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Stem cells represent not only a potential source of treatment for degenerative dis-
eases but can also shed light on developmental biology and cancer. It is believed
that stem cells differentiation and fate is triggered by a common genetic program
that endows those cells with the ability to differentiate into specialized progen-
itors and fully differentiated cells. To extract the stemness signature of several
cells types at the transcription level, we integrated heterogeneous datasets (mi-
croarray experiments) performed in different adult and embryonic tissues (liver,
blood, bone, prostate and stomach in Homo sapiens and Mus musculus). Data
were integrated by generalization of the hematopoietic stem cell hierarchy and by
homology between mouse and human. The variation-filtered and integrated gene
expression dataset was fed to a single-layered neural network to create a classifier
to (i) extract the stemness signature and (ii) characterize unknown stem cell tissue
samples by attribution of a stem cell differentiation stage. We were able to char-
acterize mouse stomach progenitor and human prostate progenitor samples and
isolate gene signatures playing a fundamental role for every level of the generalized
stem cell hierarchy.

1. Introduction

A wide variety of stem cell types have been recently reported to exist in

several adult organs and are suspected to be present in most tissues. Well

known stem cells types include hematopoietic stem cells (HSCs), neural

stem cells (NSCs), myogenic progenitors (muscle), and others having a more

restricted potential (such as gut and skin1) The consensus among stem cell

researchers is that stem cell fate decision and renewal are triggered by sev-

Pacific Symposium on Biocomputing 14:356-367 (2009)



September 22, 2008 23:27 Proceedings Trim Size: 9in x 6in stem-cell-paper-bidaut-stoeckert

eral mechanisms that do not completely overlap among different stem cells

type in the same organism2, and in different species3. Two key questions

are still unresolved: (i) Despite the knowledge of their existence, the loca-

tion and differentiation capabilities of stem or progenitor cells are unknown

for the vast majority adult organs ; methods to confirm the presence of

stem/progenitor cells in adult tissues are needed. For instance, there is

a large uncertainty on whether pancreatic beta-cell progenitor cells reside

within the pancreatic ductal epithelium, the pancreatic small cells, or aci-

nar tissue, or all of the previous4. (ii) The list of early markers that drive

differentiation and self-renewal properties is still not agreed upon.

In this paper, we present a computational method to decipher common

mechanisms of stem cells differentiation at the transcriptomic level using

microarray data. We therefore integrated several datasets obtained from

heterogeneous stem cells studies and trained an artificial neural network to

extract a list of common gene markers triggering stem cell differentiation

and fate decisions. Our hypothesis is that pathways triggering differenti-

ation are at least partially conserved among adult stem cells/progenitors,

forming a molecular signature reflecting embryonic and adult stem cells

plasticity - the stemness. This hypothesis has been formulated several

times5, and is supported by measured transcriptome data6, following a

controversy about whether the stemnesss property could really be verified

at the transcriptional level7. Discovering a shared signature should help

characterize unknown stem cells populations, i.e. to determine whether a

cell population contains stem cell/progenitors, and what is their differen-

tiation potential/stage. In addition, the publication of a catalog of genes

involved in differentiation of several cell types would be a valuable resource

for stem cell researchers and developmentalists.

To extract molecular signatures for stem/progenitor cells developmen-

tal stages by gene expression profiling, we trained a multiclass single-layer

linear ANN that subsequently allowed us to characterize unknown samples

and position them in a hierarchy ranging from totipotent stem cells to fully

differentiated cells. We tested the predictions made by our neural network

using two tissues that were only partially characterized: Mouse stomach

epithelium and human prostate (Figure 1). The ability of our system to

generalize its classification to unknown stem cell types was assessed with a

one-leave out cross-validation procedure on the training data.

ANNs represent a class of machine learning algorithm that were suc-

cessfully applied to a large range of open ended problems. Their basic

structure has been inspired from neurobiology and takes the form of a feed
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forward network of neurons modeled by a transition function. In a typical

setup, an initial network topology is chosen depending on the nature of the

problem; neurons are then trained for several epochs, leading to an ANN

model, which is in turn applied to the classification of unknown samples. In

biology, they were applied early for multiclass tumor classification in cancer

discovery of cancer molecular subtypes and identification of biomarkers8.

To properly use a classification system on the selected dataset we con-

sistently labeled the stem and differentiated cells in tissues according to

their differentiation stage/properties using a controlled vocabulary. The

hematopoietic stem cell hierarchy5 was used as a model: in this differenti-

ation system, the different cells identified and isolated thanks to functional

assays, are hierarchically positioned according to their differentiation po-

tentials. At top of the hierarchy is the HSC, which can give rise to all blood

cells and has self-renewal capacity, and finally the various types of mature

blood cells. We defined a more general model (see section Data integration)

applicable to all stem cell types, including adult stem cells and embryonic

stem cells. Five stages are recognized, as shown in Table 1

Table 1. Properties of the generalized stem cell hierarchy and the controlled vocabulary used for
classification.

Code Stem Cell Type Properties

A Totipotent Stem Cell Capable of self-renewal and able to generate all cell types
B Multipotent Stem Cell Capable of self-renewal and able to generate most cell types
C Progenitor Cell Capable of generating several cell types
D Lineage-Committed Progenitor (LCP) Cell Capable of generating a single or a restricted number of cell types
E Differentiated Cell Cell displaying final phenotype

The whole scheme operates in three steps. First we generated a training

dataset by integration of several gene expression datasets generated by the

SCGAP (Stem Cell Genome Anatomy Projects) consortium in different

tissues, and projected it in a predefined space of basis vectors using the

technique of vector projection9, to group genes having similar dynamics of

differentiation. We then used this integrated dataset to train a single-layer

artificial multi-class neural network to classify unknown tissues potentially

containing stem/progenitors cells in one of the predefined categories. Cross

validation over training dataset led to 31 independent ANN models, trained

independently by iteratively pulling out a tissue from the training data. The

optimal number of genes to be employed in the classification was found

by performing the training while reducing the number of genes used for

classification. At each iteration, the top genes were retained by sorting the

ANN weights and were kept before next training iteration. Classification

error rate was minimized for 63 genes, and this set of genes was retained
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as a minimal core representing the stemness property shared by the set of

stem/progenitor cells in the data. Finally, we tested the predicting power

of the 31 models on two tissues not used for training that are potentially a

mixture of adult and progenitor cells, namely mouse stomach progenitors10

and human prostate progenitors11.

The datasets analyzed measure gene expression in mouse and human,

stem or progenitor cell in various tissues at different development stages.

Gene coverage varies with the type of chip (from 6K-to 18K genes, see Ta-

ble 2). Data were integrated at the gene level using the NCBI Homologene

database12 and at the experimental level using a controlled vocabulary of

Table 1. The resulting data matrix contains 18720 genes profiled across 82

samples in total.

The 82 arrays are grouped by tissues. A unique tissue sample is char-

acterized by a group of at least two arrays, up to five arrays covering pre-

viously stem/progenitor cells categories A-E - this is a necessary condition

to be able to perform vector projection. This lead us to a final table of 40

tissues.

Table 2. Summary of tissues, platforms and cover. The two last tissues marked in bold are used for
testing. Stem cell categories are marked with code (From A to E), corresponding to the previously defined
stem cell stages in Table 1.

Author/Lab Tissue Platform N genes Categories

Darlington et al. (2007)13 Mouse Embryonic Liver Affy. 430A 12798 C,E
Rowe et al. (unpublished) Mouse Bone Affy. U74 Av2, Bv2, Cv2 15127 C,D,E

Ivanova et al. (2002)5 Human Fetal Liver (HSCs) Affy. U95 Av2,B,C,D,E 17024 B,D,E

Ivanova et al. (2002)5 Mouse Fetal Liver (HSC) Affy. U74 Av2, Bv2, Cv2 15127 B,D,E

Ivanova et al. (2002)5 Mouse Adult Bone Marrow Affy. U74 Av2, Bv2, Cv2 15127 B,C,D,E

Ivanova et al. (2002)5 Mouse Embryonic Stem Cells (ESCs) Affy. U74 Av2, Bv2, Cv2 15127 A

Ivanova et al. (2002)5 Mouse Neural Stem Cells (NSCs) Affy. U74 Av2, Bv2, Cv2 15127 B
Ivanova et al. (unpublished) Human Coord Blood (HSCs) Affy. U133 A,B 17275 B,D
Ivanova et al. (unpublished) Human Adult Bone Marrow (HSCs) Affy. U133 A,B 17275 B,D
Ivanova et al. (unpublished) Mouse Adult Bone Marrow (HSCs) Affy. 430 A,B 18626 B,C

Oudes et al. (2006)11 Human Prostate Progenitors Affy. U133plus2.0 18806 X,E

Mills et al. (2002)10 Mouse Stomach progenitors Affy. Mu11K A,B 6975 X,E

Total: 5 distinct 12 distinct 6 distinct 18720 5 distinct

The inherent architecture of the neural network-based single layer sys-

tem allows for detailed exploration of two important parameters: (i) ranking

weights for each of the five stages allow extraction of genes reported by the

classifier to be a marker for this particular stem cell stage. (ii) ranking

genes on a vector y resulting from the expression projection multiplied by

the corresponding weight for a given cell population (yn = wn.pn, w being

the highest level neuron weight and p the expression projection) allows to

delineate gene profiles critical for proper classification of this tissue. We

additionally performed an analysis of highly ranked genes and statistically
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enriched gene ontologies (GO) for each of the stem/progenitor stage (un-

published data). A hidden layer to the architecture was not added even

though it might decrease classification error because of the concern of over-

training and losing the ability to interpret the gene weights associated with

each stem/progenitor cell stage. Other classifier types have also been con-

sidered but ANNs have been retained to keep the ability to rank genes

according to their weights.

2. Material and Methods

2.1. Dataset

The dataset is an integration of stem cell transcriptional data generated by

the 7 members of the SCGAP (Stem Cell Genome Anatomy Projects) con-

sortium to train and test the system. Every SCGAP members performed

large scale gene expression analysis on AffyMetrix arrays in given cell types

and in two organisms, M. musculus and H. sapiens after specific purifica-

tion steps (see Table 2). Data are available for interactive search on the

Consortium’s web portal (http://www.scgap.org), for download from every

SCGAP member’s web site, and in an integrated form the supportive web

site (http://scann.sourceforge.net).

2.2. Data integration

Data were integrated at two level to take into account the heterogeneous

nature of the consortium platforms. Data were first normalized within

single datasets using iterative lowess normalization to compensate for dif-

ferences in hybridization among the different platforms. The mas summa-

rization method implemented in the bioconductor (R) software package (li-

brary affy) provided us with the expression values. We labeled the training

dataset with a controlled vocabulary describing the five stem cell/progenitor

differentiation stages (See Figure 1(b) and Table 1).

2.3. Vector Projection

Vector projection is a technique previously used for feature extraction in

time course pancreas development gene expression data9. This technique

allows for quick gene identification from pre-defined expression profiles that

model the expected behavior of the genes we wish to isolate as most repre-

sentative. In our case, vector projection captures genes with expression pro-

files peaking in different stem/progenitor differentiation stages for a given
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tissue (See Figure 1). The mathematical definition of vector projection is

the inner product of a gene profile within a tissue to each model vector.

We designed all model vector for the extraction of gene profile that were

primarily expressed at one of the five progenitor/stem cell stage. These

projection values were used to filter out genes without enough expression

variation across tissues, and after filtering, projection values were presented

to the ANN for training. Vector projection could be extended to extract

gene profiles peaking in two or mode population - for instance to extract

genes expressed during totipotency, turned off during self-renewal, and ex-

pressed again lated during lineage committed differentiation.

2.4. Missing values and Data Organization

A critical issue of the data we are analyzing are the missing values. This is

particularly concerning here since projecting gene expression profiles char-

acterized by missing value points can lead to results dramatically different

from those expected. To cope with this issue, we performed vector projec-

tion using only the determined values, and re-normalize the model vector to

a value of 1.0 using only the non-missing populations. After projection, the

obtained dataset is organized both by tissue and projection values and re-

ports the projection value for every stem/progenitor stem cell stage within

every tissue. The projection values are then submitted to the ANN.

2.5. System Architecture and Parameters

The classifier used here is an extension of the well known single layer as-

sociative memory (Figure 1). It is characterized by a single neuronal layer

holding the input weights to be learned from the data. Five neurons in total

have been associated to the five levels of stem/differentiated cell hierarchy

previously defined. The output for each neuron is the scalar product of

the projection input by the weights: yi =
∑N

n=1
wi,n.pn, with y being the

neuron output, i the neuron number, n the gene index, N the total number

of genes, wi,n the nth value of the ith neuron weight, and pn the nth value

of the gene expression projection to be classified. At every cross-validation

step, one tissue is selected for testing and the others as a training set. A

new neural network model is created (the weights are reinitialized) and the

training set is presented to the network for 200 epochs. At each epoch, tis-

sues from the training set are presented in a random order to the network,

and weights are updated with a classic gradient descent-type training rule:

∆wn = a(k)[yn−ydn], wn being the current weight value, a(k) the learning
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rate (typically decreasing over time, we used a(k) = 1/(k + 1), k being the

epoch number), yn the output and ydn the desired neuron output. Each

ANN model trained during cross validation is kept and used at a later stage

for final classification of unknown samples. The number of weights to be

conserved is updated until a minimal classification error rate is reached

during cross-validation.

We then performed the cross-validation and estimated the optimal num-

ber of features for tissue classification by iteratively reducing the number

of weights (or input genes) used by the ANN during training. The sum

of misclassified test samples on the 31 ANN models versus the number of

genes is represented figure 2(a) and is minimized for 63 genes (16 genes on

individual neurons).

2.6. Classification algorithm

For a given tissue that we wish to classify and attribute to one of the five

cell types defined in Table 1, classification was performed as follows: The

tissue tested must meet several conditions: At least two samples must be

available to perform vector projection, a fully differentiated sample known

a priori, and the second sample containing stem/progenitor cells to be

characterized. The system then characterizes every sample by first assigning

it to a category as described in Table 1 for each of the 31 ANN models

generated during leave one out training. A consensus is given by majority

voting on the 31 ANN models. To understand the biological functions

involved in the various differentiation stages, we examined the genes used

in the classification and the enriched ontologies with ClutrFree14 (data not

shown).

3. Results and Discussion

3.1. classification results

Figure 2(a) shows the global misclassification rate versus the number of

genes. The quadratic error rate for the training set and tests sets are

respectively represented Figures 2(b) and 2(c). The error rate of every in-

dividual ANN trained with 63 genes is shown Figures 2(d) for the training

set and the corresponding held out tissue. Misclassified tissues are pointed

with an arrow. The minimal misclassification rate was obtained for 63 genes

(See arrow on Figure 2(a), yielding a set of genes representing the core of

stemness genes necessary for cell differentiation from ESCs to fully differ-

entiated cells in both H. sapiens and M. musculus data. Error progression
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Classification of Unknown Tissues

Testing Set (Human Prostate, Mouse Stomach

Epitelium) [9 Tissues]

Leave One Out Cross validation

Training Population Weights

ANN Training

Gene 1

Gene n

Neuron 1: Totipotent Stem Cell

Neuron 2: Multipotent Stem Cell

Neuron 3 : Progenitor

Neuron 4 : Lineage-Committed Progenitor

Neuron 5 : Differentiated Cell

31 ANN Models

5. Weights are averaged over all models and ranked.  Top 16 genes 

per neuron are conserved to optimize classification

Training Set (Mouse and Human HSC, Mouse ESC, 

Mouse Neural SC, Mouse Bone) [31 Tissues]

1. Data Integration by controlled experiment labeling

and homology alignement (Homologene Database)

2. Vector projection on 5 stem cell gene 

expression profile basis vector

3. Variation-based filtering: 3939 genes kept

Microarray generated for different stem/progenitor tissues

[82 experiments in 40 tissues - 18k Genes]
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Figure 1. (a): ANN System Architecture used in the analysis: The data is initially
projected onto the space defined by the 5 stem/progenitor cell basis vector. Splitting
of the input dataset in Training/Testing dataset is shown. (b): Model vectors used for
vector projection.

curves decreased rapidly and did not revealed overtraining in the neural

network, even though we went up to 200 epochs, except for one neural

stem cell tissues (Mouse NSC sample 2, not pictured).

We used the network to characterize two tissues potentially containing
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progenitors, namely human prostate and mouse stomach. Those two tissues

were classified as expected by the system and are thus likely a mixture of

fully differentiated cells and stem cells (Table 3).

Table 3. Classification by majority vote on the 31 Neural
Network models generated for 63 genes

Tissue to be tested Majority Vote

Mouse Stomach Progenitor Progenitor
Human Prostate Progenitor Multipotent Stem Cells

Number of 

misclassified

samples

10
1

10
2

10
3

10
4

10

100
(b) Quadratic error rate for training set

Minimum

for 63 genes

(a) Sum of misclassified tissues

Quadratic

Error rate

Quadratic

Error rate

Epochs

(c) Quadratic error rate for test set

Epochs
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(d) Error rate for individual ANNs
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Figure 2. Classification results obtained for the ANN system.

The ANN models allowed us not only to characterize unknown tissues

but also to extract genes that back the classification in those categories,

by ranking the genes according to their weights - a higher weight meaning

the gene plays an essential role in the classification. The training of 5

neurons allowed us to extract a total of 5 gene sets, each of them related

to a stem cell developmental stage (totipotent, multipotent, progenitor,

lineage-committed progenitors (LCP) and differentiated cell). The analysis

of markers was done on the first model given by the leave-one out run for
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a training on 63 genes. The top 10 genes lists ranked by weights for each

population are presented Table 4.

Table 4. Top 10 genes sets for the 5 stem cell stages ranked by weights.

Totipotent Multipotent Progenitor LCP Diff. Cells

Gene List Gene List Gene List Gene List Gene List

Dbn1 Procr Letmd1 Coq3 Aqp1
1110001A23Rik Gprasp2 Lrp8 Mgst1 Rhced
BC053917 AI661017 Kpna3 PDZK8 Rhbdl4
5830405N20Rik Ctso Ptprm Cybb MGI:1933403
Iqwd1 Gkap1 Rbp4 Rbbp9 Wnt11
5730420B22Rik Lrrc16 Ass1 Cst7 Eif2ak3
Rbp4 Nrbp2 Itgb2 4932441K18 Nfe2
Rpp40 Adam8 Med6 Fli1 Fech
Nfe2 Irak1bp1 Cd109 Anxa1 AI661017
Rbbp9 MGI:1916782 5830405N20Rik Gpr124 Gzma

For the totipotent population, the top genes include Rbbp9, a gene that

may play a role in cell proliferation and differentiation.

In the multipotent population, we found MGI:1916782 (Hopx ) - ex-

pressed in embryonic myocardium and other mesoderm, but not in endo-

cardium or great vessels. HOP is also highly expressed in the developing

heart, dependent on the cardiac-restricted homeodomain protein Nkx2.5.

Inactivation of Hop in mice by homologous recombination results in a par-

tially penetrant embryonic lethal phenotype with severe developmental car-

diac defects involving the myocardium.

In tissues containing progenitor cells, we found several interesting mark-

ers: Letmd1 is an oncoprotein that has a role in the development of human

breast cancer. The protein encoded by ptprm is a member of the protein ty-

rosine phosphatase (PTP) family which is known to be signaling molecules

regulating a variety of cellular processes including cell growth, differentia-

tion, mitotic cycle, and oncogenic transformation. We also found the cell

surface antigen CD109. This is a glycosylphosphatidylinositol (GPI)-linked

glycoprotein found on a subset of hematopoietic stem and progenitor cells15.

Other markers of interest were also found in the two other categories:

In lineage-committed progenitors, 4932441K18 (FIAT ) is a transcriptional

regulator of osteoblastic functions. Anxa3 encodes a protein member of

the annexin family. Members of this family are involved in cellular growth,

and this particular protein may play a role in anti-coagulation. Sfrp4 is a

Wnt pathway inhibitor and plays a central role in cell fate decisions. We

also found CD34, known to be expressed in hematopoietic stem cells, and
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a marker for stem cell purification (ranked 13th in the LCP category).

Interestingly, exploration of the gene list for 87 genes shows Socs2 in

the top 10 genes for the Multipotent category. Socs2 is ubitiquously ex-

pressed in most tissues in M. musculus and was shown to play an important

regulatory role in neural development, neural stem cell differentiation and

neuronal growth16. It is also a growth-hormone inducible and novel in-

hibitor of intestinal epithelial cell proliferation and intestinal growth. It

was also shown to play a role in mammary gland development and regulate

the fate of mesenchymal precursor cells17, which is the nature of the cells

we are studying here. Phenotype of Socs2-/- mice are describe therein and

includes enlargement of bone and skeletal muscles.

The full list of markers obtained with the training for 63 genes is avail-

able from the supporting web site (scann.sourceforge.net).

3.2. Discussion

We present a novel approach that involved large scale integration of het-

erogeneous microarray datasets and pattern recognition analysis based on

a vector projection technique to create a neural network-based classifier for

characterization the differentiation properties of unknown stem cell tissues

and extraction a molecular signature of stemness. Analysis of genes ob-

tained by weight ranking highlighted gene product involved in several steps

of cell differentiation. Thus, differentiation recruits a large panel of different

genes and pathways and results from subtle expression level changes in a

large number of genes. However, there is obviously more work to precisely

validate the markers found. We were able to perform correct classification

of unknown tissues (mouse stomach progenitors and human prostate pro-

genitors) with a signature of 63 genes representing a core of genes involved

in the differentiation process. As a natural extension of this work, we plan

to include other stem cell studies publicly available on repositories such as

Gene Expression Omnibus and ArrayExpress. On the technical side, we

plan to improve the generalization capabilities of the classifier by boosting

techniques, and make it accessible through a publicly available web server

to perform the classification of unknown stem cell type. Other classifiers

types will also be considered and their performance on this dataset studied.
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