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Functional genomic quantities such as histone modifications, chromatin accessi-
bility, and evolutionary constraint can now be measured in a nearly continuous
fashion across the genome. The genome is highly heterogeneous, and the relation-
ships between different functional annotations may be fluid. Here we present an
approach for visualizing, quantifying, and determining the statistical significance of
local and regional correlations between high-density continuous genomic datasets.
We use wavelets to generate a multi-scale view of each component data set and
calculate correlations between data types as a function of genome position over a
continuous range of scales in sliding window fashion. We determine the statistical
significance of correlations using a non-parametric sampling approach. We apply
the wavelet correlation method to histone modification and chromatin accessibility
(DNaseI sensitivity) data from the NHGRI ENCODE project. We show that DNa-
seI sensitivity is broadly correlated (though to differing degrees) with a number of
different activating histone modifications. We examine the continuous relationship
between the repressive histone modification H3K27me3 and the activating mark
H3K4me2, and find these modifications to display significant duality, with both sig-
nificant positively and negatively correlated genomic territories. While the former
appear to recapitulate in definitive cells the so-called “bi-valent” pattern originally
proposed as a signature of pluripotency, the presence of negatively correlated re-
gions suggests that the regulatory events that underlie the observed modification
patterns are complex and highly regionalized in the genome.

1. Introduction

Rapid progress in the development and application of high-density func-

tional genomic assays has spawned a deluge of new data types. This in

turn has created a significant need for computational tools to assess quan-

titatively the relationship between different data types as a function of

genomic position, in a manner that can be related to existing genomic an-

notations such as genes and transcripts. Data types now available through

1
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large-scale efforts such as the NHGRI ENCODE project include various hi-

stone modifications, chromatin accessibility, DNA replication timing, bulk

transcriptional/RNA output, and evolutionary conservation. Since none of

these data have been available in a continuous fashion across diverse ge-

nomic regions, their interrelationships are largely unknown. For instance,

how does transcriptional activity relate to replication timing? Is the rela-

tionship constant across the genome, or is it regionalized? How do histone

modifications relate to chromatin accessibility and transcription, particu-

larly in intergenic regions? How does this relationship vary over different

parts of a gene, or between gene-rich and gene-poor regions? The hu-

man genome is functionally heterogenous, and the pending availability of

genome-wide data sets render these questions highly relevant to our under-

standing of the functional architecture of the genome. The increasing scope

and resolution of high throughput genomic assays encourages a multi-scale

view of the genome, where some processes vary rapidly over tens or hun-

dreds of bases, and others vary slowly over tens or hundreds of kilobases.

We therefore desire to view functional genomic activity over a wide range of

scales that may evince both nucleotide- and domain-level phenomena [15].

Here we present a method based on wavelet analysis for simultane-

ously computing and displaying correlations between different continuous

genomic data types at multiple scales. Wavelets provide a mathematical

framework for analyzing time series-like data at multiple scales. In the

parlance of signal-processing, wavelets are a fundamental tool for time-

frequency analysis, which in the context of genomic data means that they

can describe features in data that are both scale-specific and position-

specific (see Methods, below).

Briefly, our method consists first of computing the continuous wavelet

transform over a range of scales for each of a pair of datasets to be com-

pared. This gives a multi-scale representation of each dataset, as well as

normalizing each pair to a common set of scales. We then correlate the

wavelet-transformed results in sliding window fashion on a scale-by-scale

basis. The resulting correlation patterns can be visualized in heatmap form,

or in aggregate using histograms. We assess the statistical significance of

these patterns using non-parametric methods including the Kolmogorov-

Smirnov test and, primarily, sampling techniques.

The results and approach presented here expand on those developed in

the pilot phase of the ENCODE project [8, 9], whose mission is to iden-

tify all functional elements in the human genome. A distinguishing feature

of the ENCODE project is its charge to encompass a large number of di-
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verse data types collected using high-throughput techniques (tiling DNA

microarrays, high-throughput real-time PCR, and, more recently, ultra-

high-throughput sequencing) that collectively expose the functional activity

of the human genome in vivo.

The techniques presented here and previously [9] form a key part of

the effort required to integrate these diverse functional quantities. In the

present work we use improved wavelet techniques and a more rigorous sta-

tistical framework to analyze in greater detail the relationships between

histone modifications and chromatin accessibility, and between different

histone modification classes. The latter have attracted significant atten-

tion recently with the observation that certain modifications occurring in

combination (H3k27me3 and H3k4me2/3) may have a special functional

significance for cellular state.

Chromatin accessibility is a first-order indicator of chromatin structure,

and it has long been measured by quantifying sequence-specific or regional

DNaseI sensitivity. Epigenetic factors such as histone modifications are

thought to play key roles in a number of biological processes, including

initiation and propagation of transcription, and higher-order chromatin or-

ganization. Nevertheless, the interrelationships between the different his-

tone modifications and chromatin accessibility have not been systematically

studied prior to the availability of the ENCODE data.

2. Related work

Wavelets have been used in a number of bioinformatics applications to de-

tect and analyze patterns in sequence data [11]; to de-noise microarray

data [11]; and to elucidate large-scale trends in functional genomic data

[15]. Wavelets have also been used to uncover sequence and gene-related

correlations between prokaryotic species [1]. In these studies, correlations

were measured by identifying regions (in position-scale space) of significant

wavelet coefficients that were shared between datasets. By contrast, the

approach presented here measures the correlation between wavelet coeffi-

cients directly, in sliding window fashion across a chromosome. In [5] the

authors compare observed and randomized histograms of local correlation

coefficients to relate the divergence in non-coding non-repetive DNA with

the amount of repetitve DNA.
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3. Results

We present two analyses to illustrate our methods. Where noted, Supple-

mentary Information is available at http://noble.gs.washington.edu/proj/

wavecor.

3.1. Correlated data: DNaseI vs. H3K4me2

The pilot phase of ENCODE [9] focused on a representative cross-section

of 1% of the genome (approximately 30Mb), divided into 44 regions. One

of the main conclusions drawn from the pilot analysis is that chromatin

accessibility, as measured by DNaseI sensitivity, is very broadly correlated

with activating histone modifications including bulk acetylation of histones

H3 and H4 (H3ac, H4ac), and mono-, di-, and tri-methylation of H3 ly-

sine 4 (H3K4me1/2/3). Figure 1 shows a heatmap depicting the correla-

tion betweeen DNaseI and H3K4me2, which were jointly measured in the

GM06990 lymphoblastoid cell line. The following steps outline the process

for generating, interpreting, and assessing the statistical significance of this

correlation map. The chromatin accessibility data were generated using the

DNase-array method [14], and the histone modification data derived from

the Sanger Institute [10] ENCODE studies.

3.1.1. Wavelet coefficients

The continuous wavelet transform (CWT; see Methods) coefficient for a

given dataset can be computed at any position and any scale greater than

the resolution of the input data. The CWT encapsulates how much the

data are changing at that scale and position. For correlation analysis, we

compute the CWT coefficients at a range of scales for each dataset across

the regions of interest. This procedure results in a matrix of CWT co-

efficients for each dataset, with the x-axis representing genomic position

and the y-axis representing wavelet scale. Figure 2 shows heatmap rep-

resentations (or scalograms) of CWT matrices for DNaseI sensitivity and

H3K4me2 at scales ranging from 2kb to 32kb. The wavelet family used

here is an improved version of that used in [9] in its ability to capture more

accurately negative correlations between the data types (see Methods).

3.1.2. Correlation heatmaps

The scalograms in Figure 2 show marked similarity in both position and

scale; it is these similarities that we aimed to quantify. We computed the
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Pearson correlation of the CWT coefficients at each scale, in a sliding win-

dow fashion across the genome. Figure 1 shows a heatmap representation

of this matrix for DNaseI and H3K4me2 using a sliding window with width

at any given scale equal to 2.5 times the scale (e.g., 25kb window at 10kb

scale). The high percentage area of red in this figure is qualitative evidence

of a high degree of positive correlation at multiple scales.

The width of the sliding window is arbitrary, and can be tailored to

fit, for example, prior knowledge of the scale of effect of a biological phe-

nomenon (e.g., the size of a nucleosome, the size of the average gene, etc.).

However, wider windows may defeat the purpose of isolating local correla-

tions, while shorter windows push correlation values towards the extremes

of ±1. This latter effect occurs also for a fixed window width as the scale in-

creases. The scale-adaptive width used here makes correlations comparable

across scales, in contrast to the fixed window size technique used previously

[9].

3.1.3. Statistical significance

We next addressed the statistical significance of the preliminary conclusions

brought forth by visual inspection of Figure 1. Specifically, how significant

is the observed global positive correlation over random expectation? Is

this correlation profile more or less extreme when we replace H3K4me2 by

another histone modification? Do the results change if we consider all 44

ENCODE regions? To address these questions we applied non-parametric

methods: the Kolmogorov-Smirnov (KS) test [6] for assessing the differ-

ences between distributions, and iterative random sampling to form empir-

ical null distributions.

Statistical significance via KS test. Figure 3, left, shows the smoothed

histogram of ENCODE-wide sliding window correlation values between

DNaseI and each of the five histone modifications at the 16kb scale. The

high degree of positive correlation displayed in Figure 1 is reflected in Fig-

ure 3, where the distribution for all marks is highly skewed toward +1. The

distributions appear, moreover, to be ordered with respect to the degree

of positive skew, with H3K4me2 most correlated, followed by H3K4me1,

H3K4me3, H3ac, and H4ac in that order. Application of the one-sided KS

test showed that the ordering is significant for all five marks (p < 10−29),

except for the relationship between H3K4me1 and H3K4me3, which is am-

biguous. Results from [9] showed H3K4me2, H3K4me3 and H3ac most
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correlated with DNaseI, and that group being significantly more correlated

than H3K4me1 and H4ac, but with no other significant ordering of the

marks within those groups possible. Taken together, these results provide

strong evidence for high though graded correlation between DNaseI sensi-

tivity and the sampled range of histone modifications.

Statistical significance via sampling. The techniques in the previous

section may be used to compare different sets of observed correlations. Next

we addressed the question of comparing observed correlations to random

expectation. Here, “random expectation” means relative to a null distribu-

tion formed by considering two random signals that are, in a critical sense,

similar to the two observed datasets.

For the null model, rather than fitting a parametric model of the sig-

nals, which involves assumptions or simplifications of the data that may be

incorrect, we pursued a non-parametric sampling approach. All available

data for a given time series were concatenated into a single master series

which served as a pool from which regions of fixed size were sampled (with

size depending on the question being asked). Each point in the null distri-

bution was derived by computing the correlation between regions sampled

from independent positions in the two master series. This technique main-

tains the internal structure of the original time series while breaking any

correlation between them. We obtained an empirical p-value by counting

how many points in the null distribution met or exceeded the properties of

the observed feature.

Figure 3, right, shows the distribution of all observed DNaseI/H3K4me2

sliding window correlation values in the 500kb region ENr132 at the 16kb

scale. We found that 52% of the correlation coefficients at this scale exceed

0.7. To calculate significance, we randomly sampled blocks of size 500kb

from each master series at the 16kb scale. Out of 5,000 sampled correlation

profiles, only two had at least 52% of their values over 0.7, yielding a p-

value of 0.0004 for this region. Figure 4, center, shows a plot of additional

sampled correlation profiles.

There are 31 ENCODE regions of size exactly 500kb. We repeated the

above analysis for each of these regions and obtained uncorrected empirical

p-values ranging from 0.0000 to 0.3948 (see Supplementary Information).

The variability in these results suggests region-specific differences affecting

the correlations between DNaseI and histone modifications. For example,

Figure 5 shows that regions of high gene density tend to have higher cor-

relation values.
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When ENCODE-wide data were considered (Figure 3, left), we observed

that 56% of all 16kb DNaseI/H3K4me2 correlation values exceeded 0.7. To

test the significance of findings in the wider data set, we computed a null

distribution in which each point derived from sampling (for each dataset),

44 ENCODE region-sized pieces (with replacement) from the master se-

ries. Of 1,000 samples so obtained, none achieved a degree of positive cor-

relation comparable to the observed (empirical p-value of < 0.001). This

result supports the intuition that chance high correlation (pseudocorrela-

tion) in random data is significantly harder to sustain over longer regions

than shorter regions. Figure 4 shows the density of several ENCODE-wide

sampled correlation profiles versus several 500kb sampled profiles, with the

latter evincing far more variability. Correspondingly, Figure 4, right, shows

that the size of the tails of each sampled correlation profile has a much wider

distribution for the 500kb samples than for the ENCODE-wide samples.

3.2. Uncorrelated data: H3K4me2 vs. H3K27me3

As a further illustration of the utility of this approach, and to introduce

additional methods, we next examined the relationship between two his-

tone modifications, H3K4me2 and H3K27me3. The former is classically

associated with transcriptional activation, while the latter is held to signify

transcriptional or even regional chromatin repression. Due to the dual na-

ture of these modifications we expected their profiles in lymphoblastoid cells

to be largely uncorrelated, or perhaps even anticorrelated. Indeed, Figure 6,

top, covering the alpha globin cluser (Chr16) shows clearly co-located peaks

near position Chr16:150,000. This location contains a block of high positive

correlation across multiple scales, while a number of flanking peaks for one

mark or the other show no correlation or anticorrelation. Numerous exam-

ples of analogous co-located peaks occur throughout the ENCODE regions,

as do examples of slightly offset peaks (see Supplementary Information for

ENCODE-wide plots). The co-localization of H3K4me2/3 with H3k27me3

was first described in mouse embryonic stem cells (where it is prominent

over the promoters of certain developmentally coordinated genes), and was

originally thought to be a marker of pluripotency [4, 2]. However, more

recent work has called this conclusion into question [3].

Figure 6 (bottom, solid line) shows the distribution of ENCODE-wide

sliding window correlation values for these two marks at the 16kb scale.

The plot reveals a fairly balanced distribution of positive and negative cor-

relation values. Viewed independently, it is not clear whether this pattern
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is indicative of random non-correlation or if it reflects the aggregate of non-

random patterns of real positive and negative correlations, including the

bivalent-like domains suggested at the top of Figure 6.

To address this issue, we took two approaches. First, we performed

sampling experiments to ascertain null behavior. We calculated correla-

tion profiles from 1,000 ENCODE-wide random samples of the two sets of

16kb wavelet coefficients. Several correlation profiles are plotted as dashed

lines in Figure 6. While the sampled distributions are also largely balanced

between positive and negative values, the observed distribution shows ex-

tension of the tails and an offsetting central depression. Indeed, we found

that no sampled distribution had the same fraction of coefficients above

0.5 and below −0.5 as the observed, for an empirical p-value of < 0.001.

This provides quantitative evidence for non-random positive and negative

correlations.

Next, we attempted to identify regions of local agreement between the

two marks. We performed a 2-state HMM segmentation of each dataset,

partitioning the ENCODE regions into “high” and “low” states based sep-

arately on wavelet smoothed versions of each mark at scales ranging from

4kb to 128kb (see [7] for methods). We then formed the intersection of the

high states for both marks at each scale.

For data smoothed at the 4kb scale the intersection of the high states

comprised approximately 3.4Mb (> 10%) of ENCODE, which overlapped

70 annotated genes. GO analysis revealed 19 categories over-represented

at p-values less than 0.01, including six transcription-related terms, terms

for the regulation of cellular, physiological and biological processes, for

phosphatase and enzyme activity, and for development (see Supplementary

Information for full results). These categories accord with prior observa-

tions that a significant fraction of bivalent domains occur at genes encoding

transcriptional regulatory factors or at the 3’ ends of developmental genes

[4]. They also found large bivalent domains in the Hox clusters.

To explore scale-specific effects, we repeated the HMM segmentations

using 16kb, 64kb and 128kb scales. The intersection of the H3K27me3 and

H3K4me2 high states at these scales covered 4.5Mb, 7.6Mb, and 8.0Mb,

respectively. Almost without exception, the over-represented GO terms at

each scale were a subset of the terms at the next smaller scale, and all terms

were a subset of the 4kb terms. Five terms were over-represented at the

128kb scale, with transcription factor activity being the most significant

(p = 2.7× 10−7). See Supplementary Information for full results.
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4. Discussion and conclusions

The influx of functional genomic data types collected using high-throughput

methods has created a significant need for tools to integrate diverse signals

into a meaningful picture of the functional structure of the human genome.

The methods presented here are widely applicable to this problem. In the

course of the ENCODE pilot data analyses we performed wavelet correla-

tion and visualization analyses for scores of pairs of data types including,

in addition to those discussed here, replication timing, evolutionary conser-

vation measures, bulk RNA output, and nucleosome depletion assays (see

results provided in Supplementary Information.

A key aspect to our approach is the systematic integration of loco-

regional analyses. These results can be used to confirm hypotheses concern-

ing the relation between data types proposed on the basis of mechanistic

relationships (e.g., the correlation between DNaseI sensitivity and activat-

ing histone modifications in gene-rich regions), and they may be applied

in an exploratory mode, such as de novo identification of regions of com-

mon but generally unexpected high activity of activating (H3K4me2) and

repressive (H3K27me3) modifications.

Future work will be required to elucidate the complex relationship be-

tween activating and repressive histone modifications. Indeed, it appears

preliminarily that these broad labels are not sufficient to categorize behav-

ior across all genomic terrain. Additionally, it is not clear to what extent

the locoregional relationships between different modifications depend on

the cell type being studied. While the particular genes or domains that

evince a particular combination of marks may change between cell types, it

will be interesting to determine whether the overall proportion of territory

covered by that combination changes substantially. The pending availabil-

ity of additional data from ENCODE as well as other large-scale chromatin

profiling efforts [3, 12], including both additional cell types and additional

modifications will provide an opportunity to address this sytematically. Ul-

timately, extension of the approach described here to encompass multiple

diverse data types in addition to histone modifications and chromatin ac-

cessibility will likely hold the greatest promise for elucidating the functional

landscape of the genome. On a practical level, many of the calculations re-

quired for the wavelet correlation approach are computationally expensive.

As data types proliferate and expand to encompass the whole genome, a

first priority will be to determine whether the distribution of correlation

values observed are largely independent of data-type and dependent only
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on scale, which would permit realization of significant efficiencies through

pre-computation of case sampled distributions.

5. Methods

Data normalization. Wavelet correlation analysis requires that both

datasets be defined on a common set of equally-spaced genomic coordi-

nates. We performed gap-filling interpolation and wavelet normalization as

described previously [9].
Wavelets. In the analysis of time series-like data, wavelet analysis can be

thought of as an extension of Fourier analysis. Both techniques are used to

look for periodicities or strong changes in a time series at a given period, or,

in the language of wavelets, scale. But whereas Fourier analysis is global

in nature, giving a single Fourier coefficient for each period for an entire

time series, wavelet analysis is local, producing a wavelet coefficient at any

point in the time series that describes the strength of the change in the

time series at the given scale, at that time. We use the collection of wavelet

coefficients across time (genomic position, in our case) for a fixed scale to

summarize the scale-specific behavior of the time series.

Other smoothing techniques (loess, sliding window averaging) could be

used to also approximate scale-specific behavior. We chose wavelets because

of the availability of a computational framework (R package Rwave) for

simultaneously computing wavelet coefficients across multiple scales and

the established role of wavelets in time-frequency analysis.

The basis for all wavelet analysis is the continuous wavelet transform

(CWT) [13]. For a given equally-spaced time series x(t), the CWT wavelet

coefficient W (a, s) for given scale a and time s is given by

W (a, s) ≡
1√
a

∫

∞

−∞

x(u)ψ

(

u− s

a

)

du,

where ψ(t) is the wavelet function of choice, satisfying the basic properties
∫

∞

−∞
ψ(u), du = 0 and

∫

∞

−∞
ψ2(u), du = 1. We use our own implemen-

tation of the real-valued “first derivative of Guassian,” or DOG wavelet.

By contrast, the analysis in [9] used the complex-valued Morlet wavelet;

correlations using this wavelet required taking the absolute value of the

coefficients, which masked negative correlations.
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Figure 1. Correlation heatmap for H3K4me2 vs. DNaseI (GM06990) in ENCODE re-
gion ENm003. From top to bottom: raw data for H3K4me2, raw data for DNaseI,
correlations heatmap, 16kb CWT coeffiecients for H3K4me2, 16kb CWT coeffiecients
for DnaseI. Raw data and coefficients are colored with the correlations at the 16kb scale
(dashed line).
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Figure 2. CWT heatmaps for DNaseI sensitivity (left) and histone modification
H3K4me2 (right), in ENCODE region ENm003. The bottom plots are of the original
data.
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ing histone marks. Left, ENCODE-wide correlations of all five marks. Right, DnaseI
vs. H3K4me2 correlations in the 500kb ENCODE region ENr132.
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Figure 4. Distribution of several correlation profiles using ENCODE-wide samples (left)
and 500kb samples (center). Right, distribution of tail sizes in sampled correlation values.
For each sample we compute the fraction of the correlation values greater than 0.7. The
plot summarizes those fractions in 1000 ENCODE-sized samples (red) and 5000 500kb
samples (black) of simulated null correlation values.
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Figure 5. Gene density (transcription start sites per megabase) and DnaseI/H3K4me2
correlation in 500kb ENCODE regions. Each point corresponds to one of the thirty-one
500kb regions. For each region we computed the gene density therein, the fraction of
DNaseI/H3K4me2 16kb correlation values in that region over 0.7, and the empirical p-
value for that fraction. At left, gene density vs. fraction of correlation values over 0.7
(with regression line); at right, gene density vs. empirical p-values.
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Figure 6. Correlation of H3K4me2 and H3K27me3. Top, correlation heatmap in EN-
CODE region ENm008. Bottom, distribution of observed (black) and sampled (color)
ENCODE-wide correlations at the 16kb scale.
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