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There is a strong clinical imperative to identify discerning molecular biomarkers of disease to 
inform diagnosis, prognosis, and treatment.  Ideally, such biomarkers would be drawn from 
peripheral sources non-invasively to reduce costs and lower potential for complication.  
Advances in high-throughput genomics and proteomics have vastly increased the space of 
prospective molecular biomarkers.  Consequently, the elucidation of molecular biomarkers of 
clinical importance often entails a genome- or proteome-wide search for candidates.  Here we 
present a novel framework for the identification of disease-specific protein biomarkers through 
the integration of biofluid proteomes and inter-disease genomic relationships using a network 
paradigm.  We created a blood plasma biomarker network by linking expression-based 
genomic profiles from 136 diseases to 1,028 detectable blood plasma proteins.  We also 
created a urine biomarker network by linking genomic profiles from 127 diseases to 577 
proteins detectable in urine.  Through analysis of these molecular biomarker networks, we find 
that the majority (> 80%) of putative protein biomarkers are linked to multiple disease 
conditions.  Thus, prospective disease-specific protein biomarkers are found in only a small 
subset of the biofluids proteomes.  These findings illustrate the importance of considering 
shared molecular pathology across diseases when evaluating biomarker specificity.  The 
proposed framework is amenable to integration with complimentary network models of 
biology, which could further constrain the biomarker candidate space, and establish a role for 
the understanding of multi-scale, inter-disease genomic relationships in biomarker discovery.  

1. Introduction 

Perhaps one of the most compelling prospects of translational genomics is the 
potential for the discovery of novel molecular biomarkers of disease that offer early 
detection of pathogenesis, inform prognosis, guide therapy, and monitor disease 
progression.  Despite expectations, the elucidation of accurate and discriminating 
disease biomarkers has proved challenging1, and the widespread adoption of 
genomics-based biomarkers in the clinical management of disease remains to be 
realized2.  There are many factors confounding the discovery and development of 
effective clinical biomarkers, including genetic variation between and among 
individuals and populations3,4, deficiencies in biomolecule capture and quantification 
technologies5, transient shifts in proteome composition due to acute-phase reactants 
and environmental stress6-8, and logistical constraints related to associated costs and 
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clinical acceptance9,10.  Such confounding factors can contribute to appreciable 
clinical heterogeneity for a particular disease with regards to diagnosis, treatment, 
and outcome.   

Despite the relatively limited impact of genomics on the development of clinical 
biomarkers to date, there has been notable success in applying genomics techniques 
to better clarify and characterize the clinical heterogeneity observed for many 
complex diseases.  In particular, high-throughput gene-expression profiling using 
microarrays has proven successful as a means by which genome-scale events can be 
linked to clinical metrics.  Ramaswamy et al. demonstrated that gene expression 
signatures could accurately differentiate adenocarcinoma subtypes11.  Chen et al. 
used microarray profiling of lung cancer tissues to derive a prognostic five-gene 
expression signature associated with relapse and survival.  Potti et al. derived a set 
of gene expression signatures that were successful in predicting response to 
chemotherapeutic agents12.  Although significant, the impact of such findings 
remains far removed from the clinic, as they often require undesirably invasive 
procurement of patient tissues, improved handling of unstable molecules (e.g. RNA), 
and improved consistency of measurements.  Such factors have consequently 
impeded the customary use of microarrays in most clinical settings. 

The desire for minimally invasive biomarker strategies has put a focus on 
established clinical biofluids, such as blood and urine, as sources of putative 
molecular biomarkers.  Both blood and urine are easily and inexpensively obtained 
from patients as a conventional facet of clinical care, therefore biomarker strategies 
leveraging these fluids are particularly amenable to current clinical protocol13,14.  
The advent of several blood plasma and urine proteome projects, with aims to 
identify the vast body of gene products comprising these biofluids, has generated 
new opportunities for genomics-based approaches to the elucidation of clinical 
molecular biomarkers15,16.   Microarray analyses of blood and urine have identified 
expression signatures symptomatic of diseases such as rheumatoid arthritis17, 
Alzheimer disease18, Chronic Fatigue Syndrome19, Huntington’s disease20, and glial 
brain tumors21.  

Disease conditions are most often signified by the dysregulation of complex 
biological pathways involving multiple, interacting gene products.  Thus integrative 
approaches linking gene expression activity with proteomics and physiopathology 
are needed to identify highly discerning subsets of molecular biomarkers from the 
vast combinatorial space of candidates.  One such approach is to frame the space of 
biomarker candidates within the context of inter-disease relationships.  Traditional 
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approaches to biomarker discovery are based on the implicit assumption that the 
heterogeneity of clinical disease classifications, which is often described using 
symptoms and anatomy, is reflected in the underlying molecular pathophysiology of 
the disease conditions.  However, recent studies have shed light on widespread 
genomic and genetic correspondence between diseases previously thought to be 
dissimilar based on anatomy and manifest symptoms22-24.  In fact, the similarity of 
responses across diseases and tissues raises concerns about the specificity of putative 
biomarkers derived under the consideration of only a single disease condition. 

Here we propose an integrative, network-based model for protein biomarker 
prioritization that identifies protein biomarkers in blood and urine proteomes that 
exhibit high disease specificity using inter-disease relationships derived from gene 
expression profiles across hundreds of diseases and nearly ten thousand microarrays. 
We find that a majority of protein biomarkers detectable in blood and urine (>80%) 
exhibit non-discerning disease connectivity in the biomarker network, potentially 
impacting their clinical utility for a single disease.  Our findings highlight the 
importance of integrating the context of broad inter-disease relationship profiling 
into future molecular biomarker discovery and prioritization efforts.    

2. Methods 

2.1. Discovery and annotation of disease experiments 

Microarray experiments characterizing human disease conditions were automatically 
identified using a previously established method25. In brief, disease-associated 
microarrays were obtained from the NCBI Gene Expression Omnibus (GEO)26 using 
text-mining techniques.  We have previously shown that the experimental context 
for GEO Series (GSE), or collections of microarrays, can be obtained using MeSH 
terms from PUBMED records associated with GEO experiments.  MeSH terms 
derived in this manner were evaluated for disease concepts using the Unified 
Medical Language System (UMLS)27.  Each GSE determined to be relevant to a 
human disease was subject to automated annotation of the disease condition, the 
tissue or biological substance from which the samples were derived, and whether or 
not the experiment measured a normal control state complimentary to the annotated 
disease state by means of an additional text mining step28.  We only retained 
microarray experiments in which the disease and normal conditions were measured 
in equivalent tissues in the same experiment.  The disease and tissue annotations 
were manually reviewed in a post-processing step to ensure accuracy. 
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2.2. Microarray data preparation and analysis 

For each microarray platform represented within the annotated disease experiments, 
we updated the mappings between the platform-specific probe identifiers and the 
Entrez GeneID identifiers in an automated manner using the Array Information 
Library Universal Navigator (AILUN) system29.  For each disease experiment we 
derived a set of significantly differentially expressed genes using the Significance 
Analysis of Microarrays (SAMR) software30.  The significant genes were 
determined by comparing a set of microarrays representing a normal biological state 
and a set representing the disease state.  SAMR was configured to estimate the False 
Discovery Rate (FDR) using 1,000 rounds of randomized measurement 
permutations.  Genes were considered to be significantly differentially expressed if 
the estimated fold-change was > 1.5, a customary fold-change threshold used with 
SAMR, and the estimated FDR was < 5%.  

2.3. Construction and analysis of the proteome biomarker networks 

A database of human blood plasma proteomes was constructed using data from the 
HUPO Plasma Proteome Project15 (PPP) and a non-redundant list from the Plasma 
Proteome Institute31.  Only the 3020 proteins from the high-confidence set of 
identified peptides in the HUPO PPP dataset were included in the analysis.  Urine 
proteome data was obtained from the MAPU Proteome database32 and the Urinary 
Exosome database33.  The original data sets were parsed into a MySQL database and 
the International Protein Index (IPI) identifiers were mapped to Entrez GeneID 
identifiers using AILUN29.  Disease-associated genes from microarray studies were 
associated with protein biomarkers using Entrez GeneID as the associative identifier.  
Networks were constructed such that diseases and genes (proteins) were nodes, and 
edges between gene and disease nodes were formed when a gene was found to be 
significantly differentially expressed in the disease state.  The networks rendering 
and analysis was performed using the yED graph editor (http://www.yworks.com). 

2.4. Functional annotation enrichment analysis 

Functional annotation enrichment for disease-associated protein biomarkers was 
conducted using the DAVID system34.  For each biomarker network, genes linked to 
at least one disease were considered to be the “gene list” and the entire list of gene 
identifiers associated with the respective proteomes were used as the background 
population.  P-values were adjusted using Benjamini-Hochberg correction35. 
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3. Results 

Text-mining GEO for disease-associated experiments yielded 383 experiments, 
representing 238 unique diseases across 8,435 microarrays.  In linking proteome 
biomarkers with disease, we find that 1,028 (38.5%) plasma and 577 (39.9%) urine 
proteins were found to be significantly differentially expressed in one or more of the 
238 distinct disease states represented in the microarray data.   Of those, 846 
(82.2%) plasma and 490 (84.9%) urine proteins are significantly differentially 
expressed in more than one disease state.  Thus, less than 20% of putative proteome 
disease markers exhibit specificity for a single disease.  
Table 1. A subset of indiscriminate, highly-connected biomarker nodes and their disease targets. 

Biomarker Diseases 

Plasma 

AZGP1 

Cardiac hypertrophy, Spinal cord injury, Idiopathic cardiomyopathy, Idiopathic 
thrombocytopenic purpura, E. coli infection of the CNS, Hypercholesterolemia, 
Clear cell carcinoma of kidney, Hypertrophy, Glioblastoma, Adenoma of small 
intestine, Thrombocytopenia, Carcinoma in situ of small intestine, AML, 
Huntington's disease, Porcine nephropathy, Allergic asthma, Cirrhosis of liver, 
Adenovirus infection, Squamous cell carcinoma, Duchenne muscular dystrophy 

CD46 

Malignant neoplasm of prostate, Complex dental cavity, Fracture of bone, MODY, 
Dermatomyositis, Bacterial infection, Clear cell carcinoma of kidney, Spinal cord 
injury, Status epilepticus, Senescence, Fracture of femur, Barrett's ulcer of 
esophagus, Rheumatoid arthritis, Urothelial carcinoma, Astrocytoma, Glioblastoma, 
Congestive cardiomyopathy, Obesity, Lung transplant rejection 

LAMA2 

Breast cancer, Dermatomyositis, Malignant neoplasm of stomach, Acute lung injury, 
Malignant melanoma, Glioblastoma, Adenovirus infection, Duchenne muscular 
dystrophy, Acute promyelocytic leukemia, Senescence, Barrett's ulcer of esophagus, 
AML, Hypercholesterolemia, Hepatic lipidosis, Acute pancreatitis, Idiopathic 
thrombocytopenic purpura, Porcine nephropathy, Urothelial carcinoma, AIDS 

Urine 

AKR1C1 

Acute lung injury, Acute arthritis, Essential thrombocythemia, Ulcerative colitis, 
Lung transplant rejection, Malignant melanoma, Carcinoma in situ of small intestine, 
Dehydration, Adenoma of small intestine, Bacterial infection, Glioblastoma, 
Oligodendroglioma, Urothelial carcinoma, Progeria syndrome, Atrial fibrillation, 
Huntington's disease, SARS, Adenocarcinoma of lung 

PRG4 

Multiple benign melanocytic nevi, Urothelial carcinoma, Type 2 diabetes mellitus, 
Actinic keratosis, Adenocarcinoma of lung, Thrombocytopenia, Acute myeloid 
leukemia, Huntington's disease, Cardiomyopathy, Ventilator-associated lung injury, 
Macular degeneration, Congestive cardiomyopathy, Polycystic ovary syndrome, 
Dermatomyositis, Adenovirus infection, Acute pancreatitis 

AQP2G4 

Clear cell carcinoma of kidney, Dermatomyositis, Breast cancer, Duchenne muscular 
dystrophy, Hepatocellular carcinoma, Bacterial infection, Barrett's ulcer of 
esophagus, Helicobacter pylori GI infection, Macular degeneration, MODY, 
Urothelial carcinoma, AML, Crohn's disease, Ulcerative colitis, Epithelial 
proliferation 
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Among the biomarker 
proteins associated with 
disease conditions, we 
identified sets of enriched 
gene annotation terms, 
which were distinct for 
each biofluid (Table 2). 
Disease-associated plasma 

biomarker proteins were enriched for plasma membrane proteins, and proteins 
involved in sugar and carbohydrate metabolism.  Disease-associated urine biomarker 
proteins were enriched for extracellular proteins, and proteins involved in amine 
metabolism and biotic stimulus response.    

We found that a majority of diseases could not be linked to a disease-specific 
protein biomarker in either the blood plasma or urine proteomes.  Among the distinct 
disease conditions represented in the microarray data, 136 (57.1%) were linked to 
plasma proteins, while 127 (53.4%) were mapped to urine proteins. Of these, 65.4% 
and 72.4% link exclusively to biomarkers shared by other diseases in plasma and 
urine respectively.  A selection of disease conditions associated with multiple 
disease-specific biomarker proteins are listed in Table 3. 

 

GO Term P-value 
Plasma 

(GO:0005975) carbohydrate metabolic 
process 

3.1E-5 

(GO:0019318) hexose metabolic process 1.1E-4 
(GO:0006066) alcohol metabolic process 4.6E-4 
(GO:0044459) plasma membrane part 5.3E-4 

Urine 
(GO:0009308) amine metabolic process 7.7E-3 
(GO:0044421) extracellular region part 1.4E-2 
(GO:0050896) response to stimulus 1.8E-2 

Disease Disease-specific protein biomarkers 

Plasma 

Idiopathic cardiomyopathy MACF1, SF3B2, RFX5, TLN1, FSHR, PCCA, PGK2, NEK1, 
RGS3, RGN, CYP3A43 

Thrombocytopenia CYLC2, PIGK, AASS, PANX2, DSPP, XPC, TBL1X, TCERG1 

Malignant melanoma PDE3A, CALR, PDCD6IP, CHAC, KIAA0586 

AIDS PAPPA, TRADD, KIAA0649, APRIN, MAP3K5 

Huntington's disease MAML1, PLGL, RNF10, KIAA0913, OAS1 

Urine 

Idiopathic cardiomyopathy DEFA3, ALDH1L1, CD177, TLN1, SLURP1, BPI, APOH, C8B 

Glioblastoma WISP2, PRDX3, TIMP2, ACO1 

Breast cancer ENPP4, PFKP, THBD, IGFALS 

Acute promyelocytic leukemia CSPG3, LGALS7, HSPA5 

Adenovirus infection VGF, AGA, UMOD 

Table 2. Annotation enrichment for disease-associated biomarkers. 

Table 3.  A subset of diseases associated with multiple disease-specific protein biomarkers. 
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The mean disease linkage degree for a protein biomarker node was 5.09 in the 
plasma network and 5.06 in the urine network.  The mean biomarker linkage degree 
for a disease node was 36.19 in the plasma network and 22.57 in the urine network. 
The distribution of disease connectivity across biomarker nodes was found to follow 
an exponential model in both the blood (R2 = 0.94) and urine (R2 = 0.93) networks, 
suggesting a scale-variance in attachment (Figure 1).  The distribution of biomarker 
connectivity across disease nodes was found to follow a weak power-law model in 
both the blood plasma (R2 = 0.59) and urine (R2 = 0.53) biomarker networks, 
suggesting a scale-free property. This suggests that diseases with many biomarkers 
preferentially gain more biomarkers.  The equivalent graph of the connectivity of the 
biomarkers matches an exponential curve.  The shape of the curve actually splits into 
two parts.  At low connectivity, biomarkers gain connections to diseases randomly 
as more diseases are added.  At higher connectivity, biomarkers then gain 
connections to diseases preferentially if they are already connected.  The two 
segments to the log-log plots of biomarker node degree distributions in Figure 1 thus 
suggest there are two separate populations of biomarkers.       
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Figure 1.  Independent log-log plots of node degree distributions for biomarker and disease nodes. 
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Figure 2.  A rendering of the plasma biomarker network is shown (A).  Disease-specific biomarkers 
(green) are found extending from diseases (blue) at the periphery of the network. The inset image (B) 
illustrates a subset of the biomarker network showing COLEC10, a disease-specific biomarker for 
Crohn’s disease, and non-specific biomarkers that connect Crohn’s disease to other disease conditions. 

4. Discussion 

In this study we propose an integrative network model for biomarker prioritization 
using inter-disease relationships derived from microarray studies, and putative 
protein biomarkers from large-scale biofluids proteome studies.  Unlike traditional 
biomarker prioritization approaches, our approach first considers all possible (i.e. 

A 

B 
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measureable) protein biomarkers in a biofluid proteome and places them within the 
context of inter-disease relationships across the broad spectrum of human disease to 
identify putative protein biomarkers that are likely to be highly discerning for a 
disease of interest.   

Our approach finds validation in finding that a majority proportion (> 80%) of 
measurable proteins in both the blood plasma and urine proteomes are non-specific 
for any single disease condition.  Interestingly, there are several diseases with more 
than one disease-specific biomarker, which could signify an opportunity to develop 
more robust, multi-marker assays for these diseases.  Given the vast resources 
required for both identifying and biologically validating putative molecular 
biomarkers, these results suggest that it may be prudent to focus biomarker 
discovery efforts on the diseases enriched for disease-specific biomarker 
associations.  Such enriched associations could indicate that a novel and 
discriminating pathway is involved in the pathogenesis of the disease, suggesting 
that validation efforts focused on such disease-specific associations could lead to the 
identification of highly discriminating upstream or downstream molecular biomarker 
candidates. 

Although many of the discriminating disease-biomarker associations predicted 
by our approach remain to be biologically and clinically validated, there is, in 
several cases, a compelling degree of biological continuity between the predicted 
disease-specific biomarker and the understood molecular phenomena underlying the 
disease.  One such example is our prediction that Collectin Sub-family Member 10 
(COLEC10) as a putative disease-specific biomarker for Crohn’s disease.  Crohn’s 
disease is a chronic, debilitating inflammatory bowel disorder that can affect any 
portion of the digestive tract36.  Recent genome-wide association studies and other 
investigations into the pathogenesis of Crohn’s disease have revealed a number of 
susceptibility genes37,38 and the major role of the body’s innate immune response 
against enteric microbiota39,40.  Collectins have been implicated as significant 
regulators of the innate immune system, particularly with regards to host defense 
response to microorganisms41.  Collectins are known to induce pro-inflammatory 
cytokines and participate in activation of the compliment system via the lectin 
pathway during the microorganism defense reponse42.  Therefore COLEC10 could 
serve as a novel biomarker that is sensitive to the episodic manifestations of Crohn’s 
disease to inform ongoing disease management, whereas current biomarkers for the 
disease are primarily diagnostic43.   
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Another interesting finding is the identification of GDP dissociation inhibitor 1 
(GDI1) as a disease-specific biomarker for Hypercholesterolemia.  GDI1 is a known 
regulator of the GDP/GTP exchange reactions of Rab proteins and a participant in 
the vesicle mediated cellular transport44.  GDI and Rab are also known to participate 
in the cellular transport of lipids, and GDI/Rab dysregulation has been observed in 
the presence of cholesterol accumulation45.  

We recognize several caveats in our approach.  Foremost, our approach makes 
the naïve assumption that if a gene is significantly differentially expressed in a 
disease condition that this differential will be reflected in either blood plasma or 
urine regardless of the anatomical locus of the disease site.  While quantifications of 
mRNA expression can be far removed from the modulation of protein fragments in 
biofluids, there is reason to believe that such an assumption can hold true in a 
sufficient number of cases.  Interestingly, notable proportions of the proteins 
identified by blood plasma and urine proteome projects are annotated with Gene 
Ontology terms signifying intracellular localization, including: intracellular part 
(55.4%), intracellular organelle part (20.3%), cytoskeleton (9.6%), and nuclear part 
(6.4%).  Such phenomenon may be accounted for by sufficient secretion of 
intracellular proteins inside small-membrane vesicles known as exosomes by various 
tissue types46-50.  Furthermore, cells undergoing destruction as a consequence of 
pathogenesis are likely to emanate intracellular matter into biofluids.  We also 
recognize that the specificity of a protein biomarker in our networks is subject to the 
availability of microarray data for any particular disease.  The addition of novel 
disease conditions into future versions of the biomarker network could even further 
reduce the proportions of disease-specific protein biomarkers.  This study is also 
limited by the quantity and quality of microarray datasets across diseases. 

The framework proposed in this study is not intended to serve as an unequivocal 
means for biomarker elucidation.  Rather we suggest that the integration of our 
approach with other forms of biomarker network biology is likely to lead to even 
more sophisticated approaches to informatics-based biomarker discovery.  Alterovitz 
et al. proposed an information theoretic framework for biomarker discovery that 
identified high-quality peripheral biomarker candidates by identifying significant 
tissue-biofluid channels across a wide range of tissues and biofluids proteomes51.  
Our approach could be used in combination with their biofluids channel approach to 
find optimal intersections between disease-specificity space and biofluid-tissue 
interaction space to even further refine the scope of putative biomarker proteins for a 
particular disease condition.    
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5. Conclusion 

The discovery of discerning molecular biomarkers for a disease condition of 
interest is encumbered by the vast combinatorial space of prospective candidate 
markers.  Our work provides a novel framework for reducing the space of candidate 
markers by establishing an integrative, network-based model comprised of disease 
associated gene expression profiles and biofluids proteomes.  While a more 
traditional biomarker discovery endeavor might start with the disease condition of 
interest to identify biomarker candidates in a “bottom-up” approach, we offer a “top-
down” approach that begins with the broad space of human disease and full 
compliments of biofluid proteomes to quickly discern candidate protein biomarkers 
discriminately associated with the a disease condition.  This work establishes the 
importance of genome-wide, inter-disease relationships in biomarkers discovery and 
paves the way for novel integrative methods that incorporate inter-disease network 
models to further refine biomarker discovery.  
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