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We present a computational framework for analysis of MALDI-TOF mass spectrometry 
data to enable quantitative comparison of glycans in serum. The proposed framework 
enables a systematic selection of glycan structures that have good generalization 
capability in distinguishing subjects from two pre-labeled groups. We applied the 
proposed method for a biomarker discovery study that involves 203 participants from 
Cairo, Egypt; 73 hepatocellular carcinoma (HCC) cases, 52 patients with chronic liver 
disease (CLD), and 78 healthy individuals. Glycans were enzymatically released from 
proteins in serum and permethylated prior to mass spectrometric quantification. A subset 
of the participants (35 HCC and 35 CLD cases) was used as a training set to select global 
and subgroup-specific peaks. The peak selection step is preceded by peak screening, 
where we eliminate peaks that seem to have association with covariates such as age, 
gender, and viral infection based on the 78 spectra from healthy individuals. To ensure 
that the global peaks have good generalization capability, we subjected the entire spectral 
preprocessing and peak selection step to a cross-validation; a randomly selected subset of 
the training set was used for spectral preprocessing and peak selection in multiple runs 
with resubstitution. In addition to global peak identification method, we describe a new 
approach that allows the selection of subgroup-specific glycans by searching for glycans 
that display differential abundance in a subgroup of patients only. The performance of 
the global and subgroup-specific peaks is evaluated via a blinded independent set that 
comprises of 38 HCC and 17 CLD cases. Further evaluation of the potential clinical 
utility of the selected global and subgroup-specific candidate markers is needed. 

1. Introduction  

Current diagnosis of hepatocellular carcinoma (HCC) relies on clinical 
information, liver imaging, and measurement of serum alpha-fetoprotein (AFP). 
The reported sensitivity (41-65%) and specificity (80-94%) of AFP is not 
sufficient for early diagnosis and additional markers are needed [1, 2].  

Mass spectrometry (MS) provides a promising strategy for biomarker 
discovery. The feasibility of MS-based proteomic analysis to distinguish HCC 
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from cirrhosis, particularly in patients with hepatitis C virus (HCV) infection, 
has been studied [3-6]. Recent proteomic studies have identified potential 
markers of HCC including complement C3a [7], kappa and lambda 
immunoglobulin light chains [8], and heat-shock proteins (Hsp27, Hsp70, and 
GRP78) [9].  

Many currently used cancer biomarkers including AFP are glycoproteins 
[10]. Fucosylated AFP was introduced as a marker of HCC with improved 
specificity [11, 12] and other glycoproteins including GP73 are currently under 
evaluation as markers of HCC [13, 14]. The analysis of protein glycosylation is 
particularly relevant to liver pathology because of the major influence of this 
organ on the homeostasis of blood glycoproteins [15, 16]. An alternative strategy 
to the analysis of glycoproteins is the analysis of protein associated glycans [17, 
18]. The characterization of glycans in serum of patients with liver disease is a 
promising strategy for biomarker discovery [19].  

Current methods allow quantitative comparison of permethylated glycan 
structures by matrix-assisted laser desorption/ionization time-of-flight (MALDI-
TOF) MS [20], which provide a rich source of information for molecular 
characterization of the disease process. Although MALDI-TOF MS continuously 
improves in sensitivity and accuracy, it is characterized by its high 
dimensionality and complex patterns with substantial amount of noise. 
Biological variability and disease heterogeneity in human populations further 
complicate the MALDI-TOF MS-based biomarker discovery. While various 
signal processing methods have been used to reduce technical variability caused 
by sampling or instrument error, reducing non-disease-related biological 
variability remains a challenging task. For example, peaks associated to known 
covariates such as age, gender, smoking status, and viral infection should be 
eliminated; we call this preprocessing step peak screening [5]. In addition, robust 
computational methods are needed to minimize the impact of biological 
variability caused by unknown intrinsic biological differences. 

In this paper, we present computational methods for analysis of MALDI-
TOF MS to discover glycan biomarkers for the detection of HCC in patients with 
chronic liver disease (CLD), consisting of fibrosis and cirrhosis patients [21, 22]. 
The objective is to improve the diagnostic capability of a panel of “whole 
population” level (global) biomarkers and to investigate the extraction of 
subgroup-specific biomarkers that are more patient specific than the global 
markers. Our proposed approach involves the following two steps. 

The first step searches for a panel of global peaks that distinguishes HCC 
from CLD at the whole population level by treating all HCC patients as one 
group [4, 5]. We utilize a computational method that combines ant colony 
optimization and support vector machine (ACO-SVM), previously described in 
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[5], to identify the most useful global peaks. Although these peaks may include 
peaks that may be attributed to subgroups of patients, neither the subgroup-
specific peaks nor the subgroups are likely to be isolated due to the unknown 
(mostly nonlinear) interaction of the global peaks. 

The second step uses a genetic algorithm (GA) to search for subgroup-
specific peaks and to discover subgroups of subjects from the training set. The 
disease state of an unknown individual is determined by the SVM classifier built 
in the first step. Then, the subgroup to which the individual belongs will be 
determined by comparing its intensity with each of the subgroup-specific peaks 
defined in the second step.  

The proposed hybrid method will provide the ability to capture glycans that 
are differentially abundant in only a subset of patients in addition to those that 
are differentially abundant glycans at the whole population level. This will allow 
us to not only identify a panel of useful global peaks that lead to good 
generalization, but also to offer a more patient-specific approach for the 
identification of glycan biomarkers. 

2. Methods 

2.1. Sample collection 

HCC cases and controls were enrolled in collaboration with the National Cancer 
Institute of Cairo University, Egypt, from 2000 to 2002, as described previously 
[22]. Briefly, adults with newly diagnosed HCC aged 17 and older without a 
previous history of cancer were eligible for the study. Diagnosis of HCC was 
confirmed by pathology, cytology, imaging (CT, ultrasound), and serum AFP. 
Controls were recruited from the orthopedic department of Kasr El Aini Faculty 
of Medicine, Cairo University [22]. 17 HCC cases were classified as early (Stage 
I and II) and 33 HCC cases as advanced (Stage III and IV) according to the 
staging system [23]; for the remaining 23 HCC cases the available information 
was not sufficient to assign the stage. Patients with CLD were recruited from Ain 
Shams University Specialized Hospital and Tropical Medicine Research 
Institute, Cairo, Egypt during the same period. The CLD group has a biopsy 
confirmed 21 fibrosis and 25 cirrhosis patients; 6 individuals in the CLD group 
did not have sufficient clinical information. Patients negative for hepatitis B 
virus (HBV) infection, positive for HCV RNA, and with AFP less than 100 
mg/ml were selected for the study. Blood samples were collected by a trained 
phlebotomist each day around 10 am and processed within a few hours according 
to a standard protocol. Aliquots of sera were frozen at -80 oC immediately after 
collection until analysis; all mass spectrometric measurements were performed 
on twice-thawed sera. Each patient’s HBV and HCV viral infection status was 
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assessed by enzyme immunoassay for anti-HCV, anti-HBC, and HBsAg, and by 
PCR for HCV RNA [22, 24]. 

2.2. Sample preparation and MS data generation 

The sample preparation involved release of N-glycans from glycoproteins, 
extraction of N-glycans, and solid-phase permethylation as described previously 
[20]. The resulting permethylated glycans were spotted on a MALDI plate with 
DHB-matrix, MALDI plate was dried under vacuum, and mass spectra were 
acquired using a 4800 MALDI TOF/TOF Analyzer (Applied Biosystems Inc., 
Framingham, MA) equipped with a Nd:YAG 355-nm laser as described 
previously [17]. MALDI-spectra were recorded in positive-ion mode, since 
permethylation eliminates the negative charge normally associated with 
sialylated glycans. [25]. 203 raw spectra were exported as text files for further 
analysis a. Each spectrum consisted of approximately 121,000 m/z values with 
the corresponding intensities in the mass range of 1,500-5,500 Da. 

2.3. Global peak selection 

Figure 1 illustrates our approach for global peak selection, which begins by 
splitting the spectra into a labeled set and a blinded set. The labeled set consists 
of a subset of HCC cases, a subset of CLD cases, and all healthy individuals 
(normal). The blinded set comprises of masked HCC and CLD cases; it is used 
to evaluate the generalization capability of the selected peaks. Peak detection, 
peak screening, and peak selection are performed on the labeled set by 
subjecting the entire process to cross-validation. As illustrated in Figure 1, a 
subset of the labeled HCC and CLD spectra (~70% from each group) is 
randomly selected at each iteration as a training set, while the remaining HCC 
and CLD spectra are used as validation set. A spectrum in the training set is 
considered as an outlier, if its record count is more than two standard deviations 
away from the median record count of the spectra within the training set. Outliers 
are removed from the subsequent analyses. Each spectrum in the training set is 
binned, baseline corrected, and normalized as described previously [5]. After 
scaling the peak intensities to an over all maximum intensity of 100, local 
maximum peaks above a specified threshold are identified and peaks that fall 
within a pre-specified mass are coalesced into a single m/z window to account 
for drift in m/z location. The maximum intensity in each window is used as the 
variable of interest. The threshold intensity for peak detection is selected so that 
isotopic clusters are represented by a single peak.  

                                                           
a These files are available at http://microarray.georgetown.edu/web/files/psb.zip 
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Figure 1. Methodology for global peak detection. 

Logistic regression models are used to examine association of the glycans to 
known covariates including age, gender, smoking status, residency, HCV and 
HBV viral infections. This analysis is performed on the samples from healthy 
individuals to unambiguously isolate peaks associated to the covariates. The 
independent variables of a logistic regression model are the intensities of a given 
peak across all normal samples. The dependent variable is the status of a given 
covariate; all covariates in this study have binary values including age (young vs. 
old). The association of every peak to each covariate was determined on the 
basis of the corresponding statistical significance (p<0.01) in fitting a logistic 
regression model. Glycan intensities associated to the covariates are removed. 
From the remaining peaks, ACO-SVM selects the best peaks in terms of their 
ability to distinguish a subset of the HCC and CLD spectra in the validation set, 
which was not involved in the peak selection process. The spectra in the 
validation set are screened for outliers, binned, baseline corrected, normalized, 
and scaled on the basis of the parameters used to preprocess the spectra in the 
training set. The peaks in the validation set are quantified at the selected m/z 
windows and are presented to SVM classifier previously trained using the peaks 
from the training set. The performance of the SVM classifier in predicting the 
disease state of the subjects in the validation set is used by ACO-SVM to guide 
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its search for the optimal peak set. The above steps are repeated multiple times 
by randomly splitting the labeled spectra into training and validation sets. 

The peaks selected in multiple runs are summarized to determine the most 
frequently selected m/z windows. Note that the number of peaks detected and 
their m/z windows could vary at each iteration due to the change in the 
population set in each iteration. After obtaining all peaks selected in multiple 
iterations, we summarize the peaks by merging overlapping m/z windows. The 
optimal peak set is determined based on the frequency of occurrence of the peaks 
in multiple runs.  

To evaluate the peak selection process further, we quantify the glycan 
intensities at the m/z windows of the optimal peak set in the labeled and blinded 
sets. Note that the blinded set is not used during the peak detection and peak 
selection phases, thus it serves as an independent set to evaluate the 
generalization capability of the selected peaks. The spectra in the blind set are 
outlier screened, binned, baseline corrected, normalized, and scaled on the basis 
of parameters used to preprocess the spectra in the labeled set. We build an 
SVM using the labeled set and evaluate the capability of the SVM classifier in 
distinguishing HCC from CLD in the blinded set in terms of sensitivity, 
specificity, and area under the ROC (AuROC).  

2.4. Identification of subgroup-specific peaks 

Figure 2 illustrates our proposed method to identify subgroup-specific peaks by 
searching for peaks that are differentially abundant in a subset of patients. The 
method is described here in two phases: training and operation phase. 

In the training phase, for each candidate peak we search a subgroups of 
HCC cases in which the peak is differentially abundant. The candidate peaks are 
the summarized peak set from the global peak selection process. Note that this 
peak list includes each summarized peak regardless of its frequency of 
occurrence. We apply GA to search the optimal subgroup of patient for each 
candidate peak. A chromosome in the GA assigns a binary bit for each HCC 
patient in the labeled set (“1” for a patient selected in the subgroup, “0” 
otherwise). The algorithm starts with randomly selected binary bits. GA evolves 
the chromosomes with the aim of maximizing a multi-objective fitness function, 
which involves two parameters (1) the AuROC obtained in using the peak to 
separate a selected subgroup of HCC patients from patients with CLD and (2) 
the number of HCC patients involved in the subgroup. The goal is to search for a 
peak and a subgroup that not only display good separation between the HCC 
subgroup and patients with CLD, but also assign a reasonable number of subjects 
to the subgroup. During the operation phase, the label of a spectrum from the 
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blinded set is predicted by an SVM classifier previously built using the global 
peaks in the labeled set. If the predicted label is HCC, its glycan intensities will 
be compared with the subgroup-specific peaks to determine which subgroup the 
individual belongs to. The subject is assigned to a previously identified 
subgroup, if its peaks intensity falls within the subgroup’s intensity range. 

 
Figure 2: Methodology for subgroup-specific peak selection. 

3. Results 

MALDI-TOF mass spectrometric analysis of permethylated N-glycans 
enzymatically detached from serum proteins allowed relative quantification of 
about 100 oligosaccharides. We analyzed serum samples from 203 participants. 
Glycan analysis was performed as described previously [17, 20].  

Spectral preprocessing and global peak detection were carried out following 
the methodology depicted in Figure 1. Briefly, we began the analysis by splitting 
the raw spectra into labeled set (35 HCC, 35 CLD, and 78 normal) and a blinded 
set (38 HCC and 17 CLD). From the labeled set, 25 HCC and 25 CLD spectra 
were randomly selected as a training set; the remaining 10 HCC and 10 CLD 
spectra were used as a validation set. Outlier screening was performed on the 
training set to determine if its record count of each spectrum is within two 
standard deviations from the median record count for the spectra within the 
training set. Outlier spectra were removed from the subsequent analyses. A 
binning algorithm reduced the dimension of each of these spectra from ~121,000 
to 13,030 using a bin size of 100 ppm. The mean of the intensities within each 
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bin was used as the bin intensity. For each binned spectrum, we estimated the 
baseline by obtaining the minimum value within a shifting window size of 50 
bins and a step size of 50 bins. Spline approximation was applied to regress the 
varying baseline. The regressed baseline was smoothed using the lowess 
smoothing method. The resulting baseline was subtracted from the spectrum. 
Then, each spectrum was normalized by dividing it by its total ion current. The 
spectra were scaled to have a maximum intensity of 100. Local maximum peaks 
above a specified threshold are identified and nearby peaks within 300 ppm mass 
separation are coalesced into a single m/z window and the maximum intensity in 
each window is used as the variable of interest. We adjusted the threshold 
intensity and the mass separation so that isotopic clusters resolved by the high 
resolution reflectron acquisition were represented by one glycan peak. The 
isotopic cluster at 1543-1547 Da was the only cluster resolved by the procedure 
to three individual peaks; we grouped this cluster to one variable prior to 
subsequent analyses. This procedure resulted in about 100 m/z windows. After 
performing peak screening on the basis of the 78 normal spectra, about 20 peaks 
were removed. From the remaining peaks, ACO-SVM algorithm selected the 
three most useful peaks. The capability of these peaks to predict the labels of the 
spectra in the validation set was used by ACO-SVM to search for the optimal 
peak set. The spectra in the validation set were preprocessed in the same way as 
the training set. For outlier screening and scaling, the parameters used by the 
training set were utilized. The intensity values within the detected windows were 
quantified and the maximum intensities within the windows were used as input to 
SVM classifier built previously using the training set. The above procedure was 
repeated 2000 times by randomly selecting (with resubstitution) 25 HCC and 25 
CLD spectra from the labeled set as a training set and using the remaining 10 
HCC and 10 CLD spectra as a validation set. 

The peaks selected in 2000 runs were summarized by merging overlapping 
windows. Figure 3 depicts a frequency plot of the summarized 66 peaks (m/z 
windows). As shown in the figure, two m/z windows dominated the selection, 
where the first and second m/z windows were selected in 76% and 35% of the 
runs, respectively. We quantified the peaks in the labeled set (35 HCC and 35 
CLD spectra) within these two summarized windows and applied the maximum 
intensity values within the windows to build an SVM classifier.  

To evaluate the performance of the SVM classifier, we preprocessed the 
spectra in the blinded set in same way as the training set and quantified the 
glycan intensities within the selected two summarized windows. These intensities 
were presented to the previously built SVM classifier, which predicted the 
samples with 95% sensitivity and 100% specificity; two HCC subjects in the 
blinded set were wrongly classified as CLD. For comparison, we repeated the 
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entire peak selection process (Figure 1) by replacing ACO-SVM with the SVM-
recursive feature elimination (SVM-RFE) method [26]. Comparing the top 10 
peaks in both methods, we observed five overlaps; the peak with the highest 
frequency was the same in both methods. The top 10 m/z windows in both 
methods gave 95% sensitivity and 100% specificity in classifying the samples in 
the blinded set (both methods wrongly classified the same HCC subjects as 
CLD). However, the top two m/z windows in SVM-RFE (selected in 87% and 
30% of the runs, respectively, frequency plot not shown here) distinguished the 
HCC cases from CLD with 92% sensitivity and 94% specificity in the blind 
validation set; 1 CLD patient and 3 HCC cases were misclassified. 

 
Figure 3. Frequency of occurrence of peaks selected by ACO-SVM in 2000 runs. 

Glycan structures for nearly 50% of the peaks detected by the MALDI-TOF 
MS were determined. Out of 10 peaks selected by ACO-SVM, five have a 
known sugar composition. Similarly, five out of 10 peaks selected by SVM-RFE 
have known composition. Figure 4 depicts an overlay of the average HCC and 
CLD spectra. The five peaks, with known composition, identified by ACO-SVM 
are shown in the figure; four of these were also among the top 10 peaks selected 
by SVM-RFE. These five peaks yielded 87% sensitivity and 100% specificity in 
distinguishing HCC cases from CLD patients in the blinded set.  

Finally, we used the methodology illustrated in Figure 2 to identify 
subgroup-specific peaks from the 66 peaks summarized from the previous 2000 
ACO-SVM runs; all summarized peaks are considered as candidate peaks 
regardless of the frequency of occurrence in the 2000 runs. The subgroup-
specific peak selection method identified four peaks that represent four 
subgroups (S1, S2, S3, and S4) consisting of 23, 21, 17, and 15 HCC patients, 
respectively. These four peaks were particularly selected, because they had 
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better AuROC, more number of HCC patients in the subgroup they represent, 
and less number of overlapping subjects than other candidate peaks.  

 
Figure 4. Mean HCC and CLD spectra and sugar composition of five peaks selected by ACO-SVM. 

 
Figure 5. Box plots of peak intensities for four HCC subgroups. Dots represent glycan intensities of 
a blinded sample detected as HCC by a panel of global peaks. The intensity of the sample falls 
within the range of the peak for subgroup S3. 

Figure 5 depicts box plots for the glycan intensity levels of the four 
subgroup-specific peaks in their respective subgroups of subjects. Note that only 
intensities of the subjects that belong to the subgroup the peak represents are 
shown by the box plots. We considered a subject from the blinded set that was 
correctly predicted as HCC case by the global peaks. Figure 5 shows the glycan 
intensities of this subject at the four subgroup-specific peaks (dots in the figure). 
These intensities are compared with the peak intensity distribution (box plot) of 
the four subgroups of HCC patients that the peaks represent. From the figure, we 
see that the HCC patient can be assigned to the subgroup labeled as S3. 
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4. Discussion 

This paper introduces computational methodologies for quantitative 
comparison of glycans in serum and selection of biomarkers of hepatocellular 
carcinoma. Candidate glycan biomarkers were obtained by comparing MALDI-
TOF spectra of permethylated glycan structures derived from HCC and CLD 
patient sera. Prior to peak selection, we removed peaks associated to covariates 
such as age, gender, residency, smoking, and viral infection. We showed that the 
algorithm has the ability to select a small set of glycan peaks that achieve high 
sensitivity and specificity in distinguishing HCC cases from patients with CLD 
in Cairo, Egypt. In addition, we proposed a method that can potentially discover 
subgroups of patients by searching for subgroup-specific peaks that are 
differentially abundant in a subset of patients only. Further analysis is needed to 
determine the implication of the subgroups of subjects and the subgroup-specific 
biomarkers. It will be interesting to see if the subgroups represent different 
disease stages or molecular pathways. In addition, the potential clinical utility of 
the selected candidate markers needs to be evaluated through independent 
laboratory experiments.  
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