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The DNA-binding domain (DBD) structure of a regulatory transcription factor (TF) is 
important in determining its DNA sequence specificity, but it is unclear whether a 
relationship exists between DBD structure and general TF biological function or 
regulatory mechanism. We observed moderate enrichment of functional annotation terms 
among TFs of the same structural class in Escherichia coli, Saccharomyces cerevisiae, 
Drosophila melanogaster, or Mus musculus, suggesting some preference for TFs of 
similar structures in the regulation of similar processes. In yeast, we also found trends 
among TF structural classes in phenomena including gene expression coherence, DNA 
binding site motif similarity, the general or specific nature of TFs’ regulatory roles, and 
the position of a TF in a gene regulatory network. These results suggest that the 
biophysical constraints of different TF structural classes play a role in their gene 
regulatory mechanisms. 

1. Introduction 

The concepts that structure leads to function and that form follows function 
are common principles throughout biology1. In the study of gene regulation, TFs 
can be classified based on the structures of their DBDs, domains that mediate 
their interaction with specific DNA sequences2,3. These structural class 
designations have been used to infer the sequence specificity of a TF, predict 
binding sites and potential target genes, and infer biological function based on 
these target genes4-7. Since TF sequence specificities have been used to infer TF 
functional properties, it follows that members of a given TF structural class 
might have similar biological roles, and that the structure of a DBD could be 
used directly to predict the functions of uncharacterized TFs. Indeed, previous 
studies have identified instances of enrichment of a particular TF structural class 
in the regulation of a certain biological process. For example, homeodomains 
are enriched within genes involved in C. elegans neuronal function8. However, a 
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large-scale analysis to determine the extent of functional enrichment within 
different TF structural classes has not been described previously.  

TFs of the same class might also share other gene regulatory properties, 
such as their position in gene regulatory networks, the similarity or divergence 
and information content of their DNA binding site motifs, or co-expression 
across diverse conditions. Analysis of such regulatory features will elucidate 
ways in which the biophysical properties of a DBD structure might inform its 
modes of regulation. 

Here, we investigate enrichment for common biological function among 
members of different TF structural classes in E. coli, S. cerevisiae, D. 
melanogaster, and M. musculus. We find several examples of modest functional 
enrichment among TFs of the same structural class in bacteria, yeast, fly, or 
mouse. Target genes of yeast TFs within some structural classes are also 
observed to share similar functions. In a few cases, the biological functions 
enriched for a particular structural class appear to be conserved across species. 
Using numerous genome- and proteome-wide datasets available in S. cerevisiae, 
we relate this observed functional enrichment to other regulatory mechanisms. 
Our results suggest that different modes of gene regulation are used by different 
TF structural classes. The functional relationships found here identify cases in 
which DBD structure could be used to predict TF biological function, suggest 
different ways in which structural classes partition functional roles, and inform 
future studies of the link between TF structure and function and the evolution of 
TF regulatory roles.  

2. Methods 

2.1. Data Sets Used in This Study 

TFs and DBD Structural Classes 

The TFs and structural class assignments for E. coli were obtained from 
GenProtEC9, last updated on Dec 7, 2004. The structural classes of 421 known 
and predicted S. cerevisiae TFs10 were assigned based on annotation in Pfam11 
and DBD12 databases. For subsequent analyses, we considered only the subset of 
TFs from this initial list that belonged to known DBD structural classes with 4 
or more members. D. melanogaster TFs and structural classifications were 
downloaded from FlyBase on July 11, 200613. Mouse TF information and DBD 
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assignments were derived from a set of known TFs listed in Gray et al.14. All 
TFs and structural class assignments are listed in Supplementary Table 1†. 

Functional Annotations 

Each E. coli protein was assigned MultiFun classifications according to the 
GenProtEC database, last updated on February 1, 20079. Specific annotations 
were divided into corresponding broader categories (i.e., a protein annotated 
“1.3.5: Fermentation” would also be given the annotations “1: Metabolism” and 
“1.3: Energy metabolism (carbon)”). Multiple sources of gene annotations, 
including the Gene Ontology (GO)15 and MIPS database16, last updated in June 
2005, were used to annotate yeast target genes. We used GO annotations for 
yeast, fly, and mouse TFs that were last updated on September 12, 200717. To 
avoid circularity and annotation bias, we eliminated all GO annotations that 
were inferred from structure or from a non-traceable author statement (GO 
Evidence Codes ISS and NAS, respectively)15.  

Genome-wide Yeast Datasets 

Yeast TF binding site motif sequences, target gene information, and motif 
information content values (IC; a measure of the specific vs. degenerate nature 
of the DNA sequences recognized by a TF) for 82 TFs were derived from a re-
analysis18 by MacIsaac et al. of the single most comprehensive set of yeast 
ChIP-chip data19. We considered TF binding sites identified at p<0.005 binding 
threshold in ChIP-chip that were also conserved in at least 2 other yeast species. 
We considered only those structural classes with at least 3 TFs with greater than 
5 target genes in our target gene analyses. Yeast gene regulatory interaction data 
were derived from networks compiled by Yu et al.20. The 1,327 publicly 
available gene expression microarray datasets were compiled by McCord et al.21  

2.2. Statistical Approaches 

Functional Enrichment Evaluation 

To evaluate functional enrichment among groups of TFs or their target 
genes in bacteria, yeast, fly and mouse, we calculated p-values using the 
hypergeometric distribution: 

      
  Eqn. (1):  

  
                                                           
† All supplementary files, figures, and scripts (implemented in Perl and Matlab) are 

available on our lab website at http://the_brain.bwh.harvard.edu/TFstr/ 
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where G is the number of genes in the entire genome or in a defined background 
gene set, C is the number of genes in this background set with a particular 
functional attribute, and n is the size of the query set of TFs or target genes, of 
which k are known to possess the functional attribute. 

We evaluated functional enrichment within DBD structural classes in 
mouse, fly, and yeast with respect to all TFs using the FuncAssociate 
algorithm17, which estimates an adjusted p-value (padj) by comparing the 
enrichment in the query gene set to the frequency of this degree of enrichment 
among 1,000 randomly generated gene sets. We report results at padj<0.05. Our 
implementation of the hypergeometric distribution for E. coli allowed us to 
search for functional enrichment at many levels of the MultiFun22 annotation 
hierarchy. Our threshold for functional enrichment in E. coli was an uncorrected 
p<0.05, but we also report p-values from a stringent Bonferroni correction.  

To evaluate TF target gene functional enrichment in yeast, we employed the 
Funspec algorithm23 to calculate p-values of target gene functional enrichment 
for each TF (pTF) in a class, and then calculated the geometric mean of the p-
values for each annotation term over all TFs in a structural class (pavg). We 
controlled for a potential inflationary effect on this functional enrichment, 
resulting from the existence of paralogous TFs due to the ancient yeast genome 
duplication, by calculating filtered pavg values that excluded paralogous gene 
pairs. Specifically, for classes containing paralogous pairs, we calculated all 
possible filtered pavg values resulting from averaging p-values over all but one 
TF of a structural class by leaving out, one at a time, members of literature-
defined paralogous TFs24.  We report results for which the least significant of 
these filtered average p-values (max filtered pavg) was less than 0.05. 

Coherence Scores 

Co-expression of a set of TFs or target genes in yeast was measured by 
expression coherence (EC)25. Briefly, we calculated the Pearson correlation 
coefficient between the expression profiles of every pair of yeast genes over 
1,327 expression conditions21. Then, the EC was calculated as the fraction of 
correlation coefficients between foreground genes (TFs or target genes in a 
DBD class) that were in the top 5th percentile of correlations among background 
genes (all TFs or all genes). In the case of TF target genes, we considered only 
the pairwise correlations between targets of different TFs within the structural 
class to ensure that high expression coherence was not attributable solely to 
regulation of targets of a single TF. A p-value was estimated by calculating the 
EC scores of 10,000 randomly generated sets of genes identical in size to the 
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foreground set and then calculating the fraction of random sets with an EC 
greater than that of the foreground set of interest.  

 The similarity of DNA binding site motifs recognized by TFs in a structural 
class was measured by a metric we developed termed “motif coherence”, which 
we modeled after the expression coherence metric described above. The 
pairwise correlation coefficients between all motifs were calculated by the 
CompareACE algorithm26, and then the motif coherence was calculated as the 
fraction of motif correlations within a structural class in the top 5th percentile of 
all motif correlations. A p-value for this coherence was estimated as for 
expression coherence, but here we considered 10 million random sets in order to 
allow estimation of p-values as low as 1.0x10-7 and thus to provide finer 
distinctions in the degree of motif coherence among structural classes with 
highly similar DNA binding domains.  

Bottlenecks and Hubs 

We classified yeast TFs as “hubs” if they were in the top 20% of the 
regulatory network degree distribution and as “bottlenecks” if they were in the 
top 20% of the betweenness distribution, as in Yu et al.20. The hypergeometric 
distribution (Eqn. 1) was used to assign a p-value to hub/bottleneck enrichment 
within a structural class by comparing the fraction of hubs/bottlenecks within a 
structural class to the fraction of hubs/bottlenecks over all TFs.  

3. Results and Discussion 

3.1 Functional Enrichment by TF Structural Class 

We first searched for functional enrichment within a structural class by 
examining gene annotation terms assigned to the TFs themselves. Modest 
functional enrichment was seen for some structural classes in all 4 organisms, 
(see Table 1 for highlights of enriched annotations and Supplementary Table 2 
for full results) though some classes in each organism showed enrichment for no 
biological functions, or only those common to most transcriptional regulatory 
proteins (e.g. “transcription, DNA dependent”). In E. coli, most classes showed 
some degree of functional enrichment; winged-helix TFs are enriched for roles 
in amino acid biosynthesis, while proteins with lambda repressor DBDs are 
enriched for carbohydrate metabolism functions. In fly, 40% of classes showed 
no specific enrichment, but classes like the HLH TFs and homeodomains are 
enriched for roles in the development of various systems. The minimal 
enrichment observed for 40% of mouse TF classes may be due to a lack of 
comprehensive GO annotation for most mammalian genes. However, as in fly,  
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Table 1. Highlighted examples of enriched functional annotation terms for DBD structural 
classes. k = number of TFs in structural class with the indicated annotation term; C = number of 
genes in background set (all TFs) with the indicated annotation term; p = p-value of functional 
annotation enrichment calculated using the hypergeometric distribution. padj = adjusted p-value 
calculated as described in Methods.  

Annotation k C  p padj 
E. coli (NTFs = 225)      
Winged Helix (FKH-like) (n=111):  
Repressor  69 101 2.2E-07 2.8E-05 
Building block biosynthesis  10 12 0.015 1.9 
Amino acid biosynthesis 8 9 0.016 2.0 
Lambda repressor like (n=24):  
Carbohydrate catabolism  8 24 0.0012 0.16 
Metabolism  15 79 0.0036 0.46 
Yeast (NTFs = 346)      
GATA (n=10):  
Regulation of nitrogen metabolism 4 4 3.6E-07  <0.001 
Homeodomains (n=7):  
Mating-type specific transcriptional control 3 4 2.0E-05 0.003 
G1/S-specific transcription in cell cycle 3 9 0.00041 0.05 
Forkhead (n = 4)  
Positive regulation of progression through 
cell cycle 2 2 1.0E-04 0.018 
G2/M-specific transcription in cell cycle 2 3 3.0E-04 0.031 
Fly (NTFs = 573)      
Homeodomains (n=102):  
System development 73 186 2.4E-16 <0.001 
Pattern specification process 32 69 4.6E-08 <0.001 
Cell fate specification 13 25 0.00022 0.022 
Helix-Loop-Helix (HLH) (n=54):  
Sensory organ development 17 58 3.7E-07  0.004 
Mouse (NTFs=1,160)      
Homeodomains (n=221):  
Organ development 108 303 9.3E-16 <0.001  
Central nervous system development 38 74 1.3E-10 <0.001  
Endocrine system development 16 29 1.4E-05 0.004 
Cell migration/motility 20 46 0.00011 0.018 
Forkhead (FKH) (n=40):  
Organ development 25 303 1.2E-06 <0.001  
Cell proliferation 11 72 1.5E-05 0.002 
E2F (n=8):  
Regulation of progression through cell 
cycle 8 48 5.4E-12 <0.001  
G1/S transition of mitotic cell cycle 3 4 9.0E-07 <0.001 

some structural classes in mouse, such as homeodomains and forkhead TFs, are 
enriched for roles in organism development, and, as expected, the E2F TFs 
showed enrichment for roles in cell cycle control27. In S. cerevisiae, some 
structural classes (HLH, HSF, and others) showed no functional enrichment. 
Other classes are enriched for regulation of specific biological pathways, 
including GATA factors for regulation of nitrogen utilization, forkhead TFs in 
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Table 2:  Highlighted 
examples of enriched 
functional annotation 
terms among target 
genes (Ntar) of yeast 
TFs. The values of pavg 
and max filtered pavg 
were calculated as 
defined in Methods. All 
genes in the S. cerevisiae 
genome (Nbg) were used 
as the background gene 
set in the p-value 
calculations.  

 
cell cycle progression, and homeodomain factors in mating type determination 
and the cell cycle.  

The availability of ChIP-chip data for many yeast TFs allowed us to extend 
our analysis to the annotations of target genes of yeast TFs (see Table 2 for 
highlights and Supplementary Table 3 for full results). We observed that the 
GATA TFs and their target genes are both enriched for the same biological 
functions: nitrogen and sulfur metabolism. Consideration of target genes also 
provided additional functional information for several classes, including cell 
cycle and cell fate target gene enrichment for the APSES TFs, stress response 
for the C2H2 zinc finger (Zf-C2H2) TFs, and cell growth and protein 
biosynthesis for the Myb factors. We found that most of the enriched 
annotations were robust to paralog removal, so functional enrichment is not 
solely attributable to paralogous TFs resulting from the ancient yeast whole 
genome duplication24. 

We observed a few instances of functional enrichments that were consistent 
across organisms. In particular, homeodomain TFs in yeast are enriched for 
roles in the mating type determination, and the homeodomain TFs in fly and in 
mouse are enriched for roles in similar cell fate specification and development. 
Additionally, some basic transcription-related processes are shared across 
species: HMG factors are enriched for roles in chromatin architecture in both 
yeast and mouse. However, conservation of functional enrichment for members 
of a TF structural class is small, suggesting that, in most cases, functional 
specialization of structural classes arose according to different selective 
pressures in each of these organisms’ evolutionary histories.  

Annotation pavg max filtered pavg 

Yeast Target Genes (Nbg = 6,267)  
GATA (NTF = 6; Ntar = 177): 
Nitrogen and sulfur metabolism 0.0004 5.1E-05 
Myb (NTF = 5; Ntar = 525):   
Cell growth and/or maintenance 0.0009 0.00090 
Protein metabolism 0.0019 0.0019 
Ribosome biogenesis 0.0037 0.0037 
APSES (NTF = 4; Ntar = 530): 
Cell wall 0.0003 0.0013 
Mitotic cell cycle and cell cycle control 0.0043 0.0016 
Cell fate 0.0003 0.00050 
Cys2His2-type Zinc Finger (Zf-C2H2) (NTF = 13; Ntar = 824): 
Stress response 0.0083 0.059 
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3.2 TF and Target Gene Expression Coherence (EC) 

Observable functional enrichment within TF structural classes in several 
organisms suggests that other regulatory features of TFs might relate to this 
functional enrichment and vary across DBD structures. Since co-expression is 
often used to infer functional relationships between genes, we hypothesized that 
structural classes exhibiting functional annotation enrichment might also be co-
expressed or exhibit co-expression of their target genes. Thus, we evaluated the 
EC of TFs or target genes within each structural class in yeast over 1,327 
expression conditions (Figure 1). We found a range of EC across TF structural 
classes, suggesting further distinctions in the regulatory roles of different 
structural classes. As predicted, many classes with functional enrichment (Zf-
C2H2, GATA, Myb, and Forkhead) do show strong EC, particularly among 
target genes. However, other TFs with enriched functional annotations (APSES, 
homeodomains) do not exhibit significant EC.  

3.3 Regulatory Bottlenecks 

Functional enrichment without 
EC within a structural class may 
indicate that members of this 
structural class regulate different 
phases of the same biological 
process. Alternatively, lack of EC 
among targets of the same 
structural class may arise from 
regulatory network complexity. We 
searched for significant trends in 
network topology among members 

Figure 1. Significance of Expression Coherence scores for A) TFs, and B) TF target genes 
across structural classes in yeast.  
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Figure 2. Bottleneck TFs within structural 
classes. Classes are ordered left to right from most 
enriched for bottlenecks to most depleted. 
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of a structural class within experimentally derived regulatory networks. Recent 
work has shown that “bottleneck” status (a measure of “betweenness”, i.e., how 
often regulatory pathways pass through a particular protein in a network graph) 
is a meaningful measure of the role of a TF in a regulatory network20. We found 
that certain TF structural classes are significantly enriched (p<0.05) for 
bottlenecks (Figure 2). Interestingly, APSES and homeodomain TFs, two classes 
that showed functional enrichment but insignificant EC, are among those 
enriched for bottlenecks. Since bottleneck proteins often connect multiple 
biological modules20, TFs in these classes may regulate genes within different 
specific pathways expressed at different times, but which all contribute to 
similar biological functions. 
Such a regulatory mode could 
explain the functional enrichment 
without significant EC observed 
for these TFs.  

3.4 Motif Coherence (MC) 

We hypothesized that TFs 
within structural classes that 
show functional enrichment 
should exhibit similarity in their 
DNA binding site motifs28. We 
observe variation in the degree of 
MC from one TF structural class to another. Structural classes with strong 
functional enrichment, even some that do not show significant EC, tend to have 
highly significant within-class MC (Figure 3). However, some classes with 
functional enrichment (Myb, 
forkhead, homeodomain) do not 
have significant MC, suggesting 
that motif similarity is not the 
only factor contributing to 
similarity in function. 

3.5 General vs. Specific 
Regulation  

The binding mechanism of a 
particular DBD structure might 
be well-suited for a certain type 
of regulation, and thus, certain 

Figure 3. Motif coherence by TF structural class.  
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Figure 4. Regulatory hub enrichment within 
structural classes. Classes are ordered left to right 
from most enriched for hubs to most depleted. 
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biological processes. For example, structures that bind more degenerate 
sequences and/or have many potential binding sites in the genome might be 
utilized for general, housekeeping functions while structures that recognize 
highly specific binding sites might be used for processes requiring carefully 
restricted regulation. We examined trends in the information content (IC; a 
measure of motif specificity vs. degeneracy) and number of target genes 
recognized by TFs of each structural class18. We observed only modest variation 
in average motif IC between structural classes, but note that such variation tends 
to be anti-correlated with the average number of genes identified as bound in 
ChIP-chip experiments by TFs of the same class, as expected (Supplementary 
Figure 1). A clearer distinction between classes exists in the enrichment for 
regulatory hubs (proteins with the most connections in the regulatory network) 
within each structural class (Figure 4). Structural classes containing well-known 
“global” TFs (i.e., those regulating many genes for broadly important functions) 
like the bZIP protein Gcn4 are significantly enriched for regulatory hubs, while 
those containing known “local” TFs (i.e., those regulating a few genes for a 
specific function) like the Zn2Cys6 TF Gal4 are significantly depleted for such 
hubs. Thus, the global vs. local nature of these TFs appears to be a general 
feature of their structural class. Interestingly, structural classes with many 
regulatory hubs tend to be enriched for cell fate and cell cycle functions while 
those with fewer regulatory hubs tend to be involved in regulating the 
metabolism of specific nutrients such as nitrogen and carbohydrates.  

4. Conclusions and Future Directions 

We have found evidence for biological function enrichment among TFs in 
various structural classes in a wide range of organisms. We observed differences 
across structural classes in terms of regulatory features that may relate to this 
functional enrichment, including expression coherence, motif similarity, and 
regulatory network position. In addition to suggesting explanations for the 
observed functional enrichments, such regulatory feature differences indicate 
that different structural classes may have fundamentally different modes of gene 
regulation. Specifically, the data presented here suggest that different TF 
structural classes achieve regulatory specificity and avoid crosstalk in different 
ways. The combination of low motif coherence, low expression coherence, and 
lack of functional enrichment within some structural classes suggests that 
diversity in DNA recognition motifs allows different TFs of the same DBD class 
to participate in different biological functions and regulate distinct sets of target 
genes.  In other structural classes, similar recognition motifs, high expression 
coherence, and functional enrichment suggest that harmful crosstalk is avoided 
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as TFs within a class act redundantly or supplementarily in the regulation of 
similar processes, as has been previously hypothesized in studies of the function 
of TFs with similar motifs28. Functional enrichment and high motif coherence 
paired with low expression coherence and an enrichment for regulatory 
bottlenecks suggests that, in yet other classes, TF function is partitioned into 
different modules so that all TFs in a class. Thus, though they bind similar 
motifs and participate in similar biological processes, they perform unique roles 
in the cell with precise functional specificity determined by their regulatory 
partners in the overall network.  

These results offer a set of interesting correlations and potential distinctions 
in regulatory mechanism by structural class, but do not provide a mechanistic 
explanation for the existence of these correlations nor elucidate the causality or 
order of events that led to functional enrichment within certain TF structural 
classes. We can, however, note that certain structural classes, like the C2H2 zinc 
finger TFs, have retained their paralogs after yeast whole genome duplication at 
a much higher than average rate (Supplementary Figure 2).  Interestingly, C2H2 
zinc finger TFs have undergone expansion and neofunctionalization within 
diverse lineages29,30. Thus, we can hypothesize that the structural properties and 
corresponding regulatory mechanisms of certain structural classes made them 
more suited for neofunctionalization and expansion over evolutionary time.  

The regulatory trends for different DBD structural classes could be used to 
improve gene function prediction. DBD structure is already used indirectly to 
predict TF function when biological roles are inferred from target genes that 
were in turn identified using binding sites predicted by structural homology4,6. 
The results presented here indicate that for certain TF structural classes, such as 
homeodomains in mouse, fly, and yeast, TF function prediction based on DBD 
structure is likely to be informative.  For other TF classes, such as Myb domains 
in both fly and mouse, however, functional inferences from structure must be 
interpreted with caution. Likewise, our observed correlations of certain DBD 
structural classes with various regulatory properties suggest that such regulatory 
properties could also be included in predictions of TFs’ regulatory roles. The 
resulting predictions of gene function could then be tested by directed 
experimentation. Beyond experimental testing to validate the predicted functions 
for novel or poorly characterized TFs, any TFs whose regulatory properties fall 
outside the general trends presented here could be investigated further to 
determine whether existing data and annotations have missed certain regulatory 
aspects of TF function that are expected for members of its structural class.  

The trends we observed here may have been affected by incomplete or 
biased annotations. In the future, as more precise data on the DNA binding 
specificities of TFs from each structural class and the biological processes they 
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regulate become available31, more concrete relationships between these features 
might be revealed. Analysis of other regulatory features, such as co-regulation 
within and between classes, other domains associated with a structural class, and 
the variability of TF and target gene expression could also further elucidate the 
role of DBD structure in TF function and regulatory mechanism. 
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