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Learning or inferring networks of genomic regulation specific to a cellular state, such as a 

subtype of tumor, can yield insight above and beyond that resulting from network-

learning techniques which do not acknowledge the adaptive nature of the cellular system.  

In this study we show that Cellular Context Mining, which is based on a mathematical 

model of contextual genomic regulation, produces gene regulatory networks (GRNs) 

from steady-state expression microarray data which are specific to the varying cellular 

contexts hidden in the data; we show that these GRNs not only model gene interactions, 

but that they are also readily annotated with context-specific genomic information.  We 

propose that these context-specific GRNs provide advantages over other techniques, such 

as clustering and Bayesian networks, when applied to gene expression data of cancer 

patients. 

1.   Introduction 

Under normal conditions, a cell maintains a specific state by tightly controlling 

various molecules using a variety of regulatory mechanisms. In the face of 

environmental changes, a cell adjusts its regulatory mechanisms accordingly.  

Mutation or other types of damage that alter these regulatory mechanisms may 

erode this control and cause the cell to transition into another state significantly 

different from the prior normal state [6].  If the normal state is taken to be 

“healthy” and the altered state is taken to be “tumor”, for example, the 

regulatory functions must have been altered in significant ways to arrive at the 

“tumor” state.  Since the way the system interprets and acts upon certain inputs 

is altered, we say that there is a change in cellular context. 
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 Although a tumor state of the cell is different from normal, the continuing 

proliferation and survival of cancer shows that such a state is indeed steady and 

maintained by complex regulatory behavior.  If one can learn from the 

contextual information which regulating mechanisms differ from context to 

context, then one can potentially discover the mechanisms that initiate and 

maintain complex, hard-to-treat diseases, such as cancer. 

High throughput data collection methods, including gene expression 

microarrays, provide vast amount of data to study various aspects of cellular 

processes. Many methods and techniques exist to discern and model the 

regulatory behavior of cells, and each certainly has distinct advantages and 

disadvantages.  For instance, traditional clustering approaches like k-means or 

hierarchical clustering can help group samples or genes, revealing possible 

novel subtypes of diseases or subclasses of molecular functions. Bayesian 

networks have been employed as models of genomic regulation; however they 

inherently assume homogeneity of samples and thus cannot model different 

“cellular contexts”, a serious limitation in non-homogeneous disease like cancer. 

In this paper, we will first describe a mathematical model of contextual 

genomic regulation [3], a method based upon that model to identify cellular 

contexts [9], and then propose a novel method to construct context-specific gene 

regulatory networks.  We apply the context mining method to gene expression 

data collected from a broad spectrum of cancer patients to reveal the modular 

and context-specific structure of gene regulatory networks hidden within the 

data.  Finally, we conclude with the future direction of our work.  

2.   Methods 

2.1.   Mathematical Model for Contextual Genomic Regulation 

It is important to select a mathematical model of a cell’s regulatory activity that 

accounts for regulation which very actively adjusts to differing internal and 

external environmental factors.  Rather than models which infer connections 

between single genes, or between genes and phenotypes, we wish to select a 

model which can find subsets of samples where it is possible to attribute the 

states of all the members of a set of controlled genes to a single gene, or to a 

small set of regulatory genes which have expression properties that could be the 

source of control. 

Recently, Dougherty et al. [3] introduced a mathematical model to 

approximate contextual genomic regulation. Formally, the model assumes there 

are m sets, G1, G2, …, Gm, of driver genes and m corresponding sets, S1, S2, …, 
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Sm, of driven genes.  For each set of driven genes Sj, there is a corresponding set 

Gj of driver genes regulating their behavior.  G1, G2, …, Gm are not necessarily 

disjoint, and neither are S1, S2, …, Sm; thus some driver gene may regulate more 

than one driven set, and some driven gene may be regulated by more than one 

driver gene set. 

Two parameters are essential to the definition of the Contextual Genomic 

Regulation (CGR) model.  To define these parameters, consider a single set of 

driver genes G and its driven set of regulated genes S.  For the set of drivers, still 

assuming a binary model (without loss of generality), there exists a state vector 

Y = (Y1, Y2, …, Yq) where Yk (1≤k≤q) gives the value of gk ∈ G.  Let regulation 

by the driver genes be such that for a state y of the driver gene state vector Y 

(for G), when Y = y, all genes in S take on the value 1 with high probability.   

Without loss of generality, let y be the state in which all members of Y have 

the value 1, denoted by 1; we will consider two situations for G, namely the 

situation where Y = 1 and the situation where Y ≠ 1.  Similar to Y for G, let X = 

(X1, X2, …, Xr) be the state vector for S where Xk (1≤ k ≤r) gives the value of sk ∈ 

S.  In the first case, where Y = 1, although the driver is ON, there may be other 

regulatory activities within the context affecting the driven genes.  For any 

driven gene sk ∈ S, the conditional probability of sk being ON is stated 

 P(Xk = 1|Y = 1) = 1 – δk (1) 

where δk depends on the extent that contextual effects diminish the influence of 

the driver on the driven gene sk.  Hence, we refer to δ as the interference 

parameter.  Now if Y ≠ 1, then the probability that some driven state Xk = 1 

depends on contextual effects alone and not the effects of drivers is given by 

 P(Xk = 1|Y ≠ 1) = ηk (2) 

where ηk depends on the extent that contextual effects outside of the drivers 

activate the driven genes.  Hence, we refer to ηk as the crosstalk parameter.  

Further considerations of the model, including prediction accuracy and error 

representation, are left to the original paper by Dougherty et al [3]. 

2.2.   Identification of Cellular Contexts  

Based on the above model, a cellular context is taken to be a set of genes, one or 

more of which function as drivers and the others as driven genes, which exhibit 

consistent transcriptional behavior across a subset of samples.  Kim et al. [9] 

have proposed an algorithm to identify cellular contexts in gene expression data 

called Cellular Context Mining (CCM), where the genes in a context have 

significantly low interference and crosstalk values across the samples in the 
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context.  One major step in CCM, known as in-silico conditioning, is designed 

to be similar to a biologist manipulating the status of a gene or conditioning cells 

in an experiment with techniques including ectopic expression or gene silencing.  

With in-silico conditioning, the conditioning and the observations are not 

performed manually as the data is collected, but rather computationally after the 

data has been collected, hence the name.  In this paper, we only consider a single 

gene driver at a time for conditioning, although the model allows for more.  

Each conditioning of a driver gene gi on a value Yi = yi yields a subset of 

samples Mi within which a set of driven genes Si = {gi(1), … gi(r)} appears to be 

tightly regulated, so a cellular context, therefore, is defined as Ci = { Gi, Yi, Si, 

Mi
 
}

§
.  Permutation tests were used to determine the most statistically significant 

contexts represented in the data.  Note that each context defines regulatory 

relationships Gi → g ∈ Si, specific to Mi with Gi (drivers) conditioned on a value 

Yi = yi.  These implicit relationships lead to the construction of context specific 

regulatory networks.  

The advantage of the context mining method is that it is built upon a 

biologically-inspired mathematical model, which gives strong meaning to the 

direction of the edges, i.e. one driver gene controlling another. Also, CCM 

identifies each context with a corresponding driver gene and a set of samples, 

thereby ensuring the identification of a unique and statistically significant 

cellular context.  Supplementary materials including an elucidating figure 

explaining CCM, a Java program implementing CCM, and other relevant 

materials are available at http://sysbio.fulton.asu.edu/psb2009.  The CCM 

algorithm has been also parallelized to carry out analysis of large data sets [12]. 

2.3.   Context-Specific Gene Regulatory Networks 

This study asserts that the gene regulatory networks (GRNs) produced by 

cellular context mining exhibit biological advantages absent in related 

techniques.  We first note that driver gj in the context Cj might be driven by a gi 

in another context Ci.  The chaining of such regulatory relationships gi → gj, in 

addition to implicit driver-driven relationships gi → g ∈ Si, results in an 

interesting graphical structure, representing relationships between contexts.  We 

call this a context-specific gene regulatory network (GRN) as each regulatory 

relationship gi → g ∈ Si is specific to corresponding subset of samples, Mi. 

A context-specific GRN differs from other representations not in its 

graphical structure, but by the fact that contexts connected to one another in a 

                                                           
§ The state vector of driven genes Xi is used for their identification, and not explicitly in Ci. 
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network differ in their sample composition.  Formally, a context-specific GRN 

H is a pair H = (V, E), where V is a set of gene-representing vertices and E is a 

set of edges oriented from genes designated as drivers to genes designated as 

driven; thus H is a directed graph structure, though not necessarily acyclic, since 

a driven gene in one context may be a driver in another.  

Again, note that each edge ei* is specific to only its corresponding subset of 

samples, Mi, where ei* refers to gi → g ∈ Si.  This study shows that not only do 

context-specific GRNs report verifiable (and possibly novel) relationships 

between genes, but moreover the overall network structure groups itself into 

biologically meaningful and readily annotated context clusters.  We applied this 

technique to the Target Now (TN) 
**

 dataset, which includes gene expression 

profiles of 146 patients with refractory cancer.  Amalgamation of identified 

cellular contexts yielded a context-based network structure. Biological 

annotation according to sample composition of context clusters and literature 

verification of gene-disease relevance was carried out.  This is unique among 

network learning techniques, which we illustrate with a comparison to Bayesian 

network approaches. 

2.4.   Bayesian Network Analysis 

The Bayesian network model is a popular tool for modeling GRNs.  Here, we 

used a hybrid algorithm of hierarchical clustering and order restriction (H-

CORE) [8] and sparse candidate (SC) [5] to learn genome-wide Bayesian 

network structures from a dataset. To compensate for the inadequate amount of 

observed data, we applied a k-fold bootstrapping in learning GRN with Bayesian 

network learning.  

We built K subsets D1, D2, …, DK by randomly selecting (k-1)/k proportion 

(for example, 90% if k = 10) of samples with replacement from D. We applied 

the hybrid algorithm of H-CORE and SC to learn a Bayesian network structure 

Hi from each Di, and built K Bayesian network structures. The likelihood of an 

edge gi → gj to be in the final GRN HBN was evaluated as follows: 
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The final GRN HBN only included the edges having likelihood L larger than 0.5. 

                                                           
** http://www.targetnow.com 
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3.   Results 

3.1.   Target Now Dataset 

In applying the method described above, we used the gene expression profile of 

the Target Now (TN) study. TN study aims to determine if patients with 

refractory cancer, who did not benefit from the standard types of treatment, 

could derive benefit from therapy with a drug not normally used for their 

particular form of cancer. The therapeutic to apply is one that has activity 

against a gene target that is found to be altered in that patient’s cancer.  The 

cancer patients contributing to the TN study all have late stage cancer.  Late 

stage cancer is very frequently de-differentiated, having lost a great deal of the 

specialized functions present in the tissue from which it arose.  Due to this 

biological simplification of the system, those genes whose abundance is found to 

be altered from the normal tissue of origin and whose change of abundance is 

found in other refractory cancers (of the same type or of different types) may be 

representatives of changes that are necessary to support a particular molecular 

subtype of cancer. 

The TN dataset, which consists of 17,085 unique probes (Agilent-011521 

Human 1A Microarray G4110A) from 146 patients with different types of 

refractory cancer, was used to learn context-specific GRNs. For each tumor 

type, its (normal) tissue of origin was used as a baseline and the ratio of the 

tumor to its tissue of origin was computed and the ratio value was ternarized 

using a statistical model [2].  The dataset was then pre-filtered based on 

transcription activity of each gene across the samples to be reduced to only 

4,000 probes. The Target Now dataset sample distribution of the 146 samples 

between different cancer tumor types is listed in Table 1. 

 
Table 1. TN Sample Distribution, number of samples associated with different cancer tumor types 

Pancreas 20 Colon 7 Brain 4 Cervical 3 Esophagus 2 

Ovarian 19 Kidney 6 Lung 4 Gallbladder 3 Skin 2 

Melanoma 18 Salivary 6 Adipose 3 Rectal 3 T Cell 2 

Breast 16 Adrenal 5 Bladder 3 Stomach 3 Thyroid 2 

Single Sample: Appendix, Cartilage, Chondrosarcoma, Eccrine Adeno-carcinoma, Glioma, Gastric, 

Ileum, Lymphoma, Monocytes, Prostate, Uterus, Rhabdomyosarcoma, Synovial Cell Sarcoma, 

Skeletal Muscle, Testicular 

3.2.   Context Clusters 

Running the context mining algorithm with a strict statistical significance 

threshold resulted in 205 contexts with p-value < 0.0005.  Using these contexts, 

the method described to create context specific GRNs yielded a directed graph 
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with 1,790 vertices (genes) and 9,566 edges (regulatory relationships), as shown 

in Figure 1 (in Sect. 3.3). This graph had an interesting property of being 

systematically fragmented into four separate context clusters, which were 

identified by locating the weakly connected components in the graph. 

These context clusters provide a useful approach to interpreting the contexts 

found by CCM.  The clusters typically display significant overlaps among their 

subsets of samples.  This is due to complex inter-connections among drivers that 

result from particular common cellular processes being shared among them.  

Forming context clusters readily reveals these common cellular contexts on the 

basis of their more densely connected components. 

When investigating four separate context clusters, we noticed the two 

largest context clusters consisted of densely connected parts loosely bound to 

one another.  Seeking to further characterize the data on the basis of very dense 

connectivity, we investigated the connections within the two largest context 

clusters.  In Figure 1, bottom right, we segregated the first large cluster into 

context clusters C and G.  Context cluster G is easily separable as all its genes 

are neither under- nor over-expressed (unlike C), and only one edge exists 

between the context clusters C and G (C drives a gene also driven by G). These 

characteristics convinced us that C and G should be analyzed as separate context 

clusters.  The weak connection may have been rooted in tissue of origin 

similarity, as between them they account for two-thirds of the pancreatic 

samples in the data with six members in each.  Next, we segregated the top large 

cluster in Figure 1 into context clusters A, B and F.  All driver-to-driver edges 

between A and B are oriented from A to B, implying a hierarchical regulatory 

relationship from A to B.  Also, like C and G, their connection in the graph is 

explained by the fact that both A and B represent significant numbers of both 

breast and ovarian tumor types. Context clusters B and F share four edges, two 

involve genes driven by drivers in both B and F.  The two remaining edges are 

both directed from F to drivers in B, indicating again a possible hierarchical 

regulatory relationship between the two. 

On the basis of density of connection and directionality of control, we 

resolved the four original context clusters into seven biologically separable ones.  

Each of these seven context clusters are visible in Figure 1 and have the 

associated tumor types next to them. Enriched tumor types are highlighted in red 

and the numbers next to all tumor types correspond to the number of samples 

distinguished as significant by the scoring function (Equation 4, discussed in 

next section). See Table 1 for details of the dataset’s sample composition.  
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3.3.   Enrichment Calculations 

3.3.1.   Sample Association to Context Cluster 

As a context cluster is a set of cellular contexts connected to one another 

through inter-context regulation, it would be informative to associate a set of 

samples to each context cluster based on its strength of association with the 

member contexts.  Sample association to context clusters also allows annotation 

of the context cluster as a partial representative of cancer type.  Since one 

context cluster is comprised of potentially many contexts, each representing a 

particular subset of biological samples, it is of interest which of those samples 

appears in more than one context in the context cluster.  Samples were scored on 

the basis of occurrence within the context, over all the contexts found in the 

context cluster. A sample s, given a context cluster C consisting of m contexts 

{C1, C2,…, Cm}, would have the scoring: 
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where ki is number of samples within context Ci and N is the total number of 

samples in the gene expression data. The sample which occurs in all contexts of 

the context cluster would then have the least score, and the sample which is not 

present in any of the contexts will have a score of 1.  The samples with score 

less than 0.5 were associated to corresponding context cluster. Using only the 

selected samples, the distributions and tumor types were calculated across all 

context clusters. Figure 1 depicts the tumor types having non-zero sample counts 

corresponding to each context cluster.  

3.3.2.   Tumor Type Enrichment 

After sample association to specific context cluster, each cluster was subjected 

to a statistical test for enrichment of specific types of tumors.  The Yates 

corrected chi square test for significance was applied (some numbers were less 

than 5) to each tumor type-context cluster pair.  Some of the significant results 

are summarized below in Table 2. Figure 1 highlights (in red) the tumor type 

considered enriched within the corresponding context cluster. 

Intriguingly, context cluster A showed significant tumor enrichment of 

ovarian cancer, breast cancer and lung cancer. A literature survey shows breast 

cancer drugs are being used in the treatment of lung cancer [13], because of vital 

role of estrogen in lung development and subsequently cancer pathway. 
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Table 2. Chi-square enrichment test p-values of tumor types in different context clusters 

Context Cluster A Context Cluster B Context Cluster C 

Tumor Type p-value Tumor Type p-value Tumor Type p-value 

Ovarian 2.3e-05 Gallbladder 1.6e-04 Pancreas 8.2e-05 

Breast 0.0057     

Lung 0.0120     

 

Conventional approaches such as clustering and Bayesian network learning 

provide some ability to observe sample enrichment, but they do so in ways that 

do not exploit the association of particular expression behaviors in subsets of the 

samples to the fullest extent. Since clustering and Bayesian network learning 

implicitly assume that the observed data is from a single distribution, their 

results are always diluted approximations relative to results that assume the 

observed data to have come from various different distributions and evaluate 

them in appropriate isolation. 

We compared our method to some conventional clustering algorithms,  i.e. 

hierarchical clustering and k-means clustering using similarity metrics of 

correlation and Euclidean distance, in Cluster version 3.0 [4], to group samples 

with similar gene expression profiles together.  We were able to verify that in 

Breast 2

Melanoma 2

Adipose

Pancreas 6

Colon 3

Salivary Gland 2

Blad 2

Ovarian 2

Breast

Brain

Synovial Cell Sarcoma

Lymphoma

Stomach

Melanoma

Rectal

Ovarian 10

Breast 7

Lung 3

Colon

Pancreas

Eccrine Adenocarcinoma

Rectal

Ovarian 4 Colon Melanoma

Gall bladder 3 Ileum Eccrine Adenocarcinoma

Breast 2 Monocytes Prostate

Kidney 2 Lung
None

Pancreas 6 Chondrosarcoma

Salivary Gland 2 Melanoma

Pancreas 6 Blad Gastric

Melanoma 6 Breast Lymphoma

Ovarian 3 Brain Stomach

Salivary Gland 2 Colon Skin

Adipose 2 Cartilage Thyroid

Adrenal 2 Synovial Cell Sarcoma

Context Cluster B

Context Cluster A

Context Cluster C

Context Cluster F

Context Cluster D

Context Cluster E

Context Cluster G

 
Figure 1. Context-clusters and context-specific GRNs – each context cluster is annotated with 

the corresponding set of samples and highlights significantly enriched tumor types in red. See 

Table 1 for cancer tumor sample distribution in the dataset.  In the graph itself, red vertices 

represent over-expressed genes, green under-expressed, and grey neither under- nor over-

expressed.  Edges are oriented from driver genes (large vertices) to driven genes (small vertices). 
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cases where a similar number of clusters (six or seven) were identified by 

conventional methods, the conventional clusters display significant overlap 

(ranging from 40% to 90% overlap) with context clusters in terms of samples 

(and thus tumor type enrichment). Conventional clustering algorithms do not 

however provide a quantitative evaluation with which to isolate vital gene 

markers or describe the genes’ activity for the subtype of disease described by 

the sample subset. The context cluster approach has a distinct advantage of 

extracting relevant genes pertaining to the particular disease type. 

Some examples of known gene interactions and relationships to diseases 

within context clusters were verified through a literature survey. Context cluster 

A involved breast cancer, ovarian cancer and lung cancer, and included genes 

such as TNFRSF1A, which is known to promote breast cancer [11]; CD74, 

usually expressed in ovarian and lung cancers, is being considered as a target for 

Multiple Myeloma treatment therapy [1]; HLA-DM, its expression when 

combined with that of HLA-DR, is considered to influence breast tumor 

progression and patient outcome [10]. Context cluster C, related to pancreatic 

cancer, contained GP2, a protein specifically expressed in pancreatic acinar cells 

and considered as a diagnostic marker in animals [7].  

3.4.   Comparison of Context Mining and Bayesian Network Analysis 

Context clusters (A ~ G) were compared to HBN, which is the result from the 

Bayesian network analysis. HBN was composed of many subgraphs (HCCs), 

which were connected components, and the top 32 large HCCs were chosen as 

the target of comparison. The degree of overlap was evaluated for each pair 

(context cluster, HCC) using the geometric mean of common gene ratios for the 

context cluster and the HCC. A pair with a degree of overlap larger than 0.162 

was determined to share a significant amount of genes after considering the 

empirical distribution of the degree of overlap. To figure out the difference 

between two results, enrichment analyses for GO terms were conducted for 

every context cluster and every HCC using GoMiner [14]. 

Figure 2 compares context mining and Bayesian network analysis. The 

comparison revealed 10 HCCs with a significant number of shared genes with at 

least one context cluster (Shared = {HCC,1, HCC,2, HCC,3, HCC,7, HCC,16, HCC,17, 

HCC,19, HCC,26, HCC,30, HCC,32}).  When HCCs in Shared were subject to GO term 

enrichment analysis, most of such HCCs did not have any enriched GO term (8 of 

10). On the contrary, other HCCs with no significantly shared genes 

(NonShared) were often enriched with GO terms (19 of 22). The reason can be 

as follows: Bayesian network learning assumes that the observed data is from a 
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single distribution, and attempts to capture information consistent across all 

samples in the observed data. On the contrary, context mining captures 

information consistent in subset of samples. If an HCC shares a significant 

amount of genes with a context cluster, it means that significant portion of 

information in the HCC is consistent only in some subset of samples. This is 

against the viewpoint of Bayesian network learning, because the HCC was built 

with a bias toward the process of capturing information consistent across all 

samples. For this reason, the shared genes in an HCC may have inconsistent 

information with those unshared genes in the HCC, eventually making it hard for 

the HCC to have enriched GO terms. The conventional Bayesian network 

learning is therefore not an optimum choice for identifying context-specific 

information from some subset of samples.  

This comparison and the tumor enrichment studies of context clusters in 

previous sections, shows that the context-specific GRN has a novel ability to 

represent context-specific information from subset of samples while 

conventional approaches assuming the entire sample set to be from single 

distribution have a harder time recognizing this kind of behavior. 

4.   Conclusions 

This paper presents a novel approach to generate context clusters, i.e. disease-

pertinent (cancer tumor type in case of TN dataset) gene regulatory networks, 

HCC1 HCC2 HCC3 HCC4 HCC5 HCC6 HCC7 HCC8 HCC9 HCC10 HCC11

A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.11 0.02

B 0.32 0.00 0.03 0.00 0.00 0.08 0.00 0.00 0.00 0.00 0.00

C 0.02 0.19 0.01 0.00 0.11 0.00 0.00 0.00 0.00 0.02 0.05

D 0.42 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

E 0.00 0.00 0.00 0.14 0.00 0.01 0.00 0.00 0.00 0.14 0.00

F 0.00 0.00 0.53 0.00 0.00 0.00 0.51 0.00 0.00 0.00 0.00

G 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

HCC12 HCC13 HCC14 HCC15 HCC16 HCC17 HCC18 HCC19 HCC20 HCC21 HCC22

A 0.05 0.00 0.00 0.00 0.00 0.25 0.05 0.00 0.00 0.00 0.03

B 0.00 0.00 0.00 0.00 0.42 0.00 0.00 0.22 0.00 0.00 0.00

C 0.00 0.00 0.01 0.08 0.05 0.07 0.11 0.11 0.03 0.01 0.00

D 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

E 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.08

F 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

G 0.00 0.00 0.00 0.00 0.39 0.00 0.00 0.04 0.00 0.00 0.00

HCC23 HCC24 HCC25 HCC26 HCC27 HCC28 HCC29 HCC30 HCC31 HCC32

A 0.00 0.00 0.00 0.11 0.00 0.00 0.00 0.00 0.03 0.00

B 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.14 0.00 0.17

C 0.01 0.00 0.00 0.01 0.00 0.08 0.07 0.00 0.00 0.00

D 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

E 0.00 0.00 0.00 0.17 0.00 0.00 0.00 0.00 0.02 0.00

F 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

G 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.31 0.00 0.21

0

5

10

15

20

25

Shared NonShared

Enriched Hcc

Not enriched Hcc

 

Figure 2.  The left table shows the degree of overlap for each pair of a context cluster (A ~ G) and a 

subgraph (HCC,1 ~ HCC,32) from Bayesian network analysis. A shaded cell in the table represents the 

pair with significantly shared genes. A shaded context cluster or a HCC has at least one enriched GO 

term while non-shaded one has no enriched GO term. The right graph shows the portion of HCCs with 

enriched GO terms for HCCs with significantly shared genes (Shared) and HCCs with no significantly 

shared genes (NonShared). 
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using cellular contexts through the CCM algorithm. This study asserts that these 

gene regulatory networks produced by CCM exhibit biological advantages 

absent in related techniques.  The mapping of inter- and intra-context edges 

results in a graph of context clusters—the densely connected components—

which is found to have interesting properties, such as specific cancer tumor type 

enrichment (used for context cluster annotation) and occurrence of genes 

relevant to the annotated disease. Comparison of this approach with 

conventional clustering algorithms demonstrated its advantage for relevant gene 

subset identification. When compared with Bayesian network analysis, we noted 

that context clusters can capture regulatory relationships specific to subset of 

samples while conventional Bayesian network learning rarely captures 

meaningful context-specific information. 

We are currently working on multivariate in-silico conditioning in the 

context mining and incorporation of clinical annotation (if available) for 

learning and prediction purposes, in addition to the analysis of larger data sets 

such as GSK300 (https://cabig.nci.nih.gov/caArray_GSKdata/ – 300+ cancer 

cell line data) and expO data (http://expo.intgen.org/geo/home.do  – 2000+ 

cancer patient samples).  
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