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In order to better characterize the behavior of biochemical systems, it is sometimes helpful and
necessary to introducetime-dependent input signals. If the state of a biochemical system with
such signals is assumed to evolve deterministically and continuously, then it can be readily ana-
lyzed by solving ordinary differential equations. However, if it assumed to evolve discretely and
stochastically, then existing simulation methods cannot be applied. In this paper, we incorporate
conditions fortransient analysisinto stochastic simulation and we develop the corresponding
simulation algorithm. Applying our method to examples, we demonstrate that it can yield new
insights into the dynamics of biochemical systems; specifically, it can be used to verify the
design of biochemical logic gates.

1. Introduction

Certain biochemical systems appear to exploit randomness, choosing between dif-
ferent outcomes with a probability distribution – in effect, hedging their bets with
a portfolio of responses. Examples include thepap pili epigenetic response of
bacteria [1], the lentiviral positive-feedback loop in the HIV virus [2], and the
lysis/lysogeny switch of thelambdabacteriophage [3].

Gillespie proposed thestochastic simulation algorithm (SSA) to characterize
discrete, random biochemical reactions [4]. The SSA tracks integer quantities of
the molecular species in a biochemical system, executing reactions at random
based on propensity calculations. Repeated trials are performed to characterize
the evolution of the system. Gillespie demonstrated that the SSA has a firmer
physical basis than continuous, deterministic methods and that it provides more
accurate simulation results [5]. The SSA works well for systems in which the
quantities of the species are small. However, for larger systems, the computation
time becomes prohibitive. Improved algorithms have been proposed [6]. Also,
approximation methods have been applied [7], [8], [9], [10], [11].
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In a typical application of the SSA, the system is assumed to beclosed: after
the initial state is fixed, the time evolution of the system only depends on the
internal reactions. But what if we want to characterize the behavior of a system
when there exist external mechanisms that modify the quantities of species? For
instance, we may need to study what happens when an external source injects or
drains certain species into or from the system. The external change might occur
periodically or it might be dependent on the trajectory of the system, e.g., the
quantities of species might be limited by threshold conditions. Existing methods,
such as Gillespie’s SSA, cannot handle such behaviors.

For electrical circuits, transient analysis consists of a time sweep using numer-
ical methods to solve differential equations, with the operating points solved by
setting all the time derivatives to zero. Similarly, in a biochemical system, vari-
ous input signals can be defined and the system can be solved through ordinary
differential equations (ODEs) or differential algebraic equations (DAEs). Indeed,
several authors have suggested using a standard electrical simulation tool called
SPICE to model biochemical reactions [12], [13], [14], [15], [16]. However, this
presumes that the biochemical systems under investigation are continuous and de-
terministic.

In this paper, we propose an approach calledstochastic transient analysis
(STA). It incorporates time-dependent variations in the quantities of species into
stochastic simulation. We consider pulse, piecewise-linear, and sinusoidal sig-
nals. The method can be readily generalized to include other free-form functions.
The signals are eitherforcedor injected. Further, threshold-triggered signals are
incorporated.

We apply the STA method to analyze a simple model calledLotka. We also
apply it to analyze the time-dependent behavior of the inverter model proposed
in [17]. We propose designs for other types of biochemical logic gates (AND,
OR, NAND and XOR) and we apply our STA method to verify the behavior of
these.

2. Stochastic Transient Analysis

The power of transient analysis resides in the fact that the time behavior of the
system can be simulated with different types of input signals to accommodate
different analysis scenarios.

2.1. Categorizing Input Signals for Stochastic Transient Analysis

Although we do not discuss transient analysis of electric circuits here, we borrow
from this field standard forms in which input signals can be categorized: pulse,
piecewise linear (PWL) and sinusoidal.
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(1) PULSE(v1,v2, td, tr , t f , pw,P), wherev1 is the initial value,v2 is the pulsed
value,td is the delay time,tr is the rise time,t f is the fall time,pw is the
pulse width andP is the period.

(2) PWL(t1,v1, t2,v2, . . .), wherev1 is the input value at timet1, v2 the input
value at timet2, etc.

(3) SIN(v0,va,F, td,θ,φ), wherev0 is the offset,va is the amplitude,F is the
frequency,td is the delay,θ is the damping factor andφ is the phase.

In addition to theform of the input signals, we distinguish between two ways
of imposingthem onto the system: they are eitherforcedor injected. The former
means that the quantity of the species is set by some external mechanism rather
than by the internal reactions. The latter means that an external mechanism adds
to or subtracts from the quantity of the species that are present.

Also, we allow for threshold-triggeredinput signals: these are signals that
start or stop based on threshold quantities of species. This is useful in simulating
boundary conditions, say between qualitatively different phases in the evolution
of a biochemical system. For example, suppose that after reaching a threshold
quantity of 1000 for a species, the system is deemed to go through a transition:
above this threshold, an external mechanism begins injecting new species.

The format of an input signal for our STA method is summarized as follows.
Here <> means that the contents are mandatory while[] means that they are
optional. (Some details are omitted; these will be implementation-dependent.)

< SPECIES> < INIT IAL >
[< FUNCTION> < FORCED| INJECTED>] [CONDIT ION]

(1)

where SPECIES is the species name;INIT IAL is the initial quantity;
FUNCTION is the definition of an input signal function;FORCED or
INJECTEDis the way that the input is imposed; andCONDIT ION is the defini-
tion of a threshold condition on the quantity of a species or a set of species.

2.2. Stochastic Transient Analysis Algorithm

Our transient analysis method could be incorporated into any of the proposed
stochastic simulation algorithms, for instance that described in [6]. For simplicity,
we describe its implementation in terms of Gillespie’s direct SSA, proposed in [4].

Suppose we have a biochemical system consisting ofn different species inter-
acting throughm different reactions. The species are denoted byxi(i = 1, . . . ,n)
and their corresponding quantities areXi(i = 1, . . . ,n). The reactions are denoted
by Ri(i = 1, . . . ,m) and the corresponding rates areci(i = 1, . . . ,m). The system
state at time pointt is denoted bySt = (X1(t), . . . ,Xn(t)). At the start of the simu-
lation, the system state isS0 = (X1(0), . . . ,Xn(0)). At each step of the simulation,
the next reaction to fire as well as the time point at which this reaction fires are
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decided. According to Gillespie, these are computed as follows:

µ−1

∑
ν=1

aν < r1a0 ≤
µ

∑
ν=1

aν, (2)

τ = (1/a0)ln(1/r2), (3)

a0 ≡
m

∑
ν=1

aν, (4)

aν ≡ hνcν(ν = 1, . . . ,m), (5)

whereµ is the next reaction that fires;τ is the time elapsing from the present until
the next reaction fires;r1 and r2 are two random numbers generated by a unit-
interval uniform random number generator;hν is the number of distinct molecular
reactant combinations available for reactionRν in state(X1, . . . ,Xn); andcν is the
rate for reactionRν.

In transient analysis, different types of input signals can be specified.

• For forced signals, the value of the species is sampled from the function
that is defined, taken at the current time point; the next reaction has no
effect on its value.

• For injected signals, the amount to be injected is calculated by subtracting
the function value at the current time pointtc from the function value at
the next time pointtn:

injected number= ⌊ f (tn)⌋−⌊ f (tc))⌋. (6)

This amount is added to the quantity of the corresponding species together
with the change in quantity that the next reaction produces.

If a threshold condition exists, then a forced or injected signal is only applied if
the threshold condition is met.

We note that with this increased flexibility in the simulation of input signals,
the amount of data that must be recorded increases. If implemented as described
above, the amount of data generated increases proportionally with the number of
trials. To mitigate against this, we propose the following data structure; it requires
constant memory, independent of the number of trials.

SupposeT is the simulation time, andN is the total number of simulation
steps. We separateT into N time segments equally:[(i − 1)T/N, iT/N](i =
1, . . . ,N). A accumulatedstateS(i)(i = 1, . . . ,N) is attached to each correspond-
ing time segment. For each time point in each trial, if the time point falls ini-th
time segment, then the corresponding state is added to thei-th accumulated state
S(i) . At the end of simulation, each accumulated state is averaged by dividing it
by the total number of trials that landed in the corresponding time segment. The
final results can be plotted by usingN general states atN time points. The data
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structure is shown in Fig. 1.

 . . . 
T/N 2T/N0 (N−1)T/N (N−1)T/N T

S 1 S 2 NSN−1S

Figure 1. Time segmenting for multi-trial STA.

3. Stochastic Transient Analysis of the Lotka Model

In this section, we apply our method to a simple biochemical model calledLotka,
described by the following set of coupled reactions:

x+y1

c1
GGGGGGA x+2y1, y1 +y2

c2
GGGGGGA 2y2, y2

c3
GGGGGGA z (7)

In [4], Gillespie analyzes the Lotka model. Some of the conclusions that he
presents are qualitative deductions. For instance, he writes that “no matter what
the state of the system is initially, it will eventually wind up in either the state
(y1 = 0, y2 = 0) or the state (y1 = ∞,y2 = 0).” No simulation results are provided
to support this. Here we show how transient analysis can be used to elucidate such
behaviors.

Note that we can characterize the situation where the model winds up in the
state (y1 = 0,y2 = 0) simply by simulating it for enough steps. However, we
cannot do the same to characterize the situation where it winds up in the state
(y1 = ∞,y2 = 0). In this case, asy1 approaches infinity, the time steps between
reactions firing become infinitesimal small; eventually, an infinite number of re-
actions fire per time unit. Gillespie’s SSA cannot handle such limiting conditions.
However, with our transient analysis method, we can characterize such limits by
defining threshold events. If we constrain the output ofy1 to be, say 20,000, as an
approximation of infinity, we will get the waveform in Fig. 2(a).

Now suppose there is some external mechanism which forcesy1 to stay
at a constant value of 1000. The waveform of Fig. 2(b) illustrates the simu-
lation results for such forcing. Interestingly, we observe thaty2 still gets to
zero, even though this takes much longer. We expect that the value ofy2

should be proportional tox, while the value ofy1 should not change withx.
This can be verified through the simulation results depicted in the two wave-
forms of Fig. 2(d) and Fig. 2(e), wherex is set to be a pulse function of time:
PULSE(10 30 50 0 0 50 100), as displayed in Fig. 2(c). Here threshold events are
defined: oncey1 or y2 reaches zero, more of the corresponding species is injected
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Figure 2. Stochastic transient analysis of the Lotka model, 3 trials. (a) System reaching state (y1 =

∞,y2 = 0); (b)y1 is forced to a constant; (c)x is set to a pulse function of time; (d)y1 does not change
with x; (e) y2 changes withx.

to keep the fluctuations going.

4. Stochastic Transient Analysis of Biochemical Logic Gates

In this section, we apply our STA method to the design of biochemical logic gates.
First, we consider the inverter model proposed in [17]. Then, we propose a simple
model for other logic gates: AND, NAND, OR and XOR. We simulate these using
our STA method to characterize their behavior.
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4.1. Biochemical Inverter

Some of the behaviors of gene regulation systems can be characterized as logical
operations. For instance, RNA polymerase will stop transcribing a gene if there
exists a repressor protein which binds to the operator of the gene’s promoter. If
one considers the concentration of the gene and the concentration of the repres-
sor as two signals, then the relationship between them is like an inverter. In [17],
the authors present the following set of coupled reactions modeling this behav-
ior. They analyze their model, deterministically. Here we apply our stochastic
transient analysis method.

a+a
Kdim(a)

GGGGGGGGGGGA a2, a2
Ksngl(a)

GGGGGGGGGGGA a+a, z+z
Kdim(z)

GGGGGGGGGGA z2,

z2
Ksngl(z)

GGGGGGGGGGGA z+z, gz+a2
Krprs(a2)

GGGGGGGGGGGGA gza2, gza2
Kdis(a2)

GGGGGGGGGGGA gz+a2,

gza2+a2
Krprs(a4)

GGGGGGGGGGGGA gza4,gza4
Kdis(a4)

GGGGGGGGGGGA gza2+a2, a
Kdec(a)

GGGGGGGGGGA ø,

a2
Kdec(a2)

GGGGGGGGGGGA ø, z
Kdec(z)

GGGGGGGGGGA ø, z2
Kdec(z2)

GGGGGGGGGGGA ø,

gza2
Kdec(ga2)

GGGGGGGGGGGGA gz, gza4
Kdec(ga4)

GGGGGGGGGGGGA gza2, mrnaz
Kdec(mrna)

GGGGGGGGGGGGGA ø,

gz+ rnap
Kxscribe

GGGGGGGGGGGA gz+ rnap+mrnaz,mrna2+ rnaa
Kxlate

GGGGGGGGGA mrnaz+ rrna+z

(8)

In the model, the speciesa represents the input to the inverter, and the species
z its output. In the simulation, we first provide a logical value ‘0’ as the input, i.e.,
we set the quantity of the speciesa to zero. We expect to get logical ‘1’ at the
output; this corresponds to a quantity of about 12 ofz.

To impose logic ‘1’ at the input, the authors in [17] suggest that an externally-
imposed drive is needed to increase the quantity of speciesa. Based on the
strength of the external drive,a achieves an equilibrium at the bottom or at the top
of its signal range. Accordingly, the transfer curve of the inverter can be drawn
by changing the external drive from weak to strong, gradually. Here we consider
a pulse input signal, shown in Fig. 3(a). We simulate the model using our STA
method; the results are plotted in Fig. 3(b). These waveforms clearly depict the
transient behavior of an inverter: when the input signal is low, the output signal is
high and vice versa.
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Figure 3. Stochastic transient analysis of the inverter, 3 trials. (a) Input, (b) Output.
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Figure 4. Stochastic transient analysis of the AND gate, 3 trials. (a) Input; (b) Output.

4.2. Logic Gates

In [17], the approach taken to create a NAND gate is to “wire-OR” the outputs of
multiple inverters by assigning them the same output gene. However no reaction
model is given for the NAND gate. Here, we explicitly design logic gates with
reaction models and then use STA to verify our models.

First we design the reaction model of an AND gate. This is given in (9). The
reaction constantsc1 andc2 can be adjusted to get the same quantity level for logic
‘1’ as for the inverter (c2/c1 ≈ 12). To verify the model, we apply as input signals
two forced pulse signals with the same period but different phases, as shown in
Fig. 4(a). The simulation result is plotted in Fig. 4(b). The waveform clearly
depicts the transient behavior of an AND gate.

x+y
c1

GGGGGGA x+y+z

z
c2

GGGGGGA ø
. (9)
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Figure 5. Stochastic transient analysis, 3 trials. (a) NAND, (b) OR, (c) XOR with high frequency,
(d) XOR with low frequency.

Other logic gates are designed as follows.

• By simply connecting an inverter to the output of the AND gate, we obtain
a NAND gate. Here the output of the AND gate acts as the external drive
for the input of the inverter. Using the same input signals as for the AND
gate simulation, we obtain the simulation results shown in Fig. 5(a).

• We can obtain an OR gate by hooking three inverters on an AND gate, one
on each input and one on the output. The result is a total of 53 chemical
reactions; these are not listed here. The simulation results are shown in
Fig. 5(b), using the same input signals as for the AND gate.

• We can obtain an exclusive-OR (XOR) gate with two inverters, two AND
gates, and one OR gate. The result is a total of 91 chemical reactions;
these are not listed here. We show two different simulation results for the
XOR gate: one in which the input signals are changing from low to high
more rapidly, Fig. 5(c), and one where they are are changing less rapidly,
Fig. 5(d). In Fig. 5(c), the output does not have enough time to reach the
high level corresponding to logical ‘1’. In contrast, in Fig. 5(d), we obtain
a clean XOR response.
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5. Conclusions

The characterization of the XOR gate in the preceding section illustrates the sort
of information that transient analysis provides: it allows us to characterize not
only the input-output response of a system, but also its temporal dynamics. Our
implementation of the method provides the flexibility to characterize such tem-
poral dynamics for a variety of analysis scenarios. We are currently working on
incorporating the method into simulation tools such as BioSPICE [18]. Also, we
are applying it to problems in the computer-aided design of synthetic modules of
biochemistry [19].
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