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The question of multiple sequence alignment quality has received much attention from 
developers of alignment methods. Less forthcoming, however, are practical measures for 
quantifying alignment reliability in real life settings. Here, we present a method to 
identify and quantify uncertainties in multiple sequence alignments. The proposed 
method is based upon the observation that under any objective function or evolutionary 
model, some portions of reconstructed alignments are uniquely optimal, while other parts 
constitute an arbitrary choice from a set of co-optimal alternatives. The co-optimal 
portions of reconstructed alignments are, thus, at most half as reliable as the uniquely 
optimal portions. For pairwise alignments, this irreducible uncertainty can be quantified 
by the comparison of the high-road and low-road alignments, which form the co-
optimality envelope for the two sequences. We extend this approach for the case of 
progressive multiple sequence alignment by forming a large set of equally likely co-
optimal alignments that bracket the co-optimality space. This set can, then, be used to 
derive a series of local reliability measures for any candidate alignment. The resulting 
reliability measures can be used as predictors and classifiers of alignment errors. We 
report a simulation study that demonstrates the superior power of the proposed local 
reliability measures. 

1.   Introduction 

Multiple sequence alignment (MSA) is the first step in comparative molecular 
biology. It is the foundation of a multitude of subsequent biological analyses, 
such as motif discovery, calculation of genetic distances, identification of 
homologous strings, phylogenetic reconstruction, identification of functional 
domains, three-dimensional structure prediction by homology modeling, 
functional genome annotation, and primer design [1]. The fundamental role of 
multiple sequence alignment is best demonstrated by noting that a paper 
describing a popular multiple-alignment reconstruction method, ClustalW [2], 
has been cited close to 25,000 times since its publication (i.e., an average of five 
times a day). Being a fundamental ingredient in a wide variety of analyses, the 
reliability and accuracy of multiple sequence alignment is an issue of utmost 
importance; analyses based on erroneously reconstructed alignments are bound 
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to be severely handicapped [e.g., 3-9]. The question of multiple sequence 
alignment quality has received much attention from developers of alignment 
methods [10-15]. Unfortunately, practical measures for addressing alignment-
quality issues in real life settings are sorely missing.  

Multiple sequence alignment is frequently treated as a “black box”; the 
possibility that it may yield artifactual results is usually ignored. Moreover, in a 
manner reminiscent of basic laboratory disposables, the vast majority of 
multiple sequence alignments are produced robotically and discarded 
unthinkingly on the road to some other goal, such as a phylogenetic tree or a 3D 
structure. We speculate that more than 99% of all multiple sequence alignments 
that ultimately yield publishable results are never even looked at by a human 
being. Yet, when an occasional alignment is actually inspected, it is usually 
found wanting. Multiple sequence alignments are so notoriously inadequate, that 
the literature is littered with phrases such as “the alignment was subsequently 
corrected by hand” [e.g., 16-22]. Unfortunately, “hand correction” is neither 
objective nor reproducible, and as such we should strive to replace it by a 
scientifically legitimate method. 

Errors in reconstructed alignments are typically attributed to the inadequacy 
of the evolutionary model and its parameters. Understandably, then, the recent 
proliferation of new reconstruction methods is mainly concerned with 
developing new optimality criteria and optimization heuristics. Unfortunately, 
the second source of reconstruction errors, i.e., the fact that the objective 
function usually possesses multiple optima even when the evolutionary model is 
adequate, is rarely addressed. Moreover, the full co-optimal solution set is often 
far too large to enumerate explicitly [23], and current MSA programs arbitrarily 
report only one of these co-optimal solutions. Reporting only one alternative 
from among the multitude of equally optimal or co-optimal alignments obscures 
the fact that the entire set of co-optimal alignments possesses valuable 
information; some portions of the alignments are uniquely optimal and are 
reproduced in every solution, while other portions differ among the solutions. 
Since the choice between such co-optimal alternatives is necessarily arbitrary, 
these portions of the alignments represent inherent irreducible uncertainty. 

When dealing with pairwise alignments, we can capture this information by 
considering two extreme cases, termed the high-road and the low-road [24-25], 
which bracket the set of all co-optimal alignments. Alignment programs usually 
report either the high-road or the low-road as the final alignment. In such cases 
the other extreme alignment can be easily obtained by reversing the sequence 
residue order in the input [26]. Reversing the sequences amounts to inverting 
the direction of the two axes of the alignment dot matrix, thereby converting the 
high road to the low road and the low road to the high road. Columns that are 
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identical in the two alignments define parts of the alignment where a single 
optimum of the objective function exists, whereas columns that differ between 
the two alignments define those portions of the alignments where there exist two 
or more co-optimal solutions. 

A simple extension of this principle to the case of multiple sequence 
alignment is the “Heads or Tails” (HoT) methodology [26], where the original 
sequence set (the Heads set) is first reversed to create a second set (the Tails 
set). The two sequence sets are, subsequently, aligned independently, and the 
two resulting alignments are compared to produce a measure of their internal 
consistency. While the HoT method can be applied to any MSA reconstruction 
method, it produces only two alignments, and its statistical power is, therefore, 
limited.  

Here we present a more powerful extension of the HoT methodology for the 
case of progressive multiple sequence alignment. Progressive alignment 
proceeds in a series of pairwise alignments of profiles, or sub-alignments, whose 
order is determined by an approximate guide tree. At each of these alignment 
steps, the resulting sub-alignment is an arbitrary choice from among many co-
optimal alternative alignments. Our extension derives a large set of alternative 
MSAs that explores the co-optimality envelope of the several pairwise profile 
alignments that can be defined for a given guide-tree. 

The set of alternative alignments is then analyzed to score specific elements 
of the alignments by their frequency of reproduction within the set. The 
reproduction scores can be applied to any candidate MSA to derive a series of 
local reliability measures that can identify and quantify uncertainties and errors 
in the reconstructed MSA. 

2.   Methods 

2.1.   Construction of the co-optimality MSA set 

We implemented the derivation of the alignment set for ClustalW [2], which 
uses progressive alignment. Given the ClustalW approximate guide-tree for N 
sequences, we define the guide-tree alignment set, gtAS, as follows (Fig. 1): 

For each of the (N-3) internal branches of the guide tree, partition the 
sequences into two subgroups (Fig. 1a). Construct two sub-alignments for each 
of the two sequence groups (Fig. 1b):  
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• Heads: The ClustalW alignment of the sequence subgroup. 
• Tails: The ClustalW alignment of the reversed sequences, reversed to the 

original residue order. 
Next, use the ClustalW profile alignment to align the four combinations of 

the sub-alignments, aligning each combination in both the head and tail 
directions, to yield a total of 8 full MSAs for each internal branch (Fig. 1c). 

The process is repeated for all internal branches of the guide-tree (Fig. 1d). 
All in all, then, gtAS contains 8·(N-3) alignments. These alignments differ from 
each other in two respects: (a) the partitioning of sequences and profiles to 
create the final MSA, and (b) the Heads or Tails selection of co-optimal sub-
alignments and profile alignments. Any alignment in the set can be qualified as 
a bona-fide progressive alignment. Thus, the alignments in the guide-tree 
alignment set can be considered as equally likely alternatives that uniformly 
sample the co-optimality envelope. 

2.2.   Local reliability measures for MSA 

Given a candidate reconstructed MSA, A, we first construct the corresponding 
guide-tree alignment set, gtAS, and score the elements of A by their reproduction 
in gtAS (Fig. 1e). For each pair of residues that are aligned as homologs in A, we 
define our basic reliability measure, the residue-pair reliability measure, 

c
ji

pairM ,  (where c is the column index and i,j are the sequence indices), as the 
proportion of alignments in gtAS that reproduce the pairing of the residue pair. 
The measure takes values within the interval [0..1], where 1 denotes total 
support. Averaging of the residue-pair support gives rise to a series of reliability 
measures: 
• The residue reliability is the mean of the residue-pair reliability over all 

pairings involving the residue:  

c
i

pairc
i

res MM ,*=  

• The column reliability is the mean of the residue-pair reliability over all 
pairs in a column:  

cpairccol MM *,*=  

• The alignment reliability is the mean of the residue-pair reliability over all 
residues-pairs in the alignment:  

*
*,*MM pairali =  
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Figure 1:  Construction of the guide-tree alignment set and the local reliability measures: (a) Use an 
internal branch of the guide tree to partition the sequences; (b) Align each subset in both heads and 
tails orientations, to produce 4 sub-alignments;  (c) Align the four combinations of sub-alignments, 
in both heads and tails directions, for a total of 8 alignments; (d) Repeat a-c for each of the N-3 
internal branches, to produce 8·(N-3) alternative alignments (32 for N=7); (e) score elements of a 
candidate alignment by their frequency of reproduction (vertical axis) in the alignment set. (For more 
details, see text). 
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2.3.   Implementation 

Construction of the co-optimality MSA set and derivation of the local reliability 
measures were implemented in MATLAB scripts, available from the authors 
upon request. 

3.   Results 

The local reliability measures can be used to identify and quantify errors in the 
reconstructed MSAs. We demonstrate their performances in a simulation study 
where MSAs reconstructed by ClustalW are compared to the true alignment 
from ROSE simulations [27]. We used 6400 datasets where the sequence 
evolution was simulated along a 16 taxa balanced depth-3 phylogeny, with an 
average branch length ranging from 0.02 to 0.30 substitutions per site, and an 
indel to substitution ratio of 0.015. The average sequence length was 500 
nucleotides.  Comparison of the true MSA to the ClustalW MSA yields rates of 
correct reconstruction at several resolution levels: residue-pairs, residue, 
column, and the entire alignment.  
 

 
 
Figure 2:  The residue-pairs reliability measure, pairsM, as a classifier of erroneous or correct residue-
pairs in reconstructed MSAs. Histograms (left) presents the distributions of the two populations: 
H0:error (black) vs. H1:correct (gray). ROC curve (right) report the level of classification errors and 
the power of the classifier.  
 
One use of the reliability measures is as binary classifiers of local MSA features 
as correct or erroneous. Figure 2 presents a receiver-operating characteristic 
(ROC) analysis [28] of  pairsM as a classifier of residue-pairs errors. Since the 
residue-pairs reconstruction rate, pairsR, is binary, the two populations, error 
(H0, black) or correct (H1, gray) reconstructions, are strictly defined. Our 
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measure pairsM is capable of separating the two populations, with a very high 
power (area under curve, AUC=0.95). 

The most useful level of MSA scoring is the column level. Current methods 
employ Shannon's entropy as a measure of MSA quality, that is, column quality 
is judged by its residue variability. In figure 3 we compare the column reliability 
measure, colM to the entropy-based column quality measure reported by 
ClustalX, colQ [29], as classifiers of the true column errors. An ROC analysis 
reveals that colM separates the two populations, of erroneous and correct 
columns, better than colQ, with AUCs of ~0.94 and ~0.87, respectively. 
 
 

 
 
Figure 3:  Comparison of two column reliability measures, colM and colQ as classifiers of erroneous or 
correct columns in reconstructed MSAs: Histograms (left) presents the different distributions of the 
two populations: H0:error (black) vs. H1:correct (gray). ROC curves (right) report the level of 
classification errors and the power of the classifier. 
 
When interpreting the local reliability measures, *M, as estimates of the 
reconstruction rates, *R, we find extremely high correlations between the two 
types of measures, one derived from the comparison to the true MSA, *R; the 
other from the MSA set, *M. The correlation coefficients are r = 0.94 for the 
residue-base measure and r =0.87 for the column measure. Once again, the 
entropy-based column quality measure is inferior to our colM; the correlation 
between colQ and colR, although significant, is only r = 0.66 (Fig. 4). 
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Figure 4:  Comparison of two column quality measures, colM and colQ, as estimates of the true 
reconstruction rates. 
 

4.   Discussion 

The local reliability of reconstructed MSAs is usually viewed as related to the 
local divergence of the sequences. Thus, current local reliability measures are 
based on the column entropy or variation [e.g., 29]. While it is true that highly 
preserved segments of an MSA are more easily reconstructed by MSA 
algorithms, column entropies do not take into account the algorithmic sources of 
reconstruction errors. In contrast, our approach specifically addresses one 
common source of alignment errors, namely, the irreducible uncertainty 
stemming from the arbitrary choice from a set of co-optimal solutions. Hence its 
superiority to previous local quality measures. 

The equivalence of co-optimal solutions is only one source of 
reconstruction errors. Two other sources of errors merit mention here: (a) the 
approximate nature of the guide-tree and the estimated evolutionary parameters, 
and (b) stochastic errors, where the true alignment is sub-optimal even when the 
objective function is exact [30]. It is interesting to note that although our 
reliability measures do not address these sources of errors directly, they do 
manage to correctly identify about 90% of the errors, while maintaining a low 
false positive rate. 

The guide-tree alignment set does not exhaust the co-optimality space. In 
fact, it is not computationally feasible to enumerate the entire set of co-optimal 
alignments [23]. Even tracking every high-road low-road combination in a 
progressive alignment will yield a set whose size grows exponentially with the 
number of sequences. Our guide-tree alignment set of size 8·(N-3) was designed 
as a practical compromise between computational feasibility and statistical 
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power. Since the construction of the guide-tree already requires O(N2) pairwise 
alignment steps, the additional O(N2) steps required by our method amount to 
tripling the processing time. 
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