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Understanding evolutionary dynamics from a systemic point of view crucially depends on
knowledge about how evolution affects size and structure of the organisms’ functional build-
ing blocks (modules). It has been recently reported that statistics over sparse PPI graphlets
can robustly monitor such evolutionary changes. However, there is abundant evidence that in
PPI networks modules can be identified with highly interconnected (dense) and/or bipartite sub-
graphs. We count such dense graphlets in PPI networks by employing recently developed search
strategies that render related inference problems tractable. We demonstrate that corresponding
counting statistics differ significantly between prokaryotes and eukaryotes as well as between
”real” PPI networks and scale free network emulators. We also prove that another class of em-
ulators, the low-dimensional geometric random graphs (GRGs) cannot contain a specific type
of motifs, complete bipartite graphs, which are abundant in PPI networks.

1. Introduction

On the biochemical level, life can be explained by gene products facilitating
and controlling essential cellular mechanisms, thereby establishing overall cel-
lular viability. To suitably model the structural features that underlie the complex
wirings of gene products is presently at the core of computational systems biol-
ogy. As further explained by the modularity paradigm, global interplay of cellular
mechanisms can be decomposed into interaction of functional subunits (functional
modules), which consist of subsets of gene products that facilitate essential func-
tionalities by concerted actions. Therefore, beyond studying global properties of
biomolecular networks (BNs) such as the degree distribution, there has been con-
siderable interest in identifying and quantifyinglocal topological properties of
biomolecular networks. In particular, small subgraphs or (graphlets) that appear
significantly more frequently in biomolecular networks than in random graphs can
yield insights on cellular functionalities10. In order to identify dense graphlets, a
variety of methods that count induced subgraphs of different types and node sizes
of up to 5, 6 and 7 have been suggested12,7,5. In the most recent approach, an
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algorithm has been developed that counts all non-induced subtrees (as well as
certain other ”sparse” graphlets) of a PPI network1. Corresponding subtree statis-
tics turned out to be robust similarity measures between PPI networks, hence, in
principle, can quantify organismic changes due toevolutionary dynamics.

It has been argued that graphlet distributions resulting from graphlet counting
algorithms can also be used to assess the suitability of random graph models for
emulating the growth of and achieving the observable topological features of BNs.
A thorough assessment would be highly desirable, as available models, although
correctly accounting for many of the global features of BNs, can be different in
terms of local features. For example, while exhibiting degree distributions simi-
lar to those of prior models (e.g. thepreferential attachment model(PAM) which
gives rise to scale-free networks), thegeneralized duplication model(GDM) is su-
perior in terms of graphlet distributions that have recently been suggested7. This
may be explained by that the GDM is the only model under actual consideration
that is based on emulation of processes that guide BN growth, i.e. gene dupli-
cations. Apart from the GDM and the PAM, the geometric random graph model
(GRGM) has recently been introduced as an intuitive alternative option. Although
not being biologically motivated, PPI networks were successfully fit to GRGMs
of low dimensions6 (for definitions see Section 3).

1.1. Motivation: Dense Biomolecular Graphlets

It has been widely established in the biological literature10, modules in PPI net-
works are most likely encoded as highly interconnected (dense) regions, i.e., con-
nected subgraphs that contain relatively large numbers of edges. It is thus of
interest how these regions change over evolutionary time and whether they play a
significant role in how the PPI networks evolve. As a result, determining the num-
ber of specific dense graphlets and analyzing how they vary with respect to the
”complexity” of their respective organism is a problem of significant interest. Un-
fortunately, counting dense graphlets, even approximately, is a highly non-trivial
problem; for general graphs it is known to be intractable. In fact, the simpler prob-
lem of determining whether an input graphG includes one or more cliques of size
k, or any graphlet with density1−O(1/n), is NP-hard. Furthermore, the number
of any specific dense graphletM in a dense graphG would be exponential with
the size ofM .

Fortunately it is well known that PPI networks are typically very sparse, with
average degree of7 or less. For such networks, a novel data mining tool for deter-
mining whether a given networkG includes a dense graphletM has recently been
described4. This tool is based on a pruning technique derived from combinatorial
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observations on dense subgraphs4. Although, in the worst case, the running time
of this pruning technique is exponential with the size of the dense graphlet it is
looking for, it is of considerable interest whether it can be generalized to count a
given dense graphlet in a PPI network of interest. Once such statistics are obtained
for all dense graphlets one can consider a number of interesting questions.

(i) Are prominent PPI network generation models, in particular GRGM (i-a)
and GDM (i-b) in accordance with statistics over such dense graphlets? If not, it
is highly unlikely that they sufficiently account for central cellular functionalities.

(ii) Can we use dense graphlet distributions of various organisms, in order to
quantify changes in organism complexity due to evolutionary dynamics? In gen-
eral, it would be interesting to find out whether evolutionary trends towards more
complex organisms can be monitored this way. If one accepts that PPI networks
have evolved in a duplication oriented procedure, then one might be able to sug-
gest that more evolutionary complex species might have more complex graphlets.

As a last point, we noticed that in networks generated by low-dimensional
GRGMs, complete bipartite graphs of the typesKn,m wheren, m ≥ 3 do not/can
not exist. However, there is evidence that induced bipartite graphs abundantly
occur in the PPI networks of E.coli3 and others. Moreover, there is evidence
that complete bipartite graphs in PPI networks are related to “parallel” functional
modules which increase cellular flexibility and robustness.Furthermore, complete
bipartite graphs of four nodes (known asbi-fan) are the main building blocks of
dense overlap regulons (a regulon is the set of genes regulated by given transcrip-
tion factor)2,9. Bi-fan generalizations to larger patterns with row of inputs and
row of outputs (bipartite graphs of larger size) are also abundant in PPI networks
2. Therefore, we put particular emphasis on bipartite graphlet statistics.

1.2. Contributions

Counting graphlets (induced or non-induced form) with more than7 nodes has
been a challenging computational task. Recent advances allow improvement for
sparse, non-induced graphlets: it is now possible to count trees and bounded
treewidth graphlets (with very small treewidth)1. In this paper we generalize these
results to all graphlets of density≥ 0.85, up to a node size of14 (for definitions
see Section 2), as well as all complete bipartite graphlets of density≥ 0.55 up to
a node size of10. The reason that we limited the results to graphlets of density
≥ 0.85 is that for lower densities the number of these occurrences seems to be
extremely high and the algorithm took alot of time to give results. Based on these
counts we present graphlet statistics for (1) two of the best studied PPI networks:
Yeast (eukaryotic) and E.Coli (prokaryotic) as well as (2) for random networks
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that are obtained through GDM and the GRGM models, whose parameters are set
to emulate the growth of these PPI networks. Our main observation is that for
the two organisms considered, the motif statistics were in accordance with their
complexity: the Yeast network, in comparison to the E.coli network, contained
(relatively) many more denser graphlets than sparser graphlets. We also observe
that dense motif statistics of the Yeast network was highly divergent from that of
the GDM whose parameters were set to emulate its growth as closely as possible.
Finally, we prove that low-dimensional GRGM cannot generate complete, bipar-
tite graphs - which abundantly occur in the PPI networks we considered. These
observations may help resolve the inconclusive discussion on the suitability of
random network generators in emulating the evolution of PPI networks.

2. Inference of Densely Connected and Bipartite Subgraphs

An undirected graphG = (V, E) is said to be asupergraphof G′ if G′ is an
induced graphletofG. As usual, a graph is defined to bebipartite if V = V1∪̇V2

such thatE ∩ ((V1 × V1) ∪ (V2 × V2)) = ∅ and it is moreover calledcomplete
if E = (V1 × V2) ∪ (V2 × V1). A Kn,m is a complete, bipartite graph such that
|V1| = n, |V2| = m.

We define thedensityd(G) of a graphG as the number of edges divided by
the number of possible edgesd(G) = |E|

(|V |
2 )

= 2|E|
|V |(|V |−1) . G is said to beα-dense

if d(G) ≥ α anddensein general ifα = 0.5. As usual,G is said to beconnected
if there is a path between any pair of nodes inG. G is said to bedensely connected
if it is dense and connected.

Given a biomolecular networkG = (V, E) the driving question is to count
all its induced densely connected and complete bipartite subgraphs. Note that
inference of all densely connected subgraphs isNP-hard which can be shown by a
straightforward reduction from the max-clique problem which isNP-complete8.
Therefore, one has to screen all2|V | subgraphs in the worst case. Help comes
from the following insights:

(i) For α ≥ 0.5, in eachα-dense graph of node sizen there is an induced
α-dense graphletof sizen − 1

(ii) Each induced graphlet of a complete bipartite graph is a complete bipartite
graph.

While proving (ii) is straightforward,(i) is based on some more subtle argu-
ments that have been presented elsewhere4. As a consequence of a combination
of (i), (ii) one can employ a search strategy starting with induced2-node sub-
graphs and iteratively not considering supergraphs that contradict(i) and/or(ii).
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Thanks to the peculiarities of PPI networks (sparseness, scale-freeness), by em-
ploying a search strategy that incorporates this core idea, the inference problem
becomes tractable.

3. Models for PPI Network Emulation

3.1. The Generalized Duplication Model

The duplication model grows iteratively in discrete time steps. It starts with an
arbitrary connected networkG(t0), of node sizet0. In iterationt > t0, one node,
denoted asvt, is added toG(t − 1), the network resulting from iterationt − 1, as
follows:

A nodew ∈ G(t− 1) is picked uniformly at random and then “duplicated” by
creating a new nodevt that is connected to all neighbors ofw but not tow itself.
Subsequently,

(1) Edges(u, vt) (whereu is a neighbor ofw) are deleted with probabilityp,
(2) Edges(u, vt) are created with probabilityr/(t − 1) whereu runs through

all nodes in the network. Resulting parallel edges are merged if necessary.
In this process,p andr are fixed parameters.

3.2. Geometric Random Graphs

A geometric random graph (GRG) is created by drawing points uniformly at ran-
dom from some restricted area (e.g. the hypercube) as nodes and, given some fixed
thresholdr, connecting two nodesvi, vj by an edge if||vi − vj || < r where||.||
is the Euclidean norm. The dimension of the hypercube is referred to as the di-
mension of the graph. GRGs have been suggested as a model for emulating PPI
networks12,6. Although geometric random graphs can successfully capture a cou-
ple of PPI network features we would like to outline that GRGs cannot generate
induced, complete bipartite subgraphs in the following. However, such subgraphs
are crucial ingredients of PPI networks3.

Theorem 3.1. A 2- resp.3-dimensional GRG does not contain aK2,3 resp.K3,3

as an induced subgraph.

As we will demonstrate (see the results Section 4) that PPI networks contain
significant amounts of such induced bipartite subgraphs in the following, this will
rule out low-dimensional GRGs as a model that is suited to capture important
local topological features of PPI networks. Moreover, as inspired by the theorem’s
proof, we conjecture that there is noKn,2 in (n − 1)-dimensional and noKn,3 in
n-dimensional GRGs. We are currently close to finishing respective results for
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n = 4 and, indeed, we couldn’t observeK4,2’s resp. K4,3’s in the 3- resp. 4-
dimensional GRGs we generated.

3.3. Notations

In the following, forX, Y ∈ R
d let

XY := {v ∈ R
d : v = λX + (1 − λ)Y : λ ∈ [0, 1]}

be the line segment that connectsX andY and

−−→
XY := {v ∈ R

d : v = X + λ(Y − X), λ ≥ 0}

be the half ray that leavesX in direction ofY . ForX ∈ R
d let

Ur(X), Sr(X), Br(X) := {v ∈ R
d : ||v − X || {<, =,≤} r}

be the open ball, the (hyper)sphere and the closed ball with radiusr aroundX .
Note that ford = 2, Sr(X) is just a circle aroundX with radiusr.

3.4. Proof of theorem 3.1

We prepare the proof with two essential lemmata.

Lemma 3.1. LetP, A, B, C ∈ R
2 such that

||P − A||, ||P − B||, ||P − C|| < r ≤ ||A − B||, ||A − C||, ||B − C|| (1)

Then, fors ≥ max{||P − A||, ||P − B||, ||P − C||}, it holds that

Ur(A) ∩ Ur(B) ∩ Ur(C) ⊂ Us(P ). (2)

Proof. Obviously, if A, B, C are located on one line,U := Ur(A) ∩ Ur(B) ∩

Ur(C) is empty such that there is nothing to prove. Therefore, we can assume
that the affine dimension ofA, B, C is 2. In combination with some elementary
geometric arguments, this implies that

−→
PA,

−−→
PB,

−−→
PC divideR

2 into three sections
such that the sectionSXY which is bounded by

−−→
PX,

−−→
PY does not containZ

whereX, Y, Z ∈ {A, B, C} (X, Y, Z pairwise different). Hence

R
2 = SAB ∪ SAC ∪ SBC and A 6∈ SBC , B 6∈ SAC , C 6∈ SAB. (3)

We will show that

Ur(A) ∩ SBC , Ur(B) ∩ SAC , Ur(C) ∩ SAB ⊂ Us(P ) (4)
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which yields

U
(3)
= U ∩ (SAB ∪ SAC ∪ SBC) = (U ∩ SAB) ∪ (U ∩ SAC) ∪ (U ∩ SBC)

⊂ (Ur(C) ∩ SAB) ∪ (Ur(B) ∩ SAC) ∪ (Ur(A) ∩ SBC)
(4)
⊂ Us(P )

and therefore establishes (2).
In order to show (4), we can restrict our attention to showingUr(C)∩SAB ⊂

Us(P ) as the remaining two cases follow from arguments that are completely
analogous. If we can show that

Sr(C) ∩ SAB ⊂ Us(P ). (5)

we will be done with the proof by the following argumentation. LetD ∈ Ur(C)∩

SAB. Consider
−−→
PD. By definition ofSAB as a section we have

−−→
PD ⊂ SAB. (6)

Note that every ray starting withinUr(C) will finally hit the boundary ofUr(C)

which isSr(C). Therefore, while traveling fromD ∈ Ur(C) on
−−→
PD away from

P , one will hit Sr(C). Denote byE the point of that intersection. We compute

E ∈ Sr(C) ∩
−−→
PD

(6)
⊂ Sr(C) ∩ SAB

(5)
⊂ Us(P ).

However, by construction,D is at least as close toP asE, soD ∈ Us(P ) with
which we have completed the proof.

In order to finally show (5) observe that, because of (1),P ∈ Ur(C), that is,P

is inside ofSr(C), whereasA, B are not inside. Therefore,Sr(C) intersects
−→
PA

resp.
−−→
PB betweenP and, at the latest (maybe just there),A resp.B. Therefore,

by definition ofs,

Sr(C) ∩
−→
PA, Sr(C) ∩

−−→
PB ⊂ Bs(P ). (7)

However, forF ∈ Sr(C) ∩
−−→
PC we have that, as allP, C, F ∈

−−→
PC (*),

||F − P ||
(∗)
= ||P − C|| + ||C − F || = ||P − C|| + r > r ≥ s

where||P − C|| > r follows from (i) which impliesP 6= C whereas the last
inequation follows from the definition ofs. This translates to

Sr(C) ∩
−−→
PC 6⊂ Bs(C) (8)

Note that two non-concentric circles (here:Sr(C), Ss(P )) can intersect at most
two points. In our case, these two points establish the transitions ofSr(C) from
being insideBs(P ) to being outsideBs(P ). Combining this insight with (7,8)
implies that, withinSAB, Sr(C) is contained inBs(P ) which establishes (5).

Pacific Symposium on Biocomputing 14:178-189 (2009)



September 22, 2008 16:55 Proceedings Trim Size: 9in x 6in rcolak

In the following we will write Rx, Ry, Rz for the coordinates ofR =

(Rx, Ry, Rz) ∈ R
3.

Lemma 3.2. LetP, Q, A, B, C ∈ R
3 such that

Az = Bz = Cz = 0 and Pz ≥ Qz ≥ 0 (9)

||P − A||, ||P − B||, ||P − C||, ||Q − A||, ||Q − B||, ||Q − C|| < r (10)

||A − B||, ||A − C||, ||B − C|| ≥ r. (11)

Then, fors ≥ max{||P − A||, ||P − B||, ||P − C||}, it holds that

Q ∈ Us(P ). (12)

Proof. Intuitively speaking, this lemma is trying to show that if three points in
two-dimensional space are in proximity of two other points, then these two points
have to be proximate to each other.

Let P ′ = (Px, Py, 0), Q′ = (Qx, Qy, 0) be the projection ofP andQ onto the
x − y-space. Combining (9) and (10) implies that also

||P ′ − A||, ||P ′ − B||, ||P ′ − C||, ||Q′ − A||, ||Q′ − B||, ||Q′ − C|| < r. (13)

HenceP ′, A, B, C satisfy the conditions of lemma 3.1 and applying the lemma
yields

||P ′ − Q′|| ≤ max{||P ′ − A||, ||P ′ − B||, ||P ′ − C||}. (14)

Wlog. letA such that||P ′ − Q′|| ≤ ||P ′ − A||. We compute

||P − Q|| =
√

(Px − Qx)2 + (Py − Qy)2 + (Pz − Qz)2

=
√

||P ′ − Q′||2 + (Pz − Qz)2
(14)

≤
√

||P ′ − A||2 + (Pz − Qz)2

(ii)

≤
√

||P ′ − A||2 + P 2
z = ||P − A||.

We are now in position to prove theorem 3.1.

Proof. [Th. 3.1] We assume the contrary in both cases.
For the first part letA, B, C ∈ R

2 andP, Q ∈ R
2 be the partitions of the sam-

pledK3,2. By definition of aK3,2 in a GRG,P, A, B, C satisfy (1) in lemma 3.1
wherer is the threshold of the2-dimensional GRG. Applying lemma 3.1 yields
||P − Q|| < s ≤ r which is a contradiction to having an edge betweenP andQ.

For the second part letP, Q, R ∈ R
3 andA, B, C ∈ R

3 be the two partitions
of the sampledK3,3. Observe that any three points inR

3 lie on a plane. By neces-
sarily rotating all points around the origin (which is an orthogonal transformation
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hence norm preserving) we can assume wlog. thatA, B, C lie in thex − y-space
of R

3. By necessarily reflectingP, Q, R at thex−y-space which, again, is a norm
preserving transformation, we can moreover assume that, for two of theP, Q, R,
the z-coordinates are non-negative. Wlog.Pz ≥ Qz ≥ 0. By definition of aK3,3

in a 3-dimensional GRG, this establishes (9,10,11) of lemma 3.2 wherer is the
threshold of the3-dimensional GRG. Applying lemma 3.2 toP, Q, A, B, C yields
Q ∈ Us(P ) which yields||P − Q|| < s ≤ r. This is a contradiction to that there
is no edge betweenP andQ.

4. Results

We present our results on dense graphlet statistics for both Yeast and E.coli PPI
networks for graphlet densities in the range[0.85, 1.00] and number of nodes in
the range[7, 14].a We also present similar dense motif statistics for random graphs
generated by both3-dimensional GRGM (unit cube) and GDM which are set to
generate identical number of nodes and edges to the Yeast PPI network13 b, i.e.
|V | ≈ 4900 and|E| ≈ 17000.c Due to limitations on computational resources,
we were not able to count graphlets of larger sizes or smaller density. In our
experiments we have used the network available from DIP13 for Yeast and E.coli.
Yeast PPI network has around 4900 nodes and 17000 edges, and E.coli network
has around 1441 nodes and 5871 edges. By considering the distribution (fraction)
of dense graphlets (between range[0.85, 1.00] ) for each species, we are trying
to eliminate the effect caused by difference in average degree between these two
species.

In Figure 1 we depict for eachn ∈ {7, . . . , 12} (the number of nodes in
the graphlet), how the proportion of all graphlets withk edges among all dense
graphlets (with density≥ 0.85) vary with respect tok - for all four PPI networks
considered. Note that we give only proportional distributions here as the Yeast
and the E.coli networks have different number of edges and nodes and thus it is
not meaningful to compare absolute figures.

It is possible to make a number of observations on Figure 1:
(1a) The fractional distribution of dense graphlets in GRGM is significantly dif-
ferent from that of the other networks: for example, it contains no graphlets with
density≥ 0.85 for n = 12, 13 and14 and no graphlets with density≥ 0.89 (i.e.

aWe remind the reader that the density of a graphlet withn nodes is the ratio of the number of edges
in the graphlet andn(n − 1)/2, the maximum number of edges possible between the nodes of the
graphlet; a density of1 indicates a clique.
bThe DIP release date for Yeast and E.coli PPI networks is July 7, 2007.
cThis is possible by setting the radius of the GRGM to an appropriate value and settingp = 0.365
andr = 0.12 in the GDM as per7,1 .
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Figure 1. Here we demonstrate for eachn ∈ {7, 8, 9, 10, 11, 12} the fraction of graphlets in each
PPI network which havek edges, among all graphlets with density≥ 0.85. The specific PPI networks
are depicted with the following colors: Yeast (Red), E.coli (Green), GDM (Blue) and GRGM (Purple).
For example, plot (a) indicates that, the graphlets in the E.coli PPI network (Green) with7 nodes and
18 edges, cumulatively, form80% of all of its dense graphlets with density≥ 0.85.

with 49 edges or more) forn = 11. This, together with the proof that we provide
in Section 3.4, this observation seems to support a negative answer to the question
(i-a) in Section 1.1.
(1b) The fractional distribution of GDM largely agrees with the two PPI networks
for n ≤ 12. However, GDM fails to generate any dense network (with density
≥ 0.85) with n = 13 or 14.
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(2) The fractional distribution (of dense graphlets) in Yeast and E.coli are quite
similar for smaller values ofn. However forn = 11 and especially forn = 12,
the fraction of graphlets in Yeast increase with density. For example, forn = 12,
the fraction of graphlets with59 edges is∼ 0.1 in Yeast whereas it is∼ 0.05

in E.coli. This observation seems to provide a positive answer to question (ii) in
Section 1.1 (although we believe much more study should be done regarding this
question).

In Figure 2, we depict how the total number of dense graphlets (with density
≥ 0.85) with n nodes (n = {3, . . . , 14}) vary as a function ofn - for the Yeast PPI
network as well as the specific networks generated by GRGM and GDM whose
parameters were set to emulate the Yeast network.
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Figure 2. Total number of dense subgraphs (with density≥ 0.85) with n nodes - in the Yeast PPI
network as well as networks generated by GRGM and GDM - whose parameters are set to emulate the
Yeast PPI network. The specific colors used are GRGM (Blue), GDM (Green) and Yeast (Red).

As can be seen in Figure 2, there is a wide gap between the total numbers of
dense graphlets in the the Yeast PPI network and the random networks generated
by GDM and GRGM. Although the number of dense graphlets forn = 6 is con-
sistent with an earlier study7, the figure 2 shows substantially difference forn > 6

between GDM (or GRGM) and Yeast PPI network, especially forn ≥ 8, where
there is a 7-fold (or 50-fold) difference respectively. More drastically GRGM
includes no dense graphlets withn = 12 nodes and GDM includes no dense
graphlets withn = 14 nodes. Once again, Figure 2 seems to support a negative
answer to question (i-a) in Section 1.1: i.e. GRGM is not suitable for emulat-
ing the growth of PPI networks. The figure also seems to imply (somewhat less
strongly) a negative answer to question (i-b), i.e., the GDM used in this paper does
not capture the dense graphlet distribution of the Yeast PPI network. We leave the
possibility of how (or if) we can modify the seed network or the GDM itself so
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as to better capture the distribution of denser graphlets of size bigger than 6 (see
7) via a duplication oriented model to future study. Our final results are on the
fractional distributions of allKn,n’s and allKn,n−1’s (which are all0.55-dense
complete bipartite graphs) up ton = 5 in each of the PPI networks we considered.

Bipartite Graph Ecoli Yeast Duplication Geometric
K2,3 2685054 498844 337218 153
K3,3 2188868 376186 23311 0
K3,4 11103153 1677626 21623 0
K4,4 5155489 852301 519 0
K4,5 13561155 2077675 129 0
K5,5 1125496+ 659614 2 0

In the above table, it can be seen that in the E.Coli and the Yeast PPI networks,
complete bipartite graphlets are abundant. However, as can be deduced from the-
orem 3.1, the GRGM cannot generateKn,m’s for n, m ≥ 3. Our experiments
confirm this finding: there are noKn,n’s and noKn,n+1’s in the GRGM network
for n ≥ 3.
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