








  

cases where a similar number of clusters (six or seven) were identified by 

conventional methods, the conventional clusters display significant overlap 

(ranging from 40% to 90% overlap) with context clusters in terms of samples 

(and thus tumor type enrichment). Conventional clustering algorithms do not 

however provide a quantitative evaluation with which to isolate vital gene 

markers or describe the genes’ activity for the subtype of disease described by 

the sample subset. The context cluster approach has a distinct advantage of 

extracting relevant genes pertaining to the particular disease type. 

Some examples of known gene interactions and relationships to diseases 

within context clusters were verified through a literature survey. Context cluster 

A involved breast cancer, ovarian cancer and lung cancer, and included genes 

such as TNFRSF1A, which is known to promote breast cancer [11]; CD74, 

usually expressed in ovarian and lung cancers, is being considered as a target for 

Multiple Myeloma treatment therapy [1]; HLA-DM, its expression when 

combined with that of HLA-DR, is considered to influence breast tumor 

progression and patient outcome [10]. Context cluster C, related to pancreatic 

cancer, contained GP2, a protein specifically expressed in pancreatic acinar cells 

and considered as a diagnostic marker in animals [7].  

3.4.   Comparison of Context Mining and Bayesian Network Analysis 

Context clusters (A ~ G) were compared to HBN, which is the result from the 

Bayesian network analysis. HBN was composed of many subgraphs (HCCs), 

which were connected components, and the top 32 large HCCs were chosen as 

the target of comparison. The degree of overlap was evaluated for each pair 

(context cluster, HCC) using the geometric mean of common gene ratios for the 

context cluster and the HCC. A pair with a degree of overlap larger than 0.162 

was determined to share a significant amount of genes after considering the 

empirical distribution of the degree of overlap. To figure out the difference 

between two results, enrichment analyses for GO terms were conducted for 

every context cluster and every HCC using GoMiner [14]. 

Figure 2 compares context mining and Bayesian network analysis. The 

comparison revealed 10 HCCs with a significant number of shared genes with at 

least one context cluster (Shared = {HCC,1, HCC,2, HCC,3, HCC,7, HCC,16, HCC,17, 

HCC,19, HCC,26, HCC,30, HCC,32}).  When HCCs in Shared were subject to GO term 

enrichment analysis, most of such HCCs did not have any enriched GO term (8 of 

10). On the contrary, other HCCs with no significantly shared genes 

(NonShared) were often enriched with GO terms (19 of 22). The reason can be 

as follows: Bayesian network learning assumes that the observed data is from a 



 

 

 

single distribution, and attempts to capture information consistent across all 

samples in the observed data. On the contrary, context mining captures 

information consistent in subset of samples. If an HCC shares a significant 

amount of genes with a context cluster, it means that significant portion of 

information in the HCC is consistent only in some subset of samples. This is 

against the viewpoint of Bayesian network learning, because the HCC was built 

with a bias toward the process of capturing information consistent across all 

samples. For this reason, the shared genes in an HCC may have inconsistent 

information with those unshared genes in the HCC, eventually making it hard for 

the HCC to have enriched GO terms. The conventional Bayesian network 

learning is therefore not an optimum choice for identifying context-specific 

information from some subset of samples.  

This comparison and the tumor enrichment studies of context clusters in 

previous sections, shows that the context-specific GRN has a novel ability to 

represent context-specific information from subset of samples while 

conventional approaches assuming the entire sample set to be from single 

distribution have a harder time recognizing this kind of behavior. 

4.   Conclusions 

This paper presents a novel approach to generate context clusters, i.e. disease-

pertinent (cancer tumor type in case of TN dataset) gene regulatory networks, 

HCC1 HCC2 HCC3 HCC4 HCC5 HCC6 HCC7 HCC8 HCC9 HCC10 HCC11

A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.11 0.02

B 0.32 0.00 0.03 0.00 0.00 0.08 0.00 0.00 0.00 0.00 0.00

C 0.02 0.19 0.01 0.00 0.11 0.00 0.00 0.00 0.00 0.02 0.05

D 0.42 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

E 0.00 0.00 0.00 0.14 0.00 0.01 0.00 0.00 0.00 0.14 0.00

F 0.00 0.00 0.53 0.00 0.00 0.00 0.51 0.00 0.00 0.00 0.00

G 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

HCC12 HCC13 HCC14 HCC15 HCC16 HCC17 HCC18 HCC19 HCC20 HCC21 HCC22

A 0.05 0.00 0.00 0.00 0.00 0.25 0.05 0.00 0.00 0.00 0.03

B 0.00 0.00 0.00 0.00 0.42 0.00 0.00 0.22 0.00 0.00 0.00

C 0.00 0.00 0.01 0.08 0.05 0.07 0.11 0.11 0.03 0.01 0.00

D 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

E 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.08

F 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

G 0.00 0.00 0.00 0.00 0.39 0.00 0.00 0.04 0.00 0.00 0.00

HCC23 HCC24 HCC25 HCC26 HCC27 HCC28 HCC29 HCC30 HCC31 HCC32

A 0.00 0.00 0.00 0.11 0.00 0.00 0.00 0.00 0.03 0.00

B 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.14 0.00 0.17

C 0.01 0.00 0.00 0.01 0.00 0.08 0.07 0.00 0.00 0.00

D 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

E 0.00 0.00 0.00 0.17 0.00 0.00 0.00 0.00 0.02 0.00

F 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

G 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.31 0.00 0.21
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Figure 2.  The left table shows the degree of overlap for each pair of a context cluster (A ~ G) and a 

subgraph (HCC,1 ~ HCC,32) from Bayesian network analysis. A shaded cell in the table represents the 

pair with significantly shared genes. A shaded context cluster or a HCC has at least one enriched GO 

term while non-shaded one has no enriched GO term. The right graph shows the portion of HCCs with 

enriched GO terms for HCCs with significantly shared genes (Shared) and HCCs with no significantly 

shared genes (NonShared). 



  

using cellular contexts through the CCM algorithm. This study asserts that these 

gene regulatory networks produced by CCM exhibit biological advantages 

absent in related techniques.  The mapping of inter- and intra-context edges 

results in a graph of context clusters—the densely connected components—

which is found to have interesting properties, such as specific cancer tumor type 

enrichment (used for context cluster annotation) and occurrence of genes 

relevant to the annotated disease. Comparison of this approach with 

conventional clustering algorithms demonstrated its advantage for relevant gene 

subset identification. When compared with Bayesian network analysis, we noted 

that context clusters can capture regulatory relationships specific to subset of 

samples while conventional Bayesian network learning rarely captures 

meaningful context-specific information. 

We are currently working on multivariate in-silico conditioning in the 

context mining and incorporation of clinical annotation (if available) for 

learning and prediction purposes, in addition to the analysis of larger data sets 

such as GSK300 (https://cabig.nci.nih.gov/caArray_GSKdata/ – 300+ cancer 

cell line data) and expO data (http://expo.intgen.org/geo/home.do  – 2000+ 

cancer patient samples).  
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