanics, Solid mechanics, Electricity, Chemical kinetics, Parti-
cle diffusion, Heat transfer, and Magnetism. The OPB also encodes Physical 
dependency relations that include Theorems of physics (e.g., Conservation of 
energy) and Constitutive property dependencies (shown in figure 3B) such as 
the Fluid capacitive dependency relation that governs, say, how ventricular 
volume depends on ventricular blood pressure. 

By combining the knowledge in the FMA and the OPB one can unambigu-
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Figure 3. Main classes of the Ontology of Physics for Biology (OPB). The classes highlighted 
with arrows indicate the fluid mechanics aspects for both physical properties and dependencies. 

ously annotate model variables by associating an FMA:Anatomical entity with 
an OPB:Physical property, creating duples such as [FMA:Blood of aorta :: 
OPB:Fluid pressure]. Thus, for modeling multi-scale biological systems, the 
FMA and OPB offer a wealth of machine-accessible anatomical and biophysical 
knowledge that can be leveraged for annotating biosimulation code.   

2.2 The application model ontology 

Our goal in developing the Application Model Ontology (AMO) is to provide an 
ontological framework for creating reusable, lightweight ontological annotations 
of biosimulation models—ApplModels (for application models). The fundamen-
tal idea of the AMO is to allow researchers to build models that use only very 
small subsets of very large and complex reference ontologies. A biosimulation 
researcher does not care or want to know about all of the anatomic entities in the 
FMA nor about theorems across all seven of the energy domains in the OPB. 
Thus, ApplModels exploit, but do not depend on, external reference ontologies, 
and yet can be “lightweight” and customized to represent idiosyncratic biophysi-
cal entities and relations. AMO classes are formally defined according to the 
principles espoused by the OBO foundry, and are created and edited within the 
Protégé environment [16].  

Figure 4a shows a screenshot of a portion of the AMO base classes in Pro-
tégé and some examples of how these classes are filled in by the BARO 
biosimulation model we described earlier. The higher-level classes such as 
physical entity or physical property are basic AMO classes, while the leaf nodes 
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show how AMO was filled in for the BARO model. Figure 4b shows some de-
tail of the annotation for the BARO variable “Paop”, including links to reference 
ontologies. To capture the semantics for this variable, we first created 
ApplModel classes that refer to the corresponding reference ontology concepts 
(FMA: Blood in aorta and OPB:Fluid pressure) and then the specific class that 
represents one particular fluid pressure, namely “Paop”. Figure 4a shows the 
entire set of “physical entities” for the BARO model; not shown are the constitu-
tive relationships and dependencies that are represented by equations in the 
model code.  

Wherever possible, users should refer directly to reference ontology 
classes—such ontologies make model integration possible, by enforcing a com-
mon semantics to particular terms. However, users can also create special-
purpose (or idiosyncratic) subclasses for particular biosimulation models. For 
example, the CV model variable “Rartcap” is the resistance in a single entity that 
lumps systemic arteries and capillaries together; such an entity does not exist in 
the FMA reference ontology. However, with the ApplModel annotations, we can 
easily create a special subclass of Physical thing such as Systemic-Arteries-
Capillaries that uses AMO:HasPart relations to the Systemic arteries and Sys-
temic capillaries classes that are available in the FMA.  
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Figure 4. The Application Model Ontology, as filled in for the BARO biosimulation model.  
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It is the ability to integrate idiosyncratic semantics with reference ontologies 
and other external knowledge resources that makes light-weight ApplModels a 
powerful approach to biosimulation model annotation. Once annotated with such 
semantics, we can both better understand these models, and use existing ontol-
ogy analysis tools to help with the model integration task.  

3. Comparing and merging models 

When merging biosimulation models there are usually significant semantic dif-
ferences that must be resolved. While some of these differences may be obvious 
and easy to find, automated analysis tools can greatly help researchers find and 
resolve such differences. One major advantage of annotating biosimulation 
models with ontologies, is that there are pre-existing tools to help with these 
sorts of tasks. In our case, we have employed Protégé’s Prompt plug-in tool for 
ontology comparison and merging tasks [5].  

Prompt is designed for interactive, semi-automatic model merging. Given 
two ontologies, Prompt analyzes the classes and relationships in the two models, 
and then suggests a set of mappings that connect concepts between the two mod-
els. The user can inspect these candidate matches, and confirm all or some of 
these matches. Prompt then uses this information to suggest additional matches, 
and this interactive cycle repeats. 

For our use-case, when we gave Prompt the ApplModel ontologies for the 
BARO and CV models, it was able to recognize that, for example, “systemic 
arteries” is a shared concept—regardless of how it was coded in the source mod-
els—because it was annotated with the common FMA reference ontology term. 
Furthermore, the Prompt visualization tools reveal that there are significantly 
different relationships around “systemic-arteries” across the two models. Figure 
5 shows the “neighborhood view” of nearby semantic relationships as presented 
by Prompt when it proposes the match for “systemic-arteries”. Figure 5a shows 
that the BARO model links resistance as a direct property of systemic arteries, 
whereas the CV model (figure 5b) uses the set “systemic arteries and capillar-
ies”, which has a resistance. As figure 1 shows, there is a similar discrepancy 
about resistance between the CV model (Rartcap) and the VSM model, which 
only considers the systemic arterioles (Rsa). To appropriately merge models, 
researchers must resolve these sorts of semantic discrepancies. 

Even when the underlying anatomy is consistent, models may use the prop-
erties of those entities in different manners. In our case, heart rate (HR in figure 
1) is defined consistently across the BARO and CV models, but in the BARO 
model it is an output, whereas the CV model uses HR as one of its inputs. The 
difference can be readily visualized in Prompt, because the ApplModel ontology 
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includes the relationships “dependsDirectlyOn” and “affectsDirectly”. (Such 
relationships are shown as colored arcs in the Prompt visualization.) 

As we show in figure 2, our overall expectation is that Prompt can be used 
as a step in the overall process of building multi-scale biosimulation models. 
However, even if researchers do not immediately expect to combine models 
directly, a Prompt comparison of closely related models can used to reveal 
model semantics and physiological relationships that are otherwise implicit in 
the mathematical code. By visualizing graphically the set of relationships among 
anatomic entities and their physical properties, biosimulation researchers can 
better understand how two models are and are not the same. In addition, Prompt 
may actually help de-bug biosimulation models by making it visually apparent 
when relationships are missing, problematic, or incorrect.   

4. Status and Results 

As a summary of our results so far, we have (a) annotated three related source 
models with the Application Model Ontology, (b) used the Prompt tool to ana-
lyze these models, helping us visualize and understand the differences across 
models, and (c) hand-coded a merged model into JSim that implements the deci-
sions made during the merge step. Thus, our product is an integrated, executable 
model that can indeed answer our original driving question: “How do heart rate 
and blood pressure depend on calcium uptake into arteriolar smooth muscle 

 

 

Figure 5. The two uses of the concept “Systemic arteries” in the BARO and CV models. These 
views were produced by Prompt when suggesting mappings between the models. (Arcs show 
relations, such as “part-of” between entities. Squares are “fully expanded” entities, whereas 
triangles are entities that can be further expanded.) 

(a) Systemic arteries in the 
Baroreceptor model.  

(b) Systemic arteries (and 
capillaries) in the CV model. 
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cells?” Figure 6 shows an 
annotated output from the 
JSim execution of our model, 
showing the expected increase 
in blood pressure and decrease 
in heart rate when Ca uptake is 
increased.  

We began integration of 
the JSim multi-scale model by 
first merging the CV and 
BARO models. To do this, we 
merged two shared concepts: 
heart rate and aortic blood 
pressure (see figure 1: HR, 

Paop, and Paorta). 
• We changed the BARO term Paop from an independent input to a time-

dependent variable output and set it equal to Paorta, the aortic blood pres-
sure variable from the CV model. 

• We removed the independent HR input from the CV model so that cardiac 
activation would depend on the BARO model’s variable HR. 

• We added a new discrete HR variable (HRdiscrete) that only updates at the 
end of the cardiac cycle to prevent intra-beat fluctuations in heart rate. (To 
do this, we needed to add some procedural code to the merged model.) 

Next, we merged the result with the VSM model by combining representations 
of resistance:  
• Given the high proportion of vascular resistance in the arterioles, we as-

sumed that the time-varying arteriolar resistance (Rsa) computed in the 
VSM model to be the same as the resistance of arteries and capillaries from 
the CV model (Rartcap, a constant). Therefore, we changed Rartcap to a 
time-dependent variable equal to Rsa. 

• To couple arteriolar resistance with the dynamics of the CV model, we 
changed the arteriolar blood pressure input (Partl) to a time-dependent vari-
able equal to the average pressure between the CV model’s arterial/capillary 
and venous compartments. 

The resulting multi-scale model includes 65 algebraic and 25 ordinary differen-
tial equations. Although more detailed models of the cardiovascular system and 
smooth muscle cell dynamics exist, our system produces physiologically normal 
steady state averages for circulatory and smooth muscle cell dynamics and al-
lows investigations into the influence of subcellular activity on tissue-level dy-
namics (as in figure 6). 
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Figure 6. The result of increased Ca++ uptake, as an 
output  from our merged JSim model.  
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5. Discussion and future work 

There remains much work to do before our broad ideas of model integration (as 
shown in figure 2) can be implemented and fully tested. However, given our 
work to date, three aspects of our vision seem within reach: (1) improved use of 
Prompt for model merging, (2) improved use of inference over knowledge from 
reference ontologies, and (3) automatic generation of simulation code.  

To date, we have only used Prompt as a visualization tool, allowing us to 
see discrepancies and understand linkages between models. However, as we 
have described, Prompt is designed to actually carry out model merging in an 
interactive manner. Furthermore, Prompt is designed with a plug-in architecture, 
which means it can be easily custom-tailored to meet our needs. Therefore, we 
will be able to use Prompt to carry out most of the model merging, although 
some parts of the work will remain manual (e.g.,  the addition of procedural 
code described earlier around the “HRdiscrete” variable). 

As reference ontologies, the FMA and OPB both contain a wealth of knowl-
edge that could be used to more intelligently guide model merging. For example,  
Prompt cannot currently notice that the diameter of an arteriole, a variable in the 
VSM model is related to arterial blood volume. However, the FMA knows that 
the arterioles are part of the systemic arterial tree, and the OBP knows that the 
diameter (along with the length) can determine the volume of an arteriole. We 
should therefore be able to use this sort of reference ontology knowledge to 
improve Prompt so that it can suggest mappings between variables such as arte-
riolar diameter and arterial/capillary blood volume.   

We designed our ontologies and semantic markup methods to be independ-
ent of any particular biosimulation modeling language. We have so far worked 
exclusively with JSim models, but we believe that our ideas apply equally well 
to SBML and other simulation languages. We do not yet have a system for auto-
matic code generation from our ApplModels, but we do have prior experience 
generating JSim code[10], and thus, we aim to build a code-generator for at least 
two targets: JSim and SBML. Such a tool would allow us to explore code-level 
semantic differences that might affect merging SBML models with JSim models. 
We hope that the semantic annotations provided by our ApplModel ontologies 
will help clarify these differences, but this intuition must be verified.  

Our results represent a novel application of ontology-based semantics to 
help understand the deep biophysical meanings of terms used in biosimulation 
models. We have then used these semantics to facilitate merging models into 
larger, multi-scale biosimulations across very different physiological domains.   
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